And then, the supposed boilerplate code revealed yet another confusing issue
that quickly forced me back to serial work, leading to no parallel progress
made with Shuusou Gyoku after all. 🥲 The list of functions I put together
for the first ½ of this push seemed so boring at first, and I was so sure
that there was almost nothing I could possibly talk about:
TH02's gaiji animations at the start and end of each stage, resembling
opening and closing window blind slats. ZUN should have maybe not defined
the regular whitespace gaiji as what's technically the last frame of the
closing animation, but that's a minor nitpick. Nothing special there
otherwise.
The remaining spawn functions for TH04's and TH05's gather circles. The
only dumb antic there is the way ZUN initializes the template for bullets
fired at the end of the animation, featuring ASM instructions that are
equivalent to what Turbo C++ 4.0J generates for the __memcpy__
intrinsic, but show up in a different order. Which means that they must have
been handwritten. I already figured that out in 2022
though, so this was just more of the same.
EX-Alice's override for the game's main 16×16 sprite sheet, loaded
during her dialog script. More of a naming and consistency challenge, if
anything.
The regular version of TH05's big 16×16 sprite sheet.
EX-Alice's variant of TH05's big 16×16 sprite sheet.
The rendering function for TH04's Stage 4 midboss, which seems to
feature the same premature clipping quirk we've seen for
📝 TH05's Stage 5 midboss, 7 months ago?
The rendering function for the big 48×48 explosion sprite, which also
features the same clipping quirk?
That's three instances of ZUN removing sprites way earlier than you'd want
to, intentionally deciding against those sprites flying smoothly in and out
of the playfield. Clearly, there has to be a system and a reason behind it.
Turns out that it can be almost completely blamed on master.lib. None of the
super_*() sprite blitting functions can clip the rendered
sprite to the edges of VRAM, and much less to the custom playfield rectangle
we would actually want here. This is exactly the wrong choice to make for a
game engine: Not only is the game developer now stuck with either rendering
the sprite in full or not at all, but they're also left with the burden of
manually calculating when not to display a sprite.
However, strictly limiting the top-left screen-space coordinate to
(0, 0) and the bottom-right one to (640, 400) would actually
stop rendering some of the sprites much earlier than the clipping conditions
we encounter in these games. So what's going on there?
The answer is a combination of playfield borders, hardware scrolling, and
master.lib needing to provide at least some help to support the
latter. Hardware scrolling on PC-98 works by dividing VRAM into two vertical
partitions along the Y-axis and telling the GDC to display one of them at
the top of the screen and the other one below. The contents of VRAM remain
unmodified throughout, which raises the interesting question of how to deal
with sprites that reach the vertical edges of VRAM. If the top VRAM row that
starts at offset 0x0000 ends up being displayed below
the bottom row of VRAM that starts at offset 0x7CB0 for 399 of
the 400 possible scrolling positions, wouldn't we then need to vertically
wrap most of the rendered sprites?
For this reason, master.lib provides the super_roll_*()
functions, which unconditionally perform exactly this vertical wrapping. But
this creates a new problem: If these functions still can't clip, and don't
even know which VRAM rows currently correspond to the top and bottom row of
the screen (since master.lib's graph_scrollup() function
doesn't retain this information), won't we also see sprites wrapping around
the actual edges of the screen? That's something we certainly
wouldn't want in a vertically scrolling game…
The answer is yes, and master.lib offers no solution for this issue. But
this is where the playfield borders come in, and helpfully cover 16 pixels
at the top and 16 pixels at the bottom of the screen. As a result, they can
hide up to 32 rows of potentially wrapped sprite pixels below them:
•
The earliest possible frame that TH05 can start rendering the Stage 5
midboss on. Hiding the text layer reveals how master.lib did in fact
"blindly" render the top part of her sprite to the bottom of the
playfield. That's where her sprite starts before it is correctly
wrapped around to the top of VRAM.
If we scrolled VRAM by another 200 pixels (and faked an equally shifted
TRAM for demonstration purposes), we get an equally valid game scene
that points out why a vertically scrolling PC-98 game must wrap all sprites
at the vertical edges of VRAM to begin with.
Also, note how the HP bar has filled up quite a bit before the midboss can
actually appear on screen.
And that's how the lowest possible top Y coordinate for sprites blitted
using the master.lib super_roll_*() functions during the
scrolling portions of TH02, TH04, and TH05 is not 0, but -16. Any lower, and
you would actually see some of the sprite's upper pixels at the
bottom of the playfield, as there are no more opaque black text cells to
cover them. Theoretically, you could lower this number for
some animation frames that start with multiple rows of transparent
pixels, but I thankfully haven't found any instance of ZUN using such a
hack. So far, at least…
Visualized like that, it all looks quite simple and logical, but for days, I
did not realize that these sprites were rendered to a scrolling VRAM.
This led to a much more complicated initial explanation involving the
invisible extra space of VRAM between offsets 0x7D00 and
0x7FFF that effectively grant a hidden additional 9.6 lines
below the playfield. Or even above, since PC-98 hardware ignores the highest
bit of any offset into a VRAM bitplane segment
(& 0x7FFF), which prevents blitting operations from
accidentally reaching into a different bitplane. Together with the
aforementioned rows of transparent pixels at the top of these midboss
sprites, the math would have almost worked out exactly.
The need for manual clipping also applies to the X-axis. Due to the lack of
scrolling in this dimension, the boundaries there are much more
straightforward though. The minimum left coordinate of a sprite can't fall
below 0 because any smaller coordinate would wrap around into the
📝 tile source area and overwrite some of the
pixels there, which we obviously don't want to re-blit every frame.
Similarly, the right coordinate must not extend into the HUD, which starts
at 448 pixels.
The last part might be surprising if you aren't familiar with the PC-98 text
chip. Contrary to the CGA and VGA text modes of IBM-compatibles, PC-98 text
cells can only use a single color for either their foreground or
background, with the other pixels being transparent and always revealing the
pixels in VRAM below. If you look closely at the HUD in the images above,
you can see how the background of cells with gaiji glyphs is slightly
brighter (◼ #100) than the opaque black
cells (◼ #000) surrounding them. This
rather custom color clearly implies that those pixels must have been
rendered by the graphics GDC. If any other sprite was rendered below the
HUD, you would equally see it below the glyphs.
So in the end, I did find the clear and logical system I was looking for,
and managed to reduce the new clipping conditions down to a
set of basic rules for each edge. Unfortunately, we also need a second
macro for each edge to differentiate between sprites that are smaller or
larger than the playfield border, which is treated as either 32×32 (for
super_roll_*()) or 32×16 (for non-"rolling"
super_*() functions). Since smaller sprites can be fully
contained within this border, the games can stop rendering them as soon as
their bottom-right coordinate is no longer seen within the playfield, by
comparing against the clipping boundaries with <= and
>=. For example, a 16×16 sprite would be completely
invisible once it reaches (16, 0), so it would still be rendered at
(17, 1). A larger sprite during the scrolling part of a stage, like,
say, the 64×64 midbosses, would still be rendered if their top-left
coordinate was (0, -16), so ZUN used < and
> comparisons to at least get an additional pixel before
having to stop rendering such a sprite. Turbo C++ 4.0J sadly can't
constant-fold away such a difference in comparison operators.
And for the most part, ZUN did follow this system consistently. Except for,
of course, the typical mistakes you make when faced with such manual
decisions, like how he treated TH04's Stage 4 midboss as a "small" sprite
below 32×32 pixels (it's 64×64), losing that precious one extra pixel. Or
how the entire rendering code for the 48×48 boss explosion sprite pretends
that it's actually 64×64 pixels large, which causes even the initial
transformation into screen space to be misaligned from the get-go.
But these are additional bugs on top of the single
one that led to all this research.
Because that's what this is, a bug. 🐞 Every resulting pixel boundary is a
systematic result of master.lib's unfortunate lack of clipping. It's as much
of a bug as TH01's byte-aligned rendering of entities whose internal
position is not byte-aligned. In both cases, the entities are alive,
simulated, and partake in collision detection, but their rendered appearance
doesn't accurately reflect their internal position.
Initially, I classified
📝 the sudden pop-in of TH05's Stage 5 midboss
as a quirk because we had no conclusive evidence that this wasn't
intentional, but now we do. There have been multiple explanations for why
ZUN put borders around the playfield, but master.lib's lack of sprite
clipping might be the biggest reason.
And just like byte-aligned rendering, the clipping conditions can easily be
removed when porting the game away from PC-98 hardware. That's also what
uth05win chose to do: By using OpenGL and not having to rely on hardware
scrolling, it can simply place every sprite as a textured quad at its exact
position in screen space, and then draw the black playfield borders on top
in the end to clip everything in a single draw call. This way, the Stage 5
midboss can smoothly fly into the playfield, just as defined by its movement
code:
The entire smooth Stage 5 midboss entrance animation as shown in
uth05win. If the simultaneous appearance of the Enemy!! label
doesn't lend further proof to this having been ZUN's actual intention, I
don't know what will.
Meanwhile, I designed the interface of the 📝 generic blitter used in the TH01 Anniversary Edition entirely around
clipping the blitted sprite at any explicit combination of VRAM edges. This
was nothing I tacked on in the end, but a core aspect that informed the
architecture of the code from the very beginning. You really want to
have one and only one place where sprite clipping is done right – and
only once per sprite, regardless of how many bitplanes you want to write to.
Which brings us to the goal that the final ¼ of this push went toward. I
thought I was going to start cleaning up the
📝 player movement and rendering code, but
that turned out too complicated for that amount of time – especially if you
want to start with just cleanup, preserving all original bugs for the
time being.
Fixing and smoothening player and Orb movement would be the next big task in
Anniversary Edition development, needing about 3 pushes. It would start with
more performance research into runtime-shifting of larger sprites, followed
by extending my generic blitter according to the results, writing new
optimized loaders for the original image formats, and finally rewriting all
rendering code accordingly. With that code in place, we can then start
cleaning up and fixing the unique code for each boss, one by one.
Until that's funded, the code still contains a few smaller and easier pieces
of code that are equally related to rendering bugs, but could be dealt with
in a more incremental way. Line rendering is one of those, and first needs
some refactoring of every call site, including
📝 the rotating squares around Mima and
📝 YuugenMagan's pentagram. So far, I managed
to remove another 1,360 bytes from the binary within this final ¼ of a push,
but there's still quite a bit to do in that regard.
This is the perfect kind of feature for smaller (micro-)transactions. Which
means that we've now got meaningful TH01 code cleanup and Anniversary
Edition subtasks at every price range, no matter whether you want to invest
a lot or just a little into this goal.
If you can, because Ember2528 revealed the plan behind
his Shuusou Gyoku contributions: A full-on Linux port of the game, which
will be receiving all the funding it needs to happen. 🐧 Next up, therefore:
Turning this into my main project within ReC98 for the next couple of
months, and getting started by shipping the long-awaited first step towards
that goal.
I've raised the cap to avoid the potential of rounding errors, which might
prevent the last needed Shuusou Gyoku push from being correctly funded. I
already had to pick the larger one of the two pending TH02 transactions for
this push, because we would have mathematically ended up
1/25500 short of a full push with the smaller
transaction. And if I'm already at it, I might
as well free up enough capacity to potentially ship the complete OpenGL
backend in a single delivery, which is currently estimated to cost 7 pushes
in total.
Well, well. My original plan was to ship the first step of Shuusou Gyoku
OpenGL support on the next day after this delivery. But unfortunately, the
complications just kept piling up, to a point where the required solutions
definitely blow the current budget for that goal. I'm currently sitting on
over 70 commits that would take at least 5 pushes to deliver as a meaningful
release, and all of that is just rearchitecting work, preparing the
game for a not too Windows-specific OpenGL backend in the first place. I
haven't even written a single line of OpenGL yet… 🥲
This shifts the intended Big Release Month™ to June after all. Now I know
that the next round of Shuusou Gyoku features should better start with the
SC-88Pro recordings, which are much more likely to get done within their
current budget. At least I've already completed the configuration versioning
system required for that goal, which leaves only the actual audio part.
So, TH04 position independence. Thanks to a bit of funding for stage
dialogue RE, non-ASCII translations will soon become viable, which finally
presents a reason to push TH04 to 100% position independence after
📝 TH05 had been there for almost 3 years. I
haven't heard back from Touhou Patch Center about how much they want to be
involved in funding this goal, if at all, but maybe other backers are
interested as well.
And sure, it would be entirely possible to implement non-ASCII translations
in a way that retains the layout of the original binaries and can be easily
compared at a binary level, in case we consider translations to be a
critical piece of infrastructure. This wouldn't even just be an exercise in
needless perfectionism, and we only have to look to Shuusou Gyoku to realize
why: Players expected
that my builds were compatible with existing SpoilerAL SSG files, which
was something I hadn't even considered the need for. I mean, the game is
open-source 📝 and I made it easy to build.
You can just fork the code, implement all the practice features you want in
a much more efficient way, and I'd probably even merge your code into my
builds then?
But I get it – recompiling the game yields just yet another build that can't
be easily compared to the original release. A cheat table is much more
trustworthy in giving players the confidence that they're still practicing
the same original game. And given the current priorities of my backers,
it'll still take a while for me to implement proof by replay validation,
which will ultimately free every part of the community from depending on the
original builds of both Seihou and PC-98 Touhou.
However, such an implementation within the original binary layout would
significantly drive up the budget of non-ASCII translations, and I sure
don't want to constantly maintain this layout during development. So, let's
chase TH04 position independence like it's 2020, and quickly cover a larger
amount of PI-relevant structures and functions at a shallow level. The only
parts I decompiled for now contain calculations whose intent can't be
clearly communicated in ASM. Hitbox visualizations or other more in-depth
research would have to wait until I get to the proper decompilation of these
features.
But even this shallow work left us with a large amount of TH04-exclusive
code that had its worst parts RE'd and could be decompiled fairly quickly.
If you want to see big TH04 finalization% gains, general TH04 progress would
be a very good investment.
The first push went to the often-mentioned stage-specific custom entities
that share a single statically allocated buffer. Back in 2020, I
📝 wrongly claimed that these were a TH05 innovation,
but the system actually originated in TH04. Both games use a 26-byte
structure, but TH04 only allocates a 32-element array rather than TH05's
64-element one. The conclusions from back then still apply, but I also kept
wondering why these games used a static array for these entities to begin
with. You know what they call an area of memory that you can cleanly
repurpose for things? That's right, a heap!
And absolutely no one would mind one additional heap allocation at the start
of a stage, next to the ones for all the sprites and portraits.
However, we are still running in Real Mode with segmented memory. Accessing
anything outside a common data segment involves modifying segment registers,
which has a nonzero CPU cycle cost, and Turbo C++ 4.0J is terrible at
optimizing away the respective instructions. Does this matter? Probably not,
but you don't take "risks" like these if you're in a permanent
micro-optimization mindset…
In TH04, this system is used for:
Kurumi's symmetric bullet spawn rays, fired from her hands towards the left
and right edges of the playfield. These are rather infamous for being the
last thing you see before
📝 the Divide Error crash that can happen in ZUN's original build.
Capped to 6 entities.
The 4 📝 bits used in Marisa's Stage 4 boss
fight. Coincidentally also related to the rare Divide Error
crash in that fight.
Stage 4 Reimu's spinning orbs. Note how the game uses two different sets
of sprites just to have two different outline colors. This was probably
better than messing with the palette, which can easily cause unintended
effects if you only have 16 colors to work with. Heck, I have an entire blog post tag just to highlight
these cases. Capped to the full 32 entities.
The chasing cross bullets, seen in Phase 14 of the same Stage 6 Yuuka
fight. Featuring some smart sprite work, making use of point symmetry to
achieve a fluid animation in just 4 frames. This is
good-code in sprite form. Capped to 31 entities, because
the 32nd custom entity during this fight is defined to be…
The single purple pulsating and shrinking safety circle, seen in Phase 4 of
the same fight. The most interesting aspect here is actually still related
to the cross bullets, whose spawn function is wrongly limited to 32 entities
and could theoretically overwrite this circle. This
is strictly landmine territory though:
Yuuka never uses these bullets and the safety circle
simultaneously
She never spawns more than 24 cross bullets
All cross bullets are fast enough to have left the screen by the
time Yuuka restarts the corresponding subpattern
The cross bullets spawn at Yuuka's center position, and assign its
Q12.4 coordinates to structure fields that the safety circle interprets
as raw pixels. The game does try to render the circle afterward, but
since Yuuka's static position during this phase is nowhere near a valid
pixel coordinate, it is immediately clipped.
The flashing lines seen in Phase 5 of the Gengetsu fight,
telegraphing the slightly random bullet columns.
These structures only took 1 push to reverse-engineer rather than the 2 I
needed for their TH05 counterparts because they are much simpler in this
game. The "structure" for Gengetsu's lines literally uses just a single X
position, with the remaining 24 bytes being basically padding. The only
minor bug I found on this shallow level concerns Marisa's bits, which are
clipped at the right and bottom edges of the playfield 16 pixels earlier
than you would expect:
The remaining push went to a bunch of smaller structures and functions:
The structure for the up to 2 "thick" (a.k.a. "Master Spark") lasers. Much
saner than the
📝 madness of TH05's laser system while being
equally customizable in width and duration.
The structure for the various monochrome 16×16 shapes in the background of
the Stage 6 Yuuka fight, drawn on top of the checkerboard.
The rendering code for the three falling stars in the background of Stage 5.
The effect here is entirely palette-related: After blitting the stage tiles,
the 📝 1bpp star image is ORed
into only the 4th VRAM plane, which is equivalent to setting the
highest bit in the palette color index of every pixel within the star-shaped
region. This of course raises the question of how the stage would look like
if it was fully illuminated:
The full tile map of TH04's Stage 5, in both dark and fully
illuminated views. Since the illumination effect depends on two
matching sets of palette colors that are distinguished by a single
bit, the illuminated view is limited to only 8 of the 16 colors. The
dark view, on the other hand, can freely use colors from the
illuminated set, since those are unaffected by the OR
operation.
Most code that modifies a stage's tile map, and directly specifies tiles via
their top-left offset in VRAM.
Thanks to code alignment reasons, this forced a much longer detour into the
.STD format loader. Nothing all too noteworthy there since we're still
missing the enemy script and spawn structures before we can call .STD
"reverse-engineered", but maybe still helpful if you're looking for an
overview of the format. Also features a buffer overflow landmine if a .STD
file happens to contain more than 32 enemy scripts… you know, the usual
stuff.
To top off the second push, we've got the vertically scrolling checkerboard
background during the Stage 6 Yuuka fight, made up of 32×32 squares. This
one deserves a special highlight just because of its needless complexity.
You'd think that even a performant implementation would be pretty simple:
Set the GRCG to TDW mode
Set the GRCG tile to one of the two square colors
Start with Y as the current scroll offset, and X
as some indicator of which color is currently shown at the start of each row
of squares
Iterate over all lines of the playfield, filling in all pixels that
should be displayed in the current color, skipping over the other ones
Count down Y for each line drawn
If Y reaches 0, reset it to 32 and flip X
At the bottom of the playfield, change the GRCG tile to the other color,
and repeat with the initial value of X flipped
The most important aspect of this algorithm is how it reduces GRCG state
changes to a minimum, avoiding the costly port I/O that we've identified
time and time again as one of the main bottlenecks in TH01. With just 2
state variables and 3 loops, the resulting code isn't that complex either. A
naive implementation that just drew the squares from top to bottom in a
single pass would barely be simpler, but much slower: By changing the GRCG
tile on every color, such an implementation would burn a low 5-digit number
of CPU cycles per frame for the 12×11.5-square checkerboard used in the
game.
And indeed, ZUN retained all important aspects of this algorithm… but still
implemented it all in ASM, with a ridiculous layer of x86 segment arithmetic
on top? Which blows up the complexity to 4 state
variables, 5 nested loops, and a bunch of constants in unusual units. I'm
not sure what this code is supposed to optimize for, especially with that
rather questionable register allocation that nevertheless leaves one of the
general-purpose registers unused. Fortunately,
the function was still decompilable without too many code generation hacks,
and retains the 5 nested loops in all their goto-connected
glory. If you want to add a checkerboard to your next PC-98
demo, just stick to the algorithm I gave above.
(Using a single XOR for flipping the starting X offset between 32 and 64
pixels is pretty nice though, I have to give him that.)
This makes for a good occasion to talk about the third and final GRCG mode,
completing the series I started with my previous coverage of the
📝 RMW and
📝 TCR modes. The TDW (Tile Data Write) mode
is the simplest of the three and just writes the 8×1 GRCG tile into VRAM
as-is, without applying any alpha bitmask. This makes it perfect for
clearing rectangular areas of pixels – or even all of VRAM by doing a single
memset():
// Set up the GRCG in TDW mode.
outportb(0x7C, 0x80);
// Fill the tile register with color #7 (0111 in binary).
outportb(0x7E, 0xFF); // Plane 0: (B): (********)
outportb(0x7E, 0xFF); // Plane 1: (R): (********)
outportb(0x7E, 0xFF); // Plane 2: (G): (********)
outportb(0x7E, 0x00); // Plane 3: (E): ( )
// Set the 32 pixels at the top-left corner of VRAM to the exact contents of
// the tile register, effectively repeating the tile 4 times. In TDW mode, the
// GRCG ignores the CPU-supplied operand, so we might as well just pass the
// contents of a register with the intended width. This eliminates useless load
// instructions in the compiled assembly, and even sort of signals to readers
// of this code that we do not care about the source value.
*reinterpret_cast<uint32_t far *>(MK_FP(0xA800, 0)) = _EAX;
// Fill the entirety of VRAM with the GRCG tile. A simple C one-liner that will
// probably compile into a single `REP STOS` instruction. Unfortunately, Turbo
// C++ 4.0J only ever generates the 16-bit `REP STOSW` here, even when using
// the `__memset__` intrinsic and when compiling in 386 mode. When targeting
// that CPU and above, you'd ideally want `REP STOSD` for twice the speed.
memset(MK_FP(0xA800, 0), _AL, ((640 / 8) * 400));
However, this might make you wonder why TDW mode is even necessary. If it's
functionally equivalent to RMW mode with a CPU-supplied bitmask made up
entirely of 1 bits (i.e., 0xFF, 0xFFFF, or
0xFFFFFFFF), what's the point? The difference lies in the
hardware implementation: If all you need to do is write tile data to
VRAM, you don't need the read and modify parts of RMW mode
which require additional processing time. The PC-9801 Programmers'
Bible claims a speedup of almost 2× when using TDW mode over equivalent
operations in RMW mode.
And that's the only performance claim I found, because none of these old
PC-98 hardware and programming books did any benchmarks. Then again, it's
not too interesting of a question to benchmark either, as the byte-aligned
nature of TDW blitting severely limits its use in a game engine anyway.
Sure, maybe it makes sense to temporarily switch from RMW to TDW mode
if you've identified a large rectangular and byte-aligned section within a
sprite that could be blitted without a bitmask? But the necessary
identification work likely nullifies the performance gained from TDW mode,
I'd say. In any case, that's pretty deep
micro-optimization territory. Just use TDW mode for the
few cases it's good at, and stick to RMW mode for the rest.
So is this all that can be said about the GRCG? Not quite, because there are
4 bits I haven't talked about yet…
And now we're just 5.37% away from 100% position independence for TH04! From
this point, another 2 pushes should be enough to reach this goal. It might
not look like we're that close based on the current estimate, but a
big chunk of the remaining numbers are false positives from the player shot
control functions. Since we've got a very special deadline to hit, I'm going
to cobble these two pushes together from the two current general
subscriptions and the rest of the backlog. But you can, of course, still
invest in this goal to allow the existing contributions to go to something
else.
… Well, if the store was actually open. So I'd better
continue with a quick task to free up some capacity sooner rather than
later. Next up, therefore: Back to TH02, and its item and player systems.
Shouldn't take that long, I'm not expecting any surprises there. (Yeah, I
know, famous last words…)
128 commits! Who would have thought that the ideal first release of the TH01
Anniversary Edition would involve so much maintenance, and raise so many
research questions? It's almost as if the real work only starts after
the 100% finalization mark… Once again, I had to steal some funding from the
reserved JIS trail word pushes to cover everything I liked to research,
which means that the next towards the
anything goal will repay this debt. Luckily, this doesn't affect any
immediate plans, as I'll be spending March with tasks that are already fully
funded.
So, how did this end up so massive? The list of things I originally set out
to do was pretty short:
Build entire game into single executable
Fix rendering issues in the one or two most important parts of the game
for a good initial impression
But even the first point already started with tons of little cleanup
commits. A part of them can definitely be blamed on the rush to hit the 100%
decompilation mark before the 25th anniversary last August.
However, all the structural changes that I can't commit to
master reveal how much of a mess the TH01 codebase actually
is.
Merging the executables is mainly difficult because of all the
inconsistencies between REIIDEN.EXE and FUUIN.EXE.
The worst parts can be found in the REYHI*.DAT format code and
the High Score menu, but the little things are just as annoying, like how
the current score is an unsigned variable in
REIIDEN.EXE, but a signed one in FUUIN.EXE.
If it takes me this long and this many
commits just to sort out all of these issues, it's no wonder that the only
thing I've seen being done with this codebase since TH01's 100%
decompilation was a single porting attempt that ended in a rather quick
ragequit.
So why are we merging the executables in preparation for the Anniversary
Edition, and not waiting with it until we start doing ports?
Distributing and updating one executable is cleaner than doing the same
with three, especially as long as installation will still involve manually
dropping the new binary into the game directory.
The Anniversary Edition won't be the only fork binary. We are already
going to start out with a separate DEBLOAT.EXE that contains
only the bloat removal changes without any bug fixes, and spaztron64
will probably redo his seizure-less edition. We don't want to clutter
the game directory with three binaries for each of these fork builds, and we
especially don't want to remember things like oh, but this fork
only modifies REIIDEN.EXE…
All forks should run side-by-side with the original game. During the
time I was maintaining thcrap, I've had countless bug reports of people
assuming that thcrap was
responsible for bugs that were present in the original game, and the
same is certain to happen with the Anniversary Edition. Separate binaries
will make it easier for everyone to check where these bugs came from.
Also, I'd like to make a point about how bloated the original
three-executable structure really is, since I've heard people defending it
as neat software architecture. Really, even in Real Mode where you typically
want to use as little of the 640 KiB of conventional memory as possible, you
don't want to split your game up like this.
The game actually is so bloated that the combined binary ended up
smaller than the original REIIDEN.EXE. If all you see are the
file sizes of the original three executables, this might look like a
pretty impressive feat. Like, how can we possibly get 407,812
bytes into less than 238,612 bytes, without using compression?
If you've ever looked at the linker map though, it's not at all surprising.
Excluding the aforementioned inconsistencies that are hard to quantify,
OP.EXE and FUUIN.EXE only feature 5,767 and 6,475
bytes of unique code and data, respectively. All other code in these
binaries is already part of REIIDEN.EXE, with more than half of
the size coming from the Borland C++ runtime. The single worst offender here
is the C++ exception handler that Borland forces
onto every non-.COM binary by default, which alone adds 20,512 bytes
even if your binary doesn't use C++ exceptions.
On a more hilarious note, this
single line is responsible for pulling another unnecessary 14,242 bytes
into OP.EXE and FUUIN.EXE. This floating-point
multiplication is completely unnecessary in this context because all
possible parameters are integers, but it's enough for Turbo C++ and TLINK to
pull in the entire x87 FPU emulation machinery. These two binaries don't
even draw lines, but since this function is part of the general
graphics code translation unit and contains other functions that these
binaries do need, TLINK links in the entire thing. Maybe, multiple
executables aren't the best choice either if you use a linker that can't do
dead code elimination…
Since the 📝 Orb's physics do turn the entire
precision of a double variable into gameplay effects, it's not
feasible to ever get rid of all FPU code in TH01. The exception handler,
however, can
be removed, which easily brings the combined binary below the size of
the original REIIDEN.EXE. Compiling all code with a single set
of compiler optimization flags, including the more x86-friendly
pascal calling convention, then gets us a few more KB on top.
As does, of course, removing unused code: The only remaining purpose of
features such as 📝 resident palettes is to
potentially make porting more difficult for anyone who doesn't immediately
realize that nothing in the game uses these functions.
Technically, all unused code would be bloat, but for now, I'm keeping
the parts that may tell stories about the game's development history (such
as unused effects or the 📝 mouse cursor), or
that might help with debugging. Even with that in mind, I've only scratched
the surface when it comes to bloat removal, and the binary is only going to
get smaller from here. A lot smaller.
If only we now could start MDRV98 from this new combined binary, we wouldn't
need a second batch file either…
Which brings us to the first big research question of this delivery. Using
the C spawn() function works fine on this compiler, so
spawn("MDRV98.COM") would be all we need to do, right? Except
that the game crashes very soon after that subprocess returned.
So it's not going to be that easy if the spawned process is a TSR.
But why should this be a problem? Let's take a look at the DOS heap, and how
DOS lays out processes in conventional memory if we launch the game
regularly through GAME.BAT:
The rough layout of the DOS heap when launching TH01 from
GAME.BAT.
The batch file starts MDRV98 first, which will therefore end up below
the game in conventional memory. This is perfect for a TSR: The program can
resize itself arbitrarily before returning to DOS, and the rest of memory
will be left over for the game. If we assume such a layout, a DOS program
can implement a custom memory allocator in a very simple way, as it only has
to search for free memory in one direction – and this is exactly how Borland
implemented the C heap for functions like malloc() and
free(), and the C++ new and delete
operators.
But if we spawn MDRV98 after starting TH01, well…
MDRV98 will spawn in the next free memory location, allocate itself, return
to TH01… which suddenly finds its C heap blocked from growing. As a result,
the next big allocation will immediately fail with a rather misleading "out
of memory" error.
So, what can we do about this? Still in a bloat removal mindset, my gut
reaction was to just throw out Borland's C heap implementation, and replace
it with a very thin wrapper around the DOS heap as managed by INT 21h,
AH=48h/49h/4Ah. Like, why
did these DOS compilers even bother with a custom allocator in the first
place if DOS already comes with a perfectly fine native one? Using the
native allocator would completely erase the distinction between TSR memory
and game memory, and inherently allow the game to allocate beyond
MDRV98.
I did in fact implement this, and noticed even more benefits:
While DOS uses 16 bytes rather than Borland's 4 bytes for the control
structure of each memory block, this larger size automatically aligns all
allocations to 16-byte boundaries. Therefore, all allocation addresses would
fit into 16-bit segment-only pointers rather than needing 32-bit
far ones. On the Borland heap, the 4-byte header further limits
regular far pointers to 65,532 bytes, forcing you into
expensive huge pointers for bigger allocations.
Debuggers in DOS emulators typically have features to show and manage
the DOS heap. No need for custom debugging code.
You can change the memory placement
strategy to allocate from the top of conventional memory down to the
bottom. This is how the games allocate their resident structures.
Ultimately though, the drawbacks became too significant. Most of them are
related to the PC-98 Touhou games only ever creating a single DOS
process, even though they contain multiple executables.
Switching executables is done via exec(), which resizes a
program's main allocation to match the new binary and then overwrites the
old program image with the new one. If you've ever wondered why DOSBox-X
only ever shows OP as the active process name in the title bar,
you now know why. As far as DOS is concerned, it's still the same
OP.EXE process rooted at the same segment, and
exec() doesn't bother rewriting the name either. Most
importantly though, this is how REIIDEN.EXE can launch into
another REIIDEN.EXE process even if there are less than 238,612
bytes free when exec() is called, and without consuming more
memory for every successive binary.
For now, ANNIV.EXE still re-exec()s itself at
every point where the original game did, as ZUN's original code really
depends on being reinitialized at boss and scene boundaries. The resulting
accidental semi-hot reloading is also a useful property to retain
during development.
So why is the DOS heap a bad idea for regular game allocation after all?
Even DOS automatically releases all memory associated with a process
during its termination. But since we keep running the same process until the
player quits out of the main menu, we lose the C heap's implicit cleanup on
exec(), and have to manually free all memory ourselves.
Since the binary can be larger after hot reloading, we in fact have
to allocate all regular memory using the last fit strategy.
Otherwise, exec() fails to resize the program's main block for
the same reason that crashed the game on our initial attempt to
spawn("MDRV98.COM").
Just like Borland's heap implementation, the DOS heap stores its control
structures immediately before each allocation, forming a singly linked list.
But since the entire OS shares this single list, corruptions from heap
overflows also affect the whole system, and become much more disastrous.
Theoretically, it might be possible to recover from them by forcibly
releasing all blocks after the last correct one, or even by doing a
brute-force search for valid memory
control blocks, but in reality, DOS will likely just throw error code #7
(ERROR_ARENA_TRASHED) on the next memory management syscall,
forcing a reboot.
With a custom allocator, small corruptions remain isolated to the process.
They can be even further limited if the process adds some padding between
its last internal allocation and the end of the allocated DOS memory block;
Borland's heap sort of does this as well by always rounding up the DOS block
to a full KiB. All this might not make a difference in today's emulated and
single-tasked usage, but would have back then when software was still
developed inside IDEs running on the same system.
TH01's debug mode uses heapcheck() and
heapchecknode(), and reimplementing these on top of the DOS
heap is not trivial. On the contrary, it would be the most complicated part
of such a wrapper, by far.
I could release this DOS heap wrapper in unused form for another push if
anyone's interested, but for now, I'm pretty happy with not actually using
it in the games. Instead, let's stay with the Borland C heap, and find a way
to push MDRV98 to the very top of conventional RAM. Like this:
Which is much easier said than done. It would be nice if we could just use
the last fit allocation strategy here, but .COM executables always
receive all free memory by default anyway, which eliminates any difference
between the strategies.
But we can still change memory itself. So let's temporarily claim all
remaining free memory, minus the exact amount we need for MDRV98, for our
process. Then, the only remaining free space to spawn MDRV98 is at the exact
place where we want it to be:
Obviously, we release all the additional memory after spawning MDRV98.
Now we only need to know how much memory to not temporarily allocate. First,
we need to replicate the assumption that MDRV98's -M7
command-line parameter corresponds to a resident size of 23,552 bytes. This
is not as bad as it seems, because the -M parameter explicitly
has a KiB unit, and we can nicely abstract it away for the API.
The (env.) block though? Its minimum size equals the combined length
of all environment variables passed to the process, but its maximum size is…
not limited at all?! As in, DOS implementations can add and have
historically added more free space because some programs insisted on storing
their own new environment variables in this exact segment. DOSBox and
DOSBox-X follow this tradition by providing a configuration option for the
additional amount of environment space, with the latter adding 1024
additional bytes by default, y'know, just in case someone wants to compile
FreeDOS on a slow emulator. It's not even worth sending a bug report for
this specific case, because it's only a symptom of the fact that
unexpectedly large program environment blocks can and will happen, and are
to be expected in DOS land.
So thanks to this cruel joke, it's technically impossible to achieve what we
want to do there. Hooray! The only thing we can kind of do here is an
educated guess: Sum up the length of all environment variables in our
environment block, compare that length against the allocated size of the
block, and assume that the MDRV98 process will get as much additional memory
as our process got. 🤷
The remaining hurdles came courtesy of some Borland C runtime implementation
details. You would think that the temporary reallocation could even be done
in pure C using the sbrk(), coreleft(), and
brk() functions, but all values passed to or returned from
these functions are inaccurate because they don't factor in the
aforementioned KiB padding to the underlying DOS memory block. So we have to
directly use the DOS syscalls after all. Which at least means that learning
about them wasn't completely useless…
The final issue is caused inside Borland's
spawn() implementation. The environment block for the
child process is built out of all the strings reachable from C's
environ pointer, which is what that FreeDOS build process
should have used. Coalescing them into a single buffer involves yet
another C heap allocation… and since we didn't report our DOS memory block
manipulation back to the C heap, the malloc() call might think
it needs to request more memory from DOS. This resets the DOS memory block
back to its intended level, undoing our manipulation right before the actual
INT 21h, AH=4Bh
EXEC syscall. Or in short:
Manipulate DOS heap ➜ spawn() call ➜_LoadProg() ➜ allocate and prepare environment block ➜ _spawn() ➜ DOS EXEC syscall
The obvious solution: Replace _LoadProg(), implement the
coalescing ourselves, and do it before the heap manipulation. Fortunately,
Borland's internal low-level _spawn() function is not
static, so we can call it ourselves whenever we want to:
Allocate and prepare environment block ➜ manipulate DOS heap ➜ _spawn() call ➜EXEC syscall
So yes, launching MDRV98 from C can be done, but it involves advanced
witchcraft and is completely ridiculous.
Launching external sound drivers from a batch file is the right way
of doing things.
Fortunately, you don't have to rely on this auto-launching feature. You can
still launch DEBLOAT.EXE or ANNIV.EXE from a batch
file that launched MDRV98.COM before, and the binaries will
detect this case and skip the attempt of launching MDRV98 from C. It's
unlikely that my heuristic will ever break, but I definitely recommend
replicating GAME.BAT just to be completely sure – especially
for user-friendly repacks that don't want to include the original game
anyway.
This is also why ANNIV.EXE doesn't launch
ZUNSOFT.COM: The "correct" and stable way to launch
ANNIV.EXE still involves a batch file, and I would say that
expecting people to remove ZUNSOFT.COM from that file is worse
than not playing the animation. It's certainly a debate we can have, though.
This deep dive into memory allocation revealed another previously
undocumented bug in the original game. The RLE decompression code for the
東方靈異.伝 packfile contains two heap overflows, which are
actually triggered by SinGyoku's BOSS1_3.BOS and Konngara's
BOSS8_1.BOS. They only do not immediately crash the game when
loading these bosses thanks to two implementation details of Borland's C
heap.
Obviously, this is a bug we should fix, but according to the definition of
bugs, that fix would be exclusive to the anniversary branch.
Isn't that too restrictive for something this critical? This code is
guaranteed to blow up with a different heap implementation, if only in a
Debug build. And besides, nobody would notice a fix
just by looking at the game's rendered output…
Looks like we have to introduce a fourth category of weird code, in addition
to the previous bloat, bug, and quirk categories, for
invisible internal issues like these. Let's call it landmine, and fix
them on the debloated branch as well. Thanks to
Clerish for the naming inspiration!
With this new category, the full definitions for all categories have become
quite extensive. Thus, they now live in CONTRIBUTING.md
inside the ReC98 repository.
With the new discoveries and the new landmine category, TH01 is now at 67
bugs and 20 landmines. And the solution for the landmine in question? Simplifying
the 61 lines of the original code down to 16. And yes, I'm including
comments in these numbers – if the interactions of the code are complex
enough to require multi-paragraph comments, these are a necessary and
valid part of the code.
While we're on the topic of weird code and its visible or invisible effects,
there's one thing you might be concerned about. With all the rearchitecting
and data shifting we're doing on the debloated branch, what
will happen to the 📝 negative glitch stages?
These are the result of a clearly observable bug that, by definition, must
not be fixed on the debloated branch. But given that the
observable layout of the glitch stages is defined by the memory
surrounding the scene stage variable, won't the
debloated branch inherently alter their appearance (= ⚠️
fanfiction ⚠️), or even remove them completely?
Well, yes, it will. But we can still preserve their layout by
hardcoding
the exact original data that the game would originally read, and even emulate
the original segment relocations and other pieces of global data.
Doing this is feasible thanks to the fact that there are only 4 glitch
stages. Unfortunately, the same can't be said for the timer values, which
are determined by an array lookup with the un-modulo'd stage ID. If we
wanted to preserve those as well, we'd have to bundle an exact copy of the
original REIIDEN.EXE data segment to preserve the values of all
32,768 negative stages you could possibly enter, together with a map
of all relocations in this segment. 😵 Which I've decided against for now,
since this has been going on for far too long already. Let's first see if
anyone ever actually complains about details like this…
Alright, time to start the anniversary branch by rendering
everything at its correct internal unaligned X position? Eh… maybe not quite
yet. If we just hacked all the necessary bit-shifting code into all the
format-specific blitting functions, we'd still retain all this largely
redundant, bad, and slow code, and would make no progress in terms of
portability. It'd be much better to first write a single generic blitter
that's decently optimized, but supports all kinds of sprites to make this
optimization actually worth something.
So, next research question: How would such a blitter look like? After I
learned during my
📝 first foray into cycle counting that port
I/O is slow on 486 CPUs, it became clear that TH04's
📝 GRCG batching for pellets was one of the
more useful optimizations that probably contributed a big deal towards
achieving the high bullet counts of that game. This leads to two
conclusions:
master.lib's super_*() sprite functions are slow, and not
worth looking at for inspiration. Even the 📝 tiny format reinitializes the GRCG on every color change, wasting 80
cycles.
Hence, our low-level blitting API should not even care about colors. It
should only concern itself with blitting a given 1bpp sprite to a single
VRAM segment. This way, it can work for both 4-plane sprites and
single-plane sprites, and just assume that the GRCG is active.
Maybe we should also start by not even doing these unaligned bit shifts
ourselves, and instead expect the call site to
📝 always deliver a byte-aligned sprite that is correctly preshifted,
if necessary? Some day, we definitely should measure how slow runtime
shifting would really be…
What we should do, however, are some further general optimizations that I
would have expected from master.lib: Unrolling the vertical
loop, and baking a single function for every sprite width to eliminate
the horizontal loop. We can then use the widest possible x86
MOV instruction for the lowest possible number of cycles per
row – for example, we'd blit a 56-wide sprite with three MOVs
(32-bit + 16-bit + 8-bit), and a 64-wide one with two 32-bit
MOVs.
Or maybe not? There's a lot of blitting code in both master.lib and PC-98
Touhou that checks for empty bytes within sprites to skip needlessly writing
them to VRAM:
Which goes against everything you seem to know about computers. We aren't
running on an 8-bit CPU here, so wouldn't it be faster to always write both
halves of a sprite in a single operation?
That's a single CPU instruction, compared to two instructions and two
branches. The only possible explanation for this would be that VRAM writes
are so slow on PC-98 that you'd want to avoid them at all costs, even
if that means additional branching on the CPU to do so. Or maybe that was
something you would want to do on certain models with slow VRAM, but not on
others?
So I wrote a benchmark to answer all these questions, and to compare my new
blitter against typical TH01 blitting code:
A not really representative run on DOSBox-X. Since the master.lib sprite
functions are also unbatched, I expect them to not be much faster than
the naive C implementation.
2023-03-05-blitperf.zip
And here are the real-hardware results I've got from the PC-9800
Central Discord server:
PC-286LS
PC-9801ES
PC-9821Cb/Cx
PC-9821Ap3
PC-9821An
PC-9821Nw133
PC-9821Ra20
80286, 12 MHz
i386SX, 16 MHz
486SX, 33 MHz
486DX4, 100 MHz
Pentium, 90 MHz
Pentium, 133 MHz
Pentium Pro, 200 MHz
1987
1989
1994
1994
1994
1997
1996
Unchecked
C
GRCG
36,85
38,42
26,02
26,87
3,98
4,13
2,08
2,16
1,81
1,87
0,86
0,89
1,25
1,25
MOVS
GRCG
15,22
16,87
9,33
10,19
1,22
1,37
0,44
0,44
MOV
GRCG
15,42
17,08
9,65
10,53
1,15
1,3
0,44
0,44
4-plane
37,23
43,97
29,2
32,96
4,44
5,01
4,39
4,67
5,11
5,32
5,61
5,74
6,63
6,64
Checking first
GRCG
17,49
19,15
10,84
11,72
1,27
1,44
1,04
1,07
0,54
0,54
4-plane
46,49
53,36
35,01
38,79
5,66
6,26
5,43
5,74
6,56
6,8
8,08
8,29
10,25
10,29
Checking second
GRCG
16,47
18,12
10,77
11,65
1,25
1,39
1,02
0,51
0,51
4-plane
43,41
50,26
33,79
37,82
5,22
5,81
5,14
5,43
6,18
6,4
7,57
7,77
9,58
9,62
Checking both
GRCG
16,14
18,03
10,84
11,71
1,33
1,49
1,01
0,49
0,49
4-plane
43,61
50,45
34,11
37,87
5,39
5,99
4,92
5,23
5,88
6,11
7,19
7,43
9,1
9,13
Amount of frames required to render 2000 16×8 pellet sprites on a variety of
PC-98 models, using the new generic blitter. Both preshifted (first column)
and runtime-shifted (second column) sprites were tested; empty columns
correspond to times faster than a single frame. Thanks to cuba200611,
Shoutmon, cybermind, and Digmac for running the tests!
The key takeaways:
Checking for empty bytes has never been a good idea.
Preshifting sprites made a slight difference on the 286. Starting with
the 386 though, that difference got smaller and smaller, until it completely
vanished on Pentium models. The memory tradeoff is especially not worth it
for 4-plane sprites, given that you would have to preshift each of the 4
planes and possibly even a fifth alpha plane. Ironically, ZUN only ever
preshifted monochrome single-bitplane sprites with a width of 8 pixels.
That's the smallest possible amount of memory a sprite can possibly take,
and where preshifting consequently has the smallest effect on performance.
Shifting 8-wide sprites on the fly literally takes a single ROL
or ROR instruction per row.
You might want to use MOVS instead of MOV when
targeting the 286 and 386, but the performance gains are barely worth the
resulting mess you would make out of your blitting code. On Pentium models,
there is no difference.
Use the GRCG whenever you have to render lots of things that share a
static 8×1 pattern.
These are the PC-98 models that the people who are willing to test your
newly written PC-98 code actually use.
Since this won't be the only piece of game-independent and explicitly
PC-98-specific custom code involved in this delivery, it makes sense to
start a
dedicated PC-98 platform layer. This code will gradually eliminate the
dependency on master.lib and replace it with better optimized and more
readable C++ code. The blitting benchmark, for example, is already
implemented completely without master.lib.
While this platform layer is mainly written to generate optimal code within
Turbo C++ 4.0J, it can also serve as general PC-98 documentation for
everyone who prefers code over machine-translating old Japanese books. Not
to mention the immediacy of having all actual relevant information in
one place, which might otherwise be pretty well hidden in these books, or
some obscure old text file. For example, did you know that uploading gaiji
via INT 18h might end up disabling the VSync interrupt trigger,
deadlocking the process on the next frame delay loop? This nuisance is not
replicated by any emulators, and it's quite frustrating to encounter it when
trying to run your code on real hardware. master.lib works around it by
simply hooking INT 18h and unconditionally reenabling the VSync
interrupt trigger after the original handler returns, and so does our
platform layer.
So, with the pellet draw calls batched and routed through the new renderer,
we should have gained enough free CPU cycles to disable
📝 interlaced pellet rendering without any
impact on frame rates?
Well, kinda. We do get 56.4 FPS, but only together with noticeable and
reproducible tearing in the top part of the playfield, suggesting exactly
why ZUN interlaced the rendering in the first place. 😕 So have we
already reached the limit of single-buffered PC-98 games here, or can we
still do something about it?
As it turns out, the main bottleneck actually lies in the pellet
unblitting code. Every EGC-"accelerated" unblitting call in TH01 is
as unbatched as the pellet blitting calls were, spending an additional 17
I/O port writes per call to completely set up and shut down the EGC, every
time. And since this is TH01, the two-instruction operation of changing the
active PC-98 VRAM page isn't inlined either, but instead done via a function
call to a faraway segment. On the 486, that's:
>341 cycles for EGC setup and teardown, plus
>72 cycles for each 16-pixel chunk to be unblitted.
This sums up to
>917 cycles of completely unnecessary work for every active pellet,
in the optimal 50% of cases where it lies on an even VRAM byte,
or
>1493 cycles if it lies on an odd VRAM byte, because ZUN's code
extends the unblitted rectangle to a gargantuan 32×8 pixels in this case
And this calculation even ignores the lack of small micro-optimizations that
could further optimize the blitting loop. Multiply that by the game's pellet
cap of 100, and we get a 6-digit number of wasted CPU cycles. On
paper, that's roughly 1/6 of the time we have for each
of our target 56.423 FPS on the game's target 33 MHz systems. Might not
sound all too critical, but the single-buffered nature of the game means
that we're effectively racing the beam on every frame. In turn, we have to
be even more serious about performance.
So, time to also add a batched EGC API to our PC-98 platform layer? Writing
our own EGC code presents a nice opportunity to finally look deeper into all
its registers and configuration options, and see what exactly we can do
about ZUN's enforced 16-pixel alignment.
To nobody's surprise, this alignment is completely unnecessary, and only
displays a lack of knowledge about the chip. While it is true that
the EGC wants VRAM to be exclusively addressed in 16-bit chunks at
16-bit-aligned addresses, it specifically provides
an address register (0x4AC) for shifting the horizontal
start offsets of the source and destination to any pixel within the
16 pixels of such a chunk, and
a bit length register (0x4AE) for specifying the total
width of pixels to be transferred, which also implies the correct end
offsets.
And it gets even better: After ⌈bitlength ÷ 16⌉ write
instructions, the EGC's internal shifter state automatically reinitializes
itself in preparation for blitting another row of pixels with the same
initially configured bit addresses and length. This is perfect for blitting
rectangles, as two I/O port writes before the start of your blitting loop
are enough to define your entire rectangle.
The manual nature of reading and writing in 16-pixel chunks does come with a
slight pitfall though. If the source bit address is larger than the
destination bit address, the first 16-bit read won't fill the EGC's internal
shift register with all pixels that should appear in the first 16-pixel
destination chunk. In this case, the EGC simply won't write anything and
leave the first chunk unchanged. In a
📝 regular blitting loop, however, you expect
that memory to be written and immediately move on to the next chunks within
the row. As a result, the actual blitting process for such a rectangle will
no longer be aligned to the configured address and bit length. The first row
of the rectangle will appear 16 pixels to the right of the destination
address, and the second one will start at bit offset 0 with pixels from the
rightmost byte of the first line, which weren't blitted and remained in the
tile register.
There is an easy solution though: Before the horizontal loop on each line of
the rectangle, simply read one additional 16-pixel chunk from the source
location to prefill the shift register. Thankfully, it's large enough to
also fit the second read of the then full 16 pixels, without dropping any
pixels along the way.
And that's how we get arbitrarily unaligned rectangle copies with the EGC!
Except for a small register allocation trick to use two-register addressing,
there's not much use in further optimizations, as the runtime of these
inter-page blit operations is dominated by the VRAM page switches anyway.
Except that T98-Next seems to disagree about the register prefilling issue:
Every other emulator agrees with real hardware in this regard, so we can
safely assume this to be a bug in T98-Next. Just in case this old emulator
with its last release from June 2010 still has any fans left nowadays… For
now though, even they can still enjoy the TH01 Anniversary Edition: The only
EGC copy algorithm that TH01 actually needs is the left one during the
single-buffered tests, which even that emulator gets right.
That only leaves
📝 my old offer of documenting the EGC raster ops,
and we've got the EGC figured out completely!
And that did in fact remove tearing from the pellet rendering function! For
the first time, we can now fight Elis, Kikuri, Sariel, and Konngara with a
doubled pellet frame rate:
Switchable videos like these can nicely provide evidence that these
changes have no effect on gameplay, making it easy to see that the Orb
still collides with all pellets on the same frames. Also, check out the
difference in remaining conventional memory (coreleft)…
With only pellets and no other animation on screen, this exact pattern
presents the optimal demonstration case for the new unblitter. But as you
can already tell from the invincibility sprites, we'd also need to route
every other kind of sprite through the same new code. This isn't all too
trivial: Most sprites are still rendered at byte-aligned positions, and
their blitting APIs hide that fact by taking a pixel position regardless.
This is why we can't just replace ZUN's original 16-pixel-aligned EGC
unblitting function with ours, and always have to replace both the blitter
and the unblitter on a per-sprite basis.
To completely remove all flickering, we'd also like to get rid of all the
sprite-specific unblit ➜ update ➜ render sequences, and instead
gather all unblitting code to the beginning of the game loop, before any
update and rendering calls. So yeah, it will take a long time to completely
get rid of all flickering. Until we're there, I recommend any backer to tell
me their favorite boss, so that I can focus on getting that one
rendered without any flickering. Remember that here at ReC98, we can have a
Touhou character popularity contest at any time during the year, whenever
the store is open!
In the meantime, the consistent use of 8×8 rectangles during pellet
unblitting does significantly reduce flickering across the entire game,
and shrinks certain holes that pellets tend to rip into lazily reblitted
sprites:
SinGyoku's "crossing pellets" pattern, shortly before completing
the transformation back to the sphere.
To round out the first release, I added all the other bug fixes to achieve
parity with my previously released patched REIIDEN.EXE builds:
I removed the 📝 shootout laser crash by
simply leaving the lasers on screen if a boss is defeated,
prevented the HP bar heap corruption bug in test or debug mode by not
letting it display negative HP in the first place, and
So here it is, the first build of TH01's Anniversary Edition:
2023-03-05-th01-anniv.zip Edit (2023-03-12): If you're playing on Neko Project and seeing more
flickering than in the original game, make sure you've checked the Screen
→ Disp vsync option.
Next up: The long overdue extended trip through the depths of TH02's
low-level code. From what I've seen of it so far, the work on this project
is finally going to become a bit more relaxing. Which is quite welcome
after, what, 6 months of stressful research-heavy work?
More than three months without any reverse-engineering progress! It's been
way too long. Coincidentally, we're at least back with a surprising 1.25% of
overall RE, achieved within just 3 pushes. The ending script system is not
only more or less the same in TH04 and TH05, but actually originated in
TH03, where it's also used for the cutscenes before stages 8 and 9. This
means that it was one of the final pieces of code shared between three of
the four remaining games, which I got to decompile at roughly 3× the usual
speed, or ⅓ of the price.
The only other bargains of this nature remain in OP.EXE. The
Music Room is largely equivalent in all three remaining games as well, and
the sound device selection, ZUN Soft logo screens, and main/option menus are
the same in TH04 and TH05. A lot of that code is in the "technically RE'd
but not yet decompiled" ASM form though, so it would shift Finalized% more
significantly than RE%. Therefore, make sure to order the new
Finalization option rather than Reverse-engineering if you
want to make number go up.
So, cutscenes. On the surface, the .TXT files look simple enough: You
directly write the text that should appear on the screen into the file
without any special markup, and add commands to define visuals, music, and
other effects at any place within the script. Let's start with the basics of
how text is rendered, which are the same in all three games:
First off, the text area has a size of 480×64 pixels. This means that it
does not correspond to the tiled area painted into TH05's
EDBK?.PI images:
The yellow area is designated for character names.
Since the font weight can be customized, all text is rendered to VRAM.
This also includes gaiji, despite them ignoring the font weight
setting.
The system supports automatic line breaks on a per-glyph basis, which
move the text cursor to the beginning of the red text area. This might seem like a piece of long-forgotten
ancient wisdom at first, considering the absence of automatic line breaks in
Windows Touhou. However, ZUN probably implemented it more out of pure
necessity: Text in VRAM needs to be unblitted when starting a new box, which
is way more straightforward and performant if you only need to worry
about a fixed area.
The system also automatically starts a new (key press-separated) text
box after the end of the 4th line. However, the text cursor is
also unconditionally moved to the top-left corner of the yellow name
area when this happens, which is almost certainly not what you expect, given
that automatic line breaks stay within the red area. A script author might
as well add the necessary text box change commands manually, if you're
forced to anticipate the automatic ones anyway…
Due to ZUN forgetting an unblitting call during the TH05 refactoring of the
box background buffer, this feature is even completely broken in that game,
as any new text will simply be blitted on top of the old one:
Wait, why are we already talking about game-specific differences after
all? Also, note how the ⏎ animation appears one line below where you'd
expect it.
Overall, the system is geared toward exclusively full-width text. As
exemplified by the 2014 static English patches and the screenshots in this
blog post, half-width text is possible, but comes with a lot of
asterisks attached:
Each loop of the script interpreter starts by looking at the next
byte to distinguish commands from text. However, this step also skips
over every ASCII space and control character, i.e., every byte
≤ 32. If you only intend to display full-width glyphs anyway, this
sort of makes sense: You gain complete freedom when it comes to the
physical layout of these script files, and it especially allows commands
to be freely separated with spaces and line breaks for improved
readability. Still, enforcing commands to be separated exclusively by
line breaks might have been even better for readability, and would have
freed up ASCII spaces for regular text…
Non-command text is blindly processed and rendered two bytes at a
time. The rendering function interprets these bytes as a Shift-JIS
string, so you can use half-width characters here. While the
second byte can even be an ASCII 0x20 space due to the
parser's blindness, all half-width characters must still occur in pairs
that can't be interrupted by commands:
As a workaround for at least the ASCII space issue, you can replace
them with any of the unassigned
Shift-JIS lead bytes – 0x80, 0xA0, or
anything between 0xF0 and 0xFF inclusive.
That's what you see in all screenshots of this post that display
half-width spaces.
Finally, did you know that you can hold ESC to fast-forward
through these cutscenes, which skips most frame delays and reduces the rest?
Due to the blocking nature of all commands, the ESC key state is
only updated between commands or 2-byte text groups though, so it can't
interrupt an ongoing delay.
Superficially, the list of game-specific differences doesn't look too long,
and can be summarized in a rather short table:
It's when you get into the implementation that the combined three systems
reveal themselves as a giant mess, with more like 56 differences between the
games. Every single new weird line of code opened up
another can of worms, which ultimately made all of this end up with 24
pieces of bloat and 14 bugs. The worst of these should be quite interesting
for the general PC-98 homebrew developers among my audience:
The final official 0.23 release of master.lib has a bug in
graph_gaiji_put*(). To calculate the JIS X 0208 code point for
a gaiji, it is enough to ADD 5680h onto the gaiji ID. However,
these functions accidentally use ADC instead, which incorrectly
adds the x86 carry flag on top, causing weird off-by-one errors based on the
previous program state. ZUN did fix this bug directly inside master.lib for
TH04 and TH05, but still needed to work around it in TH03 by subtracting 1
from the intended gaiji ID. Anyone up for maintaining a bug-fixed master.lib
repository?
The worst piece of bloat comes from TH03 and TH04 needlessly
switching the visibility of VRAM pages while blitting a new 320×200 picture.
This makes it much harder to understand the code, as the mere existence of
these page switches is enough to suggest a more complex interplay between
the two VRAM pages which doesn't actually exist. Outside this visibility
switch, page 0 is always supposed to be shown, and page 1 is always used
for temporarily storing pixels that are later crossfaded onto page 0. This
is also the only reason why TH03 has to render text and gaiji onto both VRAM
pages to begin with… and because TH04 doesn't, changing the picture in the
middle of a string of text is technically bugged in that game, even though
you only get to temporarily see the new text on very underclocked PC-98
systems.
These performance implications made me wonder why cutscenes even bother with
writing to the second VRAM page anyway, before copying each crossfade step
to the visible one.
📝 We learned in June how costly EGC-"accelerated" inter-page copies are;
shouldn't it be faster to just blit the image once rather than twice?
Well, master.lib decodes .PI images into a packed-pixel format, and
unpacking such a representation into bitplanes on the fly is just about the
worst way of blitting you could possibly imagine on a PC-98. EGC inter-page
copies are already fairly disappointing at 42 cycles for every 16 pixels, if
we look at the i486 and ignore VRAM latencies. But under the same
conditions, packed-pixel unpacking comes in at 81 cycles for every 8
pixels, or almost 4× slower. On lower-end systems, that can easily sum up to
more than one frame for a 320×200 image. While I'd argue that the resulting
tearing could have been an acceptable part of the transition between two
images, it's understandable why you'd want to avoid it in favor of the
pure effect on a slower framerate.
Really makes me wonder why master.lib didn't just directly decode .PI images
into bitplanes. The performance impact on load times should have been
negligible? It's such a good format for
the often dithered 16-color artwork you typically see on PC-98, and
deserves better than master.lib's implementation which is both slow to
decode and slow to blit.
That brings us to the individual script commands… and yes, I'm going to
document every single one of them. Some of their interactions and edge cases
are not clear at all from just looking at the code.
Almost all commands are preceded by… well, a 0x5C lead byte.
Which raises the question of whether we should
document it as an ASCII-encoded \ backslash, or a Shift-JIS-encoded
¥ yen sign. From a gaijin perspective, it seems obvious that it's a
backslash, as it's consistently displayed as one in most of the editors you
would actually use nowadays. But interestingly, iconv
-f shift-jis -t utf-8 does convert any 0x5C
lead bytes to actual ¥ U+00A5 YEN SIGN code points
.
Ultimately, the distinction comes down to the font. There are fonts
that still render 0x5C as ¥, but mainly do so out
of an obvious concern about backward compatibility to JIS X 0201, where this
mapping originated. Unsurprisingly, this group includes MS Gothic/Mincho,
the old Japanese fonts from Windows 3.1, but even Meiryo and Yu
Gothic/Mincho, Microsoft's modern Japanese fonts. Meanwhile, pretty much
every other modern font, and freely licensed ones in particular, render this
code point as \, even if you set your editor to Shift-JIS. And
while ZUN most definitely saw it as a ¥, documenting this code
point as \ is less ambiguous in the long run. It can only
possibly correspond to one specific code point in either Shift-JIS or UTF-8,
and will remain correct even if we later mod the cutscene system to support
full-blown Unicode.
Now we've only got to clarify the parameter syntax, and then we can look at
the big table of commands:
Numeric parameters are read as sequences of up to 3 ASCII digits. This
limits them to a range from 0 to 999 inclusive, with 000 and
0 being equivalent. Because there's no further sentinel
character, any further digit from the 4th one onwards is
interpreted as regular text.
Filename parameters must be terminated with a space or newline and are
limited to 12 characters, which translates to 8.3 basenames without any
directory component. Any further characters are ignored and displayed as
text as well.
Each .PI image can contain up to four 320×200 pictures ("quarters") for
the cutscene picture area. In the script commands, they are numbered like
this:
0
1
2
3
\@
Clears both VRAM pages by filling them with VRAM color 0. 🐞
In TH03 and TH04, this command does not update the internal text area
background used for unblitting. This bug effectively restricts usage of
this command to either the beginning of a script (before the first
background image is shown) or its end (after no more new text boxes are
started). See the image below for an
example of using it anywhere else.
\b2
Sets the font weight to a value between 0 (raw font ROM glyphs) to 3
(very thicc). Specifying any other value has no effect.
🐞 In TH04 and TH05, \b3 leads to glitched pixels when
rendering half-width glyphs due to a bug in the newly micro-optimized
ASM version of
📝 graph_putsa_fx(); see the image below for an example.
In these games, the parameter also directly corresponds to the
graph_putsa_fx() effect function, removing the sanity check
that was present in TH03. In exchange, you can also access the four
dissolve masks for the bold font (\b2) by specifying a
parameter between 4 (fewest pixels) to 7 (most
pixels). Demo video below.
\c15
Changes the text color to VRAM color 15.
\c=字,15
Adds a color map entry: If 字 is the first code point
inside the name area on a new line, the text color is automatically set
to 15. Up to 8 such entries can be registered
before overflowing the statically allocated buffer.
🐞 The comma is assumed to be present even if the color parameter is omitted.
\e0
Plays the sound effect with the given ID.
\f
(no-op)
\fi1
\fo1
Calls master.lib's palette_black_in() or
palette_black_out() to play a hardware palette fade
animation from or to black, spending roughly 1 frame on each of the 16 fade steps.
\fm1
Fades out BGM volume via PMD's AH=02h interrupt call,
in a non-blocking way. The fade speed can range from 1 (slowest) to 127 (fastest).
Values from 128 to 255 technically correspond to
AH=02h's fade-in feature, which can't be used from cutscene
scripts because it requires BGM volume to first be lowered via
AH=19h, and there is no command to do that.
\g8
Plays a blocking 8-frame screen shake
animation.
\ga0
Shows the gaiji with the given ID from 0 to 255
at the current cursor position. Even in TH03, gaiji always ignore the
text delay interval configured with \v.
@3
TH05's replacement for the \ga command from TH03 and
TH04. The default ID of 3 corresponds to the
gaiji. Not to be confused with \@, which starts with a backslash,
unlike this command.
@h
Shows the gaiji.
@t
Shows the gaiji.
@!
Shows the gaiji.
@?
Shows the gaiji.
@!!
Shows the gaiji.
@!?
Shows the gaiji.
\k0
Waits 0 frames (0 = forever) for an advance key to be pressed before
continuing script execution. Before waiting, TH05 crossfades in any new
text that was previously rendered to the invisible VRAM page…
🐞 …but TH04 doesn't, leaving the text invisible during the wait time.
As a workaround, \vp1 can be
used before \k to immediately display that text without a
fade-in animation.
\m$
Stops the currently playing BGM.
\m*
Restarts playback of the currently loaded BGM from the
beginning.
\m,filename
Stops the currently playing BGM, loads a new one from the given
file, and starts playback.
\n
Starts a new line at the leftmost X coordinate of the box, i.e., the
start of the name area. This is how scripts can "change" the name of the
currently speaking character, or use the entire 480×64 pixels without
being restricted to the non-name area.
Note that automatic line breaks already move the cursor into a new line.
Using this command at the "end" of a line with the maximum number of 30
full-width glyphs would therefore start a second new line and leave the
previously started line empty.
If this command moved the cursor into the 5th line of a box,
\s is executed afterward, with
any of \n's parameters passed to \s.
\p
(no-op)
\p-
Deallocates the loaded .PI image.
\p,filename
Loads the .PI image with the given file into the single .PI slot
available to cutscenes. TH04 and TH05 automatically deallocate any
previous image, 🐞 TH03 would leak memory without a manual prior call to
\p-.
\pp
Sets the hardware palette to the one of the loaded .PI image.
\p@
Sets the loaded .PI image as the full-screen 640×400 background
image and overwrites both VRAM pages with its pixels, retaining the
current hardware palette.
\p=
Runs \pp followed by \p@.
\s0
\s-
Ends a text box and starts a new one. Fades in any text rendered to
the invisible VRAM page, then waits 0 frames
(0 = forever) for an advance key to be
pressed. Afterward, the new text box is started with the cursor moved to
the top-left corner of the name area. \s- skips the wait time and starts the new box
immediately.
\t100
Sets palette brightness via master.lib's
palette_settone() to any value from 0 (fully black) to 200
(fully white). 100 corresponds to the palette's original colors.
Preceded by a 1-frame delay unless ESC is held.
\v1
Sets the number of frames to wait between every 2 bytes of rendered
text.
Sets the number of frames to spend on each of the 4 fade
steps when crossfading between old and new text. The game-specific
default value is also used before the first use of this command.
\v2
\vp0
Shows VRAM page 0. Completely useless in
TH03 (this game always synchronizes both VRAM pages at a command
boundary), only of dubious use in TH04 (for working around a bug in \k), and the games always return to
their intended shown page before every blitting operation anyway. A
debloated mod of this game would just remove this command, as it exposes
an implementation detail that script authors should not need to worry
about. None of the original scripts use it anyway.
\w64
\w and \wk wait for the given number
of frames
\wm and \wmk wait until PMD has played
back the current BGM for the total number of measures, including
loops, given in the first parameter, and fall back on calling
\w and \wk with the second parameter as
the frame number if BGM is disabled.
🐞 Neither PMD nor MMD reset the internal measure when stopping
playback. If no BGM is playing and the previous BGM hasn't been
played back for at least the given number of measures, this command
will deadlock.
Since both TH04 and TH05 fade in any new text from the invisible VRAM
page, these commands can be used to simulate TH03's typing effect in
those games. Demo video below.
Contrary to \k and \s, specifying 0 frames would
simply remove any frame delay instead of waiting forever.
The TH03-exclusive k variants allow the delay to be
interrupted if ⏎ Return or Shot are held down.
TH04 and TH05 recognize the k as well, but removed its
functionality.
All of these commands have no effect if ESC is held.
\wm64,64
\wk64
\wmk64,64
\wi1
\wo1
Calls master.lib's palette_white_in() or
palette_white_out() to play a hardware palette fade
animation from or to white, spending roughly 1 frame on each of the 16 fade steps.
\=4
Immediately displays the given quarter of the loaded .PI image in
the picture area, with no fade effect. Any value ≥ 4 resets the picture area to black.
\==4,1
Crossfades the picture area between its current content and quarter
#4 of the loaded .PI image, spending 1 frame on each of the 4 fade steps unless
ESC is held. Any value ≥ 4 is
replaced with quarter #0.
\$
Stops script execution. Must be called at the end of each file;
otherwise, execution continues into whatever lies after the script
buffer in memory.
TH05 automatically deallocates the loaded .PI image, TH03 and TH04
require a separate manual call to \p- to not leak its memory.
Bold values signify the default if the parameter
is omitted; \c is therefore
equivalent to \c15.
The \@ bug. Yes, the ¥ is fake. It
was easier to GIMP it than to reword the sentences so that the backslashes
landed on the second byte of a 2-byte half-width character pair.
The font weights and effects available through \b, including the glitch with
\b3 in TH04 and TH05.
Font weight 3 is technically not rendered correctly in TH03 either; if
you compare 1️⃣ with 4️⃣, you notice a single missing column of pixels
at the left side of each glyph, which would extend into the previous
VRAM byte. Ironically, the TH04/TH05 version is more correct in
this regard: For half-width glyphs, it preserves any further pixel
columns generated by the weight functions in the high byte of the 16-dot
glyph variable. Unlike TH03, which still cuts them off when rendering
text to unaligned X positions (3️⃣), TH04 and TH05 do bit-rotate them
towards their correct place (4️⃣). It's only at byte-aligned X positions
(2️⃣) where they remain at their internally calculated place, and appear
on screen as these glitched pixel columns, 15 pixels away from the glyph
they belong to. It's easy to blame bugs like these on micro-optimized
ASM code, but in this instance, you really can't argue against it if the
original C++ version was equally incorrect.
Combining \b and s- into a partial dissolve
animation. The speed can be controlled with \v.
Simulating TH03's typing effect in TH04 and TH05 via \w. Even prettier in TH05 where we
also get an additional fade animation
after the box ends.
So yeah, that's the cutscene system. I'm dreading the moment I will have to
deal with the other command interpreter in these games, i.e., the
stage enemy system. Luckily, that one is completely disconnected from any
other system, so I won't have to deal with it until we're close to finishing
MAIN.EXE… that is, unless someone requests it before. And it
won't involve text encodings or unblitting…
The cutscene system got me thinking in greater detail about how I would
implement translations, being one of the main dependencies behind them. This
goal has been on the order form for a while and could soon be implemented
for these cutscenes, with 100% PI being right around the corner for the TH03
and TH04 cutscene executables.
Once we're there, the "Virgin" old-school way of static translation patching
for Latin-script languages could be implemented fairly quickly:
Establish basic UTF-8 parsing for less painful manual editing of the
source files
Procedurally generate glyphs for the few required additional letters
based on existing font ROM glyphs. For example, we'd generate ä
by painting two short lines on top of the font ROM's a glyph,
or generate ¿ by vertically flipping the question mark. This
way, the text retains a consistent look regardless of whether the translated
game is run with an NEC or EPSON font ROM, or the that Neko Project II auto-generates if you
don't provide either.
(Optional) Change automatic line breaks to work on a per-word
basis, rather than per-glyph
That's it – script editing and distribution would be handled by your local
translation group. It might seem as if this would also work for Greek and
Cyrillic scripts due to their presence in the PC-98 font ROM, but I'm not
sure if I want to attempt procedurally shrinking these glyphs from 16×16 to
8×16… For any more thorough solution, we'd need to go for a more "Chad" kind
of full-blown translation support:
Implement text subdivisions at a sensible granularity while retaining
automatic line and box breaks
Compile translatable text into a Japanese→target language dictionary
(I'm too old to develop any further translation systems that would overwrite
modded source text with translations of the original text)
Implement a custom Unicode font system (glyphs would be taken from GNU
Unifont unless translators provide a different 8×16 font for their
language)
Combine the text compiler with the font compiler to only store needed
glyphs as part of the translation's font file (dealing with a multi-MB font
file would be rather ugly in a Real Mode game)
Write a simple install/update/patch stacking tool that supports both
.HDI and raw-file DOSBox-X scenarios (it's different enough from thcrap to
warrant a separate tool – each patch stack would be statically compiled into
a single package file in the game's directory)
Add a nice language selection option to the main menu
(Optional) Support proportional fonts
Which sounds more like a separate project to be commissioned from
Touhou Patch Center's Open Collective funds, separate from the ReC98 cap.
This way, we can make sure that the feature is completely implemented, and I
can talk with every interested translator to make sure that their language
works.
It's still cheaper overall to do this on PC-98 than to first port the games
to a modern system and then translate them. On the other hand, most
of the tasks in the Chad variant (3, 4, 5, and half of 2) purely deal with
the difficulty of getting arbitrary Unicode characters to work natively in a
PC-98 DOS game at all, and would be either unnecessary or trivial if we had
already ported the game. Depending on where the patrons' interests lie, it
may not be worth it. So let's see what all of you think about which
way we should go, or whether it's worth doing at all. (Edit
(2022-12-01): With Splashman's
order towards the stage dialogue system, we've pretty much confirmed that it
is.) Maybe we want to meet in the middle – using e.g. procedural glyph
generation for dynamic translations to keep text rendering consistent with
the rest of the PC-98 system, and just not support non-Latin-script
languages in the beginning? In any case, I've added both options to the
order form. Edit (2023-07-28):Touhou Patch Center has agreed to fund
a basic feature set somewhere between the Virgin and Chad level. Check the
📝 dedicated announcement blog post for more
details and ideas, and to find out how you can support this goal!
Surprisingly, there was still a bit of RE work left in the third push after
all of this, which I filled with some small rendering boilerplate. Since I
also wanted to include TH02's playfield overlay functions,
1/15 of that last push went towards getting a
TH02-exclusive function out of the way, which also ended up including that
game in this delivery.
The other small function pointed out how TH05's Stage 5 midboss pops into
the playfield quite suddenly, since its clipping test thinks it's only 32
pixels tall rather than 64:
Good chance that the pop-in might have been intended. Edit (2023-06-30): Actually, it's a
📝 systematic consequence of ZUN having to work around the lack of clipping in master.lib's sprite functions.
There's even another quirk here: The white flash during its first frame
is actually carried over from the previous midboss, which the
game still considers as actively getting hit by the player shot that
defeated it. It's the regular boilerplate code for rendering a
midboss that resets the responsible damage variable, and that code
doesn't run during the defeat explosion animation.
Next up: Staying with TH05 and looking at more of the pattern code of its
boss fights. Given the remaining TH05 budget, it makes the most sense to
continue in in-game order, with Sara and the Stage 2 midboss. If more money
comes in towards this goal, I could alternatively go for the Mai & Yuki
fight and immediately develop a pretty fix for the cheeto storage
glitch. Also, there's a rather intricate
pull request for direct ZMBV decoding on the website that I've still got
to review…
Wow, it's been 3 days and I'm already back with an unexpectedly long post
about TH01's bonus point screens? 3 days used to take much longer in my
previous projects…
Before I talk about graphics for the rest of this post, let's start with the
exact calculations for both bonuses. Touhou Wiki already got these right,
but it still makes sense to provide them here, in a format that allows you
to cross-reference them with the source code more easily. For the
card-flipping stage bonus:
Time
min((Stage timer * 3), 6553)
Continuous
min((Highest card combo * 100), 6553)
Bomb&Player
min(((Lives * 200) + (Bombs * 100)), 6553)
STAGE
min(((Stage number - 1) * 200), 6553)
BONUS Point
Sum of all above values * 10
The boss stage bonus is calculated from the exact same metrics, despite half
of them being labeled differently. The only actual differences are in the
higher multipliers and in the cap for the stage number bonus. Why remove it
if raising it high enough also effectively disables it?
Time
min((Stage timer * 5), 6553)
Continuous
min((Highest card combo * 200), 6553)
MIKOsan
min(((Lives * 500) + (Bombs * 200)), 6553)
Clear
min((Stage number * 1000), 65530)
TOTLE
Sum of all above values * 10
The transition between the gameplay and TOTLE screens is one of the more
impressive effects showcased in this game, especially due to how wavy it
often tends to look. Aside from the palette interpolation (which is, by the
way, the first time ZUN wrote a correct interpolation algorithm between two
4-bit palettes), the core of the effect is quite simple. With the TOTLE
image blitted to VRAM page 1:
Shift the contents of a line on VRAM page 0 by 32 pixels, alternating
the shift direction between right edge → left edge (even Y
values) and the other way round (odd Y values)
Keep a cursor for the destination pixels on VRAM page 1 for every line,
starting at the respective opposite edge
Blit the 32 pixels at the VRAM page 1 cursor to the newly freed 32
pixels on VRAM page 0, and advance the cursor towards the other edge
Successive line shifts will then include these newly blitted 32 pixels
as well
Repeat (640 / 32) = 20 times, after which all new pixels
will be in their intended place
So it's really more like two interlaced shift effects with opposite
directions, starting on different scanlines. No trigonometry involved at
all.
Horizontally scrolling pixels on a single VRAM page remains one of the few
📝 appropriate uses of the EGC in a fullscreen 640×400 PC-98 game,
regardless of the copied block size. The few inter-page copies in this
effect are also reasonable: With 8 new lines starting on each effect frame,
up to (8 × 20) = 160 lines are transferred at any given time, resulting
in a maximum of (160 × 2 × 2) = 640 VRAM page switches per frame for the newly
transferred pixels. Not that frame rate matters in this situation to begin
with though, as the game is doing nothing else while playing this effect.
What does sort of matter: Why 32 pixels every 2 frames, instead of 16
pixels on every frame? There's no performance difference between doing one
half of the work in one frame, or two halves of the work in two frames. It's
not like the overhead of another loop has a serious impact here,
especially with the PC-98 VRAM being said to have rather high
latencies. 32 pixels over 2 frames is also harder to code, so ZUN
must have done it on purpose. Guess he really wanted to go for that 📽
cinematic 30 FPS look 📽 here…
Removing the palette interpolation and transitioning from a black screen
to CLEAR3.GRP makes it a lot clearer how the effect works.
Once all the metrics have been calculated, ZUN animates each value with a
rather fancy left-to-right typing effect. As 16×16 images that use a single
bright-red color, these numbers would be
perfect candidates for gaiji… except that ZUN wanted to render them at the
more natural Y positions of the labels inside CLEAR3.GRP that
are far from aligned to the 8×16 text RAM grid. Not having been in the mood
for hardcoding another set of monochrome sprites as C arrays that day, ZUN
made the still reasonable choice of storing the image data for these numbers
in the single-color .GRC form– yeah, no, of course he once again
chose the .PTN hammer, and its
📝 16×16 "quarter" wrapper functions around nominal 32×32 sprites.
The three 32×32 TOTLE metric digit sprites inside
NUMB.PTN.
Why do I bring up such a detail? What's actually going on there is that ZUN
loops through and blits each digit from 0 to 9, and then continues the loop
with "digit" numbers from 10 to 19, stopping before the number whose ones
digit equals the one that should stay on screen. No problem with that in
theory, and the .PTN sprite selection is correct… but the .PTN
quarter selection isn't, as ZUN wrote (digit % 4)
instead of the correct ((digit % 10) % 4).
Since .PTN quarters are indexed in a row-major
way, the 10-19 part of the loop thus ends up blitting
2 →
3 →
0 →
1 →
6 →
7 →
4 →
5 →
(nothing):
This footage was slowed down to show one sprite blitting operation per
frame. The actual game waits a hardcoded 4 milliseconds between each
sprite, so even theoretically, you would only see roughly every
4th digit. And yes, we can also observe the empty quarter
here, only blitted if one of the digits is a 9.
Seriously though? If the deadline is looming and you've got to rush
some part of your game, a standalone screen that doesn't affect
anything is the best place to pick. At 4 milliseconds per digit, the
animation goes by so fast that this quirk might even add to its
perceived fanciness. It's exactly the reason why I've always been rather
careful with labeling such quirks as "bugs". And in the end, the code does
perform one more blitting call after the loop to make sure that the correct
digit remains on screen.
The remaining ¾ of the second push went towards transferring the final data
definitions from ASM to C land. Most of the details there paint a rather
depressing picture about ZUN's original code layout and the bloat that came
with it, but it did end on a real highlight. There was some unused data
between ZUN's non-master.lib VSync and text RAM code that I just moved away
in September 2015 without taking a closer look at it. Those bytes kind of
look like another hardcoded 1bpp image though… wait, what?!
Lovely! With no mouse-related code left in the game otherwise, this cursor
sprite provides some great fuel for wild fan theories about TH01's
development history:
Could ZUN have 📝 stolen the basic PC-98
VSync or text RAM function code from a source that also implemented mouse
support?
Or was this game actually meant to have mouse-controllable portions at
some point during development? Even if it would have just been the
menus.
… Actually, you know what, with all shared data moved to C land, I might as
well finish FUUIN.EXE right now. The last secret hidden in its
main() function: Just like GAME.BAT supports
launching the game in various debug modes from the DOS command line,
FUUIN.EXE can directly launch one of the game's endings. As
long as the MDRV2 driver is installed, you can enter
fuuin t1 for the 魔界/Makai Good Ending, or
fuuin t for 地獄/Jigoku Good Ending.
Unfortunately, the command-line parameter can only control the route.
Choosing between a Good or Bad Ending is still done exclusively through
TH01's resident structure, and the continues_per_scene array in
particular. But if you pre-allocate that structure somehow and set one of
the members to a nonzero value, it would work. Trainers, anyone?
Alright, gotta get back to the code if I want to have any chance of
finishing this game before the 15th… Next up: The final 17
functions in REIIDEN.EXE that tie everything together and add
some more debug features on top.
What's this? A simple, straightforward, easy-to-decompile TH01 boss with
just a few minor quirks and only two rendering-related ZUN bugs? Yup, 2½
pushes, and Kikuri was done. Let's get right into the overview:
Just like 📝 Elis, Kikuri's fight consists
of 5 phases, excluding the entrance animation. For some reason though, they
are numbered from 2 to 6 this time, skipping phase 1? For consistency, I'll
use the original phase numbers from the source code in this blog post.
The main phases (2, 5, and 6) also share Elis' HP boundaries of 10, 6,
and 0, respectively, and are once again indicated by different colors in the
HP bar. They immediately end upon reaching the given number of HP, making
Kikuri immune to the
📝 heap corruption in test or debug mode that can happen with Elis and Konngara.
Phase 2 solely consists of the infamous big symmetric spiral
pattern.
Phase 3 fades Kikuri's ball of light from its default bluish color to bronze over 100 frames. Collision detection is deactivated
during this phase.
In Phase 4, Kikuri activates her two souls while shooting the spinning
8-pellet circles from the previously activated ball. The phase ends shortly
after the souls fired their third spread pellet group.
Note that this is a timed phase without an HP boundary, which makes
it possible to reduce Kikuri's HP below the boundaries of the next
phases, effectively skipping them. Take this video for example,
where Kikuri has 6 HP by the end of Phase 4, and therefore directly
starts Phase 6.
(Obviously, Kikuri's HP can also be reduced to 0 or below, which will
end the fight immediately after this phase.)
Phase 5 combines the teardrop/ripple "pattern" from the souls with the
"two crossed eye laser" pattern, on independent cycles.
Finally, Kikuri cycles through her remaining 4 patterns in Phase 6,
while the souls contribute single aimed pellets every 200 frames.
Interestingly, all HP-bounded phases come with an additional hidden
timeout condition:
Phase 2 automatically ends after 6 cycles of the spiral pattern, or
5,400 frames in total.
Phase 5 ends after 1,600 frames, or the first frame of the
7th cycle of the two crossed red lasers.
If you manage to keep Kikuri alive for 29 of her Phase 6 patterns,
her HP are automatically set to 1. The HP bar isn't redrawn when this
happens, so there is no visual indication of this timeout condition even
existing – apart from the next Orb hit ending the fight regardless of
the displayed HP. Due to the deterministic order of patterns, this
always happens on the 8th cycle of the "symmetric gravity
pellet lines from both souls" pattern, or 11,800 frames. If dodging and
avoiding orb hits for 3½ minutes sounds tiring, you can always watch the
byte at DS:0x1376 in your emulator's memory viewer. Once
it's at 0x1E, you've reached this timeout.
So yeah, there's your new timeout challenge.
The few issues in this fight all relate to hitboxes, starting with the main
one of Kikuri against the Orb. The coordinates in the code clearly describe
a hitbox in the upper center of the disc, but then ZUN wrote a < sign
instead of a > sign, resulting in an in-game hitbox that's not
quite where it was intended to be…
Kikuri's actual hitbox.
Since the Orb sprite doesn't change its shape, we can visualize the
hitbox in a pixel-perfect way here. The Orb must be completely within
the red area for a hit to be registered.
Much worse, however, are the teardrop ripples. It already starts with their
rendering routine, which places the sprites from TAMAYEN.PTN at byte-aligned VRAM positions in the ultimate piece of if(…) {…}
else if(…) {…} else if(…) {…} meme code. Rather than
tracking the position of each of the five ripple sprites, ZUN suddenly went
purely functional and manually hardcoded the exact rendering and collision
detection calls for each frame of the animation, based on nothing but its
total frame counter.
Each of the (up to) 5 columns is also unblitted and blitted individually
before moving to the next column, starting at the center and then
symmetrically moving out to the left and right edges. This wouldn't be a
problem if ZUN's EGC-powered unblitting function didn't word-align its X
coordinates to a 16×1 grid. If the ripple sprites happen to start at an
odd VRAM byte position, their unblitting coordinates get rounded both down
and up to the nearest 16 pixels, thus touching the adjacent 8 pixels of the
previously blitted columns and leaving the well-known black vertical bars in
their place.
OK, so where's the hitbox issue here? If you just look at the raw
calculation, it's a slightly confusingly expressed, but perfectly logical 17
pixels. But this is where byte-aligned blitting has a direct effect on
gameplay: These ripples can be spawned at any arbitrary, non-byte-aligned
VRAM position, and collisions are calculated relative to this internal
position. Therefore, the actual hitbox is shifted up to 7 pixels to the
right, compared to where you would expect it from a ripple sprite's
on-screen position:
Due to the deterministic nature of this part of the fight, it's
always 5 pixels for this first set of ripples. These visualizations are
obviously not pixel-perfect due to the different potential shapes of
Reimu's sprite, so they instead relate to her 32×32 bounding box, which
needs to be entirely inside the red
area.
We've previously seen the same issue with the
📝 shot hitbox of Elis' bat form, where
pixel-perfect collision detection against a byte-aligned sprite was merely a
sidenote compared to the more serious X=Y coordinate bug. So why do I
elevate it to bug status here? Because it directly affects dodging: Reimu's
regular movement speed is 4 pixels per frame, and with the internal position
of an on-screen ripple sprite varying by up to 7 pixels, any micrododging
(or "grazing") attempt turns into a coin flip. It's sort of mitigated
by the fact that Reimu is also only ever rendered at byte-aligned
VRAM positions, but I wouldn't say that these two bugs cancel out each
other.
Oh well, another set of rendering issues to be fixed in the hypothetical
Anniversary Edition – obviously, the hitboxes should remain unchanged. Until
then, you can always memorize the exact internal positions. The sequence of
teardrop spawn points is completely deterministic and only controlled by the
fixed per-difficulty spawn interval.
Aside from more minor coordinate inaccuracies, there's not much of interest
in the rest of the pattern code. In another parallel to Elis though, the
first soul pattern in phase 4 is aimed on every difficulty except
Lunatic, where the pellets are once again statically fired downwards. This
time, however, the pattern's difficulty is much more appropriately
distributed across the four levels, with the simultaneous spinning circle
pellets adding a constant aimed component to every difficulty level.
Kikuri's phase 4 patterns, on every difficulty.
That brings us to 5 fully decompiled PC-98 Touhou bosses, with 26 remaining…
and another ½ of a push going to the cutscene code in
FUUIN.EXE.
You wouldn't expect something as mundane as the boss slideshow code to
contain anything interesting, but there is in fact a slight bit of
speculation fuel there. The text typing functions take explicit string
lengths, which precisely match the corresponding strings… for the most part.
For the "Gatekeeper 'SinGyoku'" string though, ZUN passed 23
characters, not 22. Could that have been the "h" from the Hepburn
romanization of 神玉?!
Also, come on, if this text is already blitted to VRAM for no reason,
you could have gone for perfect centering at unaligned byte positions; the
rendering function would have perfectly supported it. Instead, the X
coordinates are still rounded up to the nearest byte.
The hardcoded ending cutscene functions should be even less interesting –
don't they just show a bunch of images followed by frame delays? Until they
don't, and we reach the 地獄/Jigoku Bad Ending with
its special shake/"boom" effect, and this picture:
Picture #2 from ED2A.GRP.
Which is rendered by the following code:
for(int i = 0; i <= boom_duration; i++) { // (yes, off-by-one)
if((i & 3) == 0) {
graph_scrollup(8);
} else {
graph_scrollup(0);
}
end_pic_show(1); // ← different picture is rendered
frame_delay(2); // ← blocks until 2 VSync interrupts have occurred
if(i & 1) {
end_pic_show(2); // ← picture above is rendered
} else {
end_pic_show(1);
}
}
Notice something? You should never see this picture because it's
immediately overwritten before the frame is supposed to end. And yet
it's clearly flickering up for about one frame with common emulation
settings as well as on my real PC-9821 Nw133, clocked at 133 MHz.
master.lib's graph_scrollup() doesn't block until VSync either,
and removing these calls doesn't change anything about the blitted images.
end_pic_show() uses the EGC to blit the given 320×200 quarter
of VRAM from page 1 to the visible page 0, so the bottleneck shouldn't be
there either…
…or should it? After setting it up via a few I/O port writes, the common
method of EGC-powered blitting works like this:
Read 16 bits from the source VRAM position on any single
bitplane. This fills the EGC's 4 16-bit tile registers with the VRAM
contents at that specific position on every bitplane. You do not care
about the value the CPU returns from the read – in optimized code, you would
make sure to just read into a register to avoid useless additional stores
into local variables.
Write any 16 bits
to the target VRAM position on any single bitplane. This copies the
contents of the EGC's tile registers to that specific position on
every bitplane.
To transfer pixels from one VRAM page to another, you insert an additional
write to I/O port 0xA6 before 1) and 2) to set your source and
destination page… and that's where we find the bottleneck. Taking a look at
the i486 CPU and its cycle
counts, a single one of these page switches costs 17 cycles – 1 for
MOVing the page number into AL, and 16 for the
OUT instruction itself. Therefore, the 8,000 page switches
required for EGC-copying a 320×200-pixel image require 136,000 cycles in
total.
And that's the optimal case of using only those two
instructions. 📝 As I implied last time, TH01
uses a function call for VRAM page switches, complete with creating
and destroying a useless stack frame and unnecessarily updating a global
variable in main memory. I tried optimizing ZUN's code by throwing out
unnecessary code and using 📝 pseudo-registers
to generate probably optimal assembly code, and that did speed up the
blitting to almost exactly 50% of the original version's run time. However,
it did little about the flickering itself. Here's a comparison of the first
loop with boom_duration = 16, recorded in DOSBox-X with
cputype=auto and cycles=max, and with
i overlaid using the text chip. Caution, flashing lights:
The original animation, completing in 50 frames instead of the expected
34, thanks to slow blitting. Combined with the lack of
double-buffering, this results in noticeable tearing as the screen
refreshes while blitting is still in progress.
(Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
This optimized version completes in the expected 34 frames. No tearing
happens to be visible in this recording, but the ドカーン image is still visible on every
second loop iteration. (Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
I pushed the optimized code to the th01_end_pic_optimize
branch, to also serve as an example of how to get close to optimal code out
of Turbo C++ 4.0J without writing a single ASM instruction.
And if you really want to use the EGC for this, that's the best you can do.
It really sucks that it merely expanded the GRCG's 4×8-bit tile register to
4×16 bits. With 32 bits, ≥386 CPUs could have taken advantage of their wider
registers and instructions to double the blitting performance. Instead, we
now know the reason why
📝 Promisence Soft's EGC-powered sprite driver that ZUN later stole for TH03
is called SPRITE16 and not SPRITE32. What a massive disappointment.
But what's perhaps a bigger surprise: Blitting planar
images from main memory is much faster than EGC-powered inter-page
VRAM copies, despite the required manual access to all 4 bitplanes. In
fact, the blitting functions for the .CDG/.CD2 format, used from TH03
onwards, would later demonstrate the optimal method of using REP
MOVSD for blitting every line in 32-pixel chunks. If that was also
used for these ending images, the core blitting operation would have taken
((12 + (3 × (320 / 32))) × 200 × 4) =
33,600 cycles, with not much more overhead for the surrounding row
and bitplane loops. Sure, this doesn't factor in the whole infamous issue of
VRAM being slow on PC-98, but the aforementioned 136,000 cycles don't even
include any actual blitting either. And as you move up to later PC-98
models with Pentium CPUs, the gap between OUT and REP
MOVSD only becomes larger. (Note that the page I linked above has a
typo in the cycle count of REP MOVSD on Pentium CPUs: According
to the original Intel Architecture and Programming Manual, it's
13+𝑛, not 3+𝑛.)
This difference explains why later games rarely use EGC-"accelerated"
inter-page VRAM copies, and keep all of their larger images in main memory.
It especially explains why TH04 and TH05 can get away with naively redrawing
boss backdrop images on every frame.
In the end, the whole fact that ZUN did not define how long this image
should be visible is enough for me to increment the game's overall bug
counter. Who would have thought that looking at endings of all things
would teach us a PC-98 performance lesson… Sure, optimizing TH01 already
seemed promising just by looking at its bloated code, but I had no idea that
its performance issues extended so far past that level.
That only leaves the common beginning part of all endings and a short
main() function before we're done with FUUIN.EXE,
and 98 functions until all of TH01 is decompiled! Next up: SinGyoku, who not
only is the quickest boss to defeat in-game, but also comes with the least
amount of code. See you very soon!
With Elis, we've not only reached the midway point in TH01's boss code, but
also a bunch of other milestones: Both REIIDEN.EXE and TH01 as
a whole have crossed the 75% RE mark, and overall position independence has
also finally cracked 80%!
And it got done in 4 pushes again? Yup, we're back to
📝 Konngara levels of redundancy and
copy-pasta. This time, it didn't even stop at the big copy-pasted code
blocks for the rift sprite and 256-pixel circle animations, with the words
"redundant" and "unnecessary" ending up a total of 18 times in my source
code comments.
But damn is this fight broken. As usual with TH01 bosses, let's start with a
high-level overview:
The Elis fight consists of 5 phases (excluding the entrance animation),
which must be completed in order.
In all odd-numbered phases, Elis uses a random one-shot danmaku pattern
from an exclusive per-phase pool before teleporting to a random
position.
There are 3 exclusive girl-form patterns per phase, plus 4
additional bat-form patterns in phase 5, for a total of 13.
Due to a quirk in the selection algorithm in phases 1 and 3, there
is a 25% chance of Elis skipping an attack cycle and just teleporting
again.
In contrast to Konngara, Elis can freely select the same pattern
multiple times in a row. There's nothing in the code to prevent that
from happening.
This pattern+teleport cycle is repeated until Elis' HP reach a certain
threshold value. The odd-numbered phases correspond to the white (phase 1),
red-white (phase 3), and red (phase 5) sections of the health bar. However,
the next phase can only start at the end of each cycle, after a
teleport.
Phase 2 simply teleports Elis back to her starting screen position of
(320, 144) and then advances to phase 3.
Phase 4 does the same as phase 2, but adds the initial bat form
transformation before advancing to phase 5.
Phase 5 replaces the teleport with a transformation to the bat form.
Rather than teleporting instantly to the target position, the bat gradually
flies there, firing a randomly selected looping pattern from the 4-pattern
bat pool on the way, before transforming back to the girl form.
This puts the earliest possible end of the fight at the first frame of phase
5. However, nothing prevents Elis' HP from reaching 0 before that point. You
can nicely see this in 📝 debug mode: Wait
until the HP bar has filled up to avoid heap corruption, hold ↵ Return
to reduce her HP to 0, and watch how Elis still goes through a total of
two patterns* and four
teleport animations before accepting defeat.
But wait, heap corruption? Yup, there's a bug in the HP bar that already
affected Konngara as well, and it isn't even just about the graphical
glitches generated by negative HP:
The initial fill-up animation is drawn to both VRAM pages at a rate of 1
HP per frame… by passing the current frame number as the
current_hp number.
The target_hp is indicated by simply passing the current
HP…
… which, however, can be reduced in debug mode at an equal rate of up to
1 HP per frame.
The completion condition only checks if
((target_hp - 1) == current_hp). With the
right timing, both numbers can therefore run past each other.
In that case, the function is repeatedly called on every frame, backing
up the original VRAM contents for the current HP point before blitting
it…
… until frame ((96 / 2) + 1), where the
.PTN slot pointer overflows the heap buffer and overwrites whatever comes
after. 📝 Sounds familiar, right?
Since Elis starts with 14 HP, which is an even number, this corruption is
trivial to cause: Simply hold ↵ Return from the beginning of the
fight, and the completion condition will never be true, as the
HP and frame numbers run past the off-by-one meeting point.
Edit (2023-07-21): Pressing ↵ Return to reduce HP
also works in test mode (game t). There, the game doesn't
even check the heap, and consequently won't report any corruption,
allowing the HP bar to be glitched even further.
Regular gameplay, however, entirely prevents this due to the fixed start
positions of Reimu and the Orb, the Orb's fixed initial trajectory, and the
50 frames of delay until a bomb deals damage to a boss. These aspects make
it impossible to hit Elis within the first 14 frames of phase 1, and ensure
that her HP bar is always filled up completely. So ultimately, this bug ends
up comparable in seriousness to the
📝 recursion / stack overflow bug in the memory info screen.
These wavy teleport animations point to a quite frustrating architectural
issue in this fight. It's not even the fact that unblitting the yellow star
sprites rips temporary holes into Elis' sprite; that's almost expected from
TH01 at this point. Instead, it's all because of this unused frame of the
animation:
With this sprite still being part of BOSS5.BOS, Girl-Elis has a
total of 9 animation frames, 1 more than the
📝 8 per-entity sprites allowed by ZUN's architecture.
The quick and easy solution would have been to simply bump the sprite array
size by 1, but… nah, this would have added another 20 bytes to all 6 of the
.BOS image slots. Instead, ZUN wrote the manual
position synchronization code I mentioned in that 2020 blog post.
Ironically, he then copy-pasted this snippet of code often enough that it
ended up taking up more than 120 bytes in the Elis fight alone – with, you
guessed it, some of those copies being redundant. Not to mention that just
going from 8 to 9 sprites would have allowed ZUN to go down from 6 .BOS
image slots to 3. That would have actually saved 420 bytes in
addition to the manual synchronization trouble. Looking forward to SinGyoku,
that's going to be fun again…
As for the fight itself, it doesn't take long until we reach its most janky
danmaku pattern, right in phase 1:
The "pellets along circle" pattern on Lunatic, in its original version
and with fanfiction fixes for everything that can potentially be
interpreted as a bug.
For whatever reason, the lower-right quarter of the circle isn't
animated? This animation works by only drawing the new dots added with every
subsequent animation frame, expressed as a tiny arc of a dotted circle. This
arc starts at the animation's current 8-bit angle and ends on the sum of
that angle and a hardcoded constant. In every other (copy-pasted, and
correct) instance of this animation, ZUN uses 0x02 as the
constant, but this one uses… 0.05 for the lower-right quarter?
As in, a 64-bit double constant that truncates to 0 when added
to an 8-bit integer, thus leading to the start and end angles being
identical and the game not drawing anything.
On Easy and Normal, the pattern then spawns 32 bullets along the outline
of the circle, no problem there. On Lunatic though, every one of these
bullets is instead turned into a narrow-angled 5-spread, resulting in 160
pellets… in a game with a pellet cap of 100.
Now, if Elis teleported herself to a position near the top of the playfield,
most of the capped pellets would have been clipped at that top edge anyway,
since the bullets are spawned in clockwise order starting at Elis' right
side with an angle of 0x00. On lower positions though, you can
definitely see a difference if the cap were high enough to allow all coded
pellets to actually be spawned.
The Hard version gets dangerously close to the cap by spawning a total of 96
pellets. Since this is the only pattern in phase 1 that fires pellets
though, you are guaranteed to see all of the unclipped ones.
The pellets also aren't spawned exactly on the telegraphed circle, but 4 pixels to the left.
Then again, it might very well be that all of this was intended, or, most
likely, just left in the game as a happy accident. The latter interpretation
would explain why ZUN didn't just delete the rendering calls for the
lower-right quarter of the circle, because seriously, how would you not spot
that? The phase 3 patterns continue with more minor graphical glitches that
aren't even worth talking about anymore.
And then Elis transforms into her bat form at the beginning of Phase 5,
which displays some rather unique hitboxes. The one against the Orb is fine,
but the one against player shots…
… uses the bat's X coordinate for both X and Y dimensions.
In regular gameplay, it's not too bad as most
of the bat patterns fire aimed pellets which typically don't allow you to
move below her sprite to begin with. But if you ever tried destroying these
pellets while standing near the middle of the playfield, now you know why
that didn't work. This video also nicely points out how the bat, like any
boss sprite, is only ever blitted at positions on the 8×1-pixel VRAM byte
grid, while collision detection uses the actual pixel position.
The bat form patterns are all relatively simple, with little variation
depending on the difficulty level, except for the "slow pellet spreads"
pattern. This one is almost easiest to dodge on Lunatic, where the 5-spreads
are not only always fired downwards, but also at the hardcoded narrow delta
angle, leaving plenty of room for the player to move out of the way:
The "slow pellet spreads" pattern of Elis' bat form, on every
difficulty. Which version do you think is the easiest one?
Finally, we've got another potential timesave in the girl form's "safety
circle" pattern:
After the circle spawned completely, you lose a life by moving outside it,
but doing that immediately advances the pattern past the circle part. This
part takes 200 frames, but the defeat animation only takes 82 frames, so
you can save up to 118 frames there.
Final funny tidbit: As with all dynamic entities, this circle is only
blitted to VRAM page 0 to allow easy unblitting. However, it's also kind of
static, and there needs to be some way to keep the Orb, the player shots,
and the pellets from ripping holes into it. So, ZUN just re-blits the circle
every… 4 frames?! 🤪 The same is true for the Star of David and its
surrounding circle, but there you at least get a flash animation to justify
it. All the overlap is actually quite a good reason for not even attempting
to 📝 mess with the hardware color palette instead.
Reproducing the crash was the whole challenge here. Even after moving Elis
and Reimu to the exact positions seen in Pearl's video and setting Elis' HP
to 0 on the exact same frame, everything ran fine for me. It's definitely no
division by 0 this time, the function perfectly guards against that
possibility. The line specified in the function's parameters is always
clipped to the VRAM region as well, so we can also rule out illegal memory
accesses here…
… or can we? Stepping through it all reminded me of how this function brings
unblitting sloppiness to the next level: For each VRAM byte touched, ZUN
actually unblits the 4 surrounding bytes, adding one byte to the left
and two bytes to the right, and using a single 32-bit read and write per
bitplane. So what happens if the function tries to unblit the topmost byte
of VRAM, covering the pixel positions from (0, 0) to (7, 0)
inclusive? The VRAM offset of 0x0000 is decremented to
0xFFFF to cover the one byte to the left, 4 bytes are written
to this address, the CPU's internal offset overflows… and as it turns out,
that is illegal even in Real Mode as of the 80286, and will raise a General Protection
Fault. Which is… ignored by DOSBox-X,
every Neko Project II version in common use, the CSCP
emulators, SL9821, and T98-Next. Only Anex86 accurately emulates the
behavior of real hardware here.
OK, but no laser fired by Elis ever reaches the top-left corner of the
screen. How can such a fault even happen in practice? That's where the
broken laser reset+unblit function comes in: Not only does it just flat out pass the wrong
parameters to the line unblitting function – describing the line
already traveled by the laser and stopping where the laser begins –
but it also passes them
wrongly, in the form of raw 32-bit fixed-point Q24.8 values, with no
conversion other than a truncation to the signed 16-bit pixels expected by
the function. What then follows is an attempt at interpolation and clipping
to find a line segment between those garbage coordinates that actually falls
within the boundaries of VRAM:
right/bottom correspond to a laser's origin position, and
left/top to the leftmost pixel of its moved-out top line. The
bug therefore only occurs with lasers that stopped growing and have started
moving.
Moreover, it will only happen if either (left % 256) or
(right % 256) is ≤ 127 and the other one of the two is ≥ 128.
The typecast to signed 16-bit integers then turns the former into a large
positive value and the latter into a large negative value, triggering the
function's clipping code.
The function then follows Bresenham's
algorithm: left is ensured to be smaller than right
by swapping the two values if necessary. If that happened, top
and bottom are also swapped, regardless of their value – the
algorithm does not care about their order.
The slope in the X dimension is calculated using an integer division of
((bottom - top) /
(right - left)). Both subtractions are done on signed
16-bit integers, and overflow accordingly.
(-left × slope_x) is added to top,
and left is set to 0.
If both top and bottom are < 0 or
≥ 640, there's nothing to be unblitted. Otherwise, the final
coordinates are clipped to the VRAM range of [(0, 0),
(639, 399)].
If the function got this far, the line to be unblitted is now very
likely to reach from
the top-left to the bottom-right corner, starting out at
(0, 0) right away, or
from the bottom-left corner to the top-right corner. In this case,
you'd expect unblitting to end at (639, 0), but thanks to an
off-by-one error,
it actually ends at (640, -1), which is equivalent to
(0, 0). Why add clipping to VRAM offset calculations when
everything else is clipped already, right?
Possible laser states that will cause the fault, with some debug
output to help understand the cause, and any pellets removed for better
readability. This can happen for all bosses that can potentially have
shootout lasers on screen when being defeated, so it also applies to Mima.
Fixing this is easier than understanding why it happens, but since y'all
love reading this stuff…
tl;dr: TH01 has a high chance of freezing at a boss defeat sequence if there
are diagonally moving lasers on screen, and if your PC-98 system
raises a General Protection Fault on a 4-byte write to offset
0xFFFF, and if you don't run a TSR with an INT
0Dh handler that might handle this fault differently.
The easiest fix option would be to just remove the attempted laser
unblitting entirely, but that would also have an impact on this game's…
distinctive visual glitches, in addition to touching a whole lot of
code bytes. If I ever get funded to work on a hypothetical TH01 Anniversary
Edition that completely rearchitects the game to fix all these glitches, it
would be appropriate there, but not for something that purports to be the
original game.
(Sidenote to further hype up this Anniversary Edition idea for PC-98
hardware owners: With the amount of performance left on the table at every
corner of this game, I'm pretty confident that we can get it to work
decently on PC-98 models with just an 80286 CPU.)
Since we're in critical infrastructure territory once again, I went for the
most conservative fix with the least impact on the binary: Simply changing
any VRAM offsets >= 0xFFFD to 0x0000 to avoid
the GPF, and leaving all other bugs in place. Sure, it's rather lazy and
"incorrect"; the function still unblits a 32-pixel block there, but adding a
special case for blitting 24 pixels would add way too much code. And
seriously, it's not like anything happens in the 8 pixels between
(24, 0) and (31, 0) inclusive during gameplay to begin with.
To balance out the additional per-row if() branch, I inlined
the VRAM page change I/O, saving two function calls and one memory write per
unblitted row.
That means it's time for a new community_choice_fixes
build, containing the new definitive bugfixed versions of these games:
2022-05-31-community-choice-fixes.zip
Check the th01_critical_fixes
branch for the modified TH01 code. It also contains a fix for the HP bar
heap corruption in test or debug mode – simply changing the ==
comparison to <= is enough to avoid it, and negative HP will
still create aesthetic glitch art.
Once again, I then was left with ½ of a push, which I finally filled with
some FUUIN.EXE code, specifically the verdict screen. The most
interesting part here is the player title calculation, which is quite
sneaky: There are only 6 skill levels, but three groups of
titles for each level, and the title you'll see is picked from a random
group. It looks like this is the first time anyone has documented the
calculation?
As for the levels, ZUN definitely didn't expect players to do particularly
well. With a 1cc being the standard goal for completing a Touhou game, it's
especially funny how TH01 expects you to continue a lot: The code has
branches for up to 21 continues, and the on-screen table explicitly leaves
room for 3 digits worth of continues per 5-stage scene. Heck, these
counts are even stored in 32-bit long variables.
Next up: 📝 Finally finishing the long
overdue Touhou Patch Center MediaWiki update work, while continuing with
Kikuri in the meantime. Originally I wasn't sure about what to do between
Elis and Seihou,
but with Ember2528's surprise
contribution last week, y'all have
demonstrated more than enough interest in the idea of getting TH01 done
sooner rather than later. And I agree – after all, we've got the 25th
anniversary of its first public release coming up on August 15, and I might
still manage to completely decompile this game by that point…
TH05 has passed the 50% RE mark, with both MAIN.EXE and the
game as a whole! With that, we've also reached what -Tom-
wanted out of the project, so he's suspending his discount offer for a
bit.
Curve bullets are now officially called cheetos! 76.7% of
fans prefer this term, and it fits into the 8.3 DOS filename scheme much
better than homing lasers (as they're called in
OMAKE.TXT) or Taito
lasers (which would indeed have made sense as well).
…oh, and I managed to decompile Shinki within 2 pushes after all. That
left enough budget to also add the Stage 1 midboss on top.
So, Shinki! As far as final boss code is concerned, she's surprisingly
economical, with 📝 her background animations
making up more than ⅓ of her entire code. Going straight from TH01's
📝 final📝 bosses
to TH05's final boss definitely showed how much ZUN had streamlined
danmaku pattern code by the end of PC-98 Touhou. Don't get me wrong, there
is still room for improvement: TH05 not only
📝 reuses the same 16 bytes of generic boss state we saw in TH04 last month,
but also uses them 4× as often, and even for midbosses. Most importantly
though, defining danmaku patterns using a single global instance of the
group template structure is just bad no matter how you look at it:
The script code ends up rather bloated, with a single MOV
instruction for setting one of the fields taking up 5 bytes. By comparison,
the entire structure for regular bullets is 14 bytes large, while the
template structure for Shinki's 32×32 ball bullets could have easily been
reduced to 8 bytes.
Since it's also one piece of global state, you can easily forget to set
one of the required fields for a group type. The resulting danmaku group
then reuses these values from the last time they were set… which might have
been as far back as another boss fight from a previous stage.
And of course, I wouldn't point this out if it
didn't actually happen in Shinki's pattern code. Twice.
Declaring a separate structure instance with the static data for every
pattern would be both safer and more space-efficient, and there's
more than enough space left for that in the game's data segment.
But all in all, the pattern functions are short, sweet, and easy to follow.
The "devil"
patternis significantly more complex than the others, but still
far from TH01's final bosses at their worst. I especially like the clear
architectural separation between "one-shot pattern" functions that return
true once they're done, and "looping pattern" functions that
run as long as they're being called from a boss's main function. Not many
all too interesting things in these pattern functions for the most part,
except for two pieces of evidence that Shinki was coded after Yumeko:
The gather animation function in the first two phases contains a bullet
group configuration that looks like it's part of an unused danmaku
pattern. It quickly turns out to just be copy-pasted from a similar function
in Yumeko's fight though, where it is turned into actual
bullets.
As one of the two places where ZUN forgot to set a template field, the
lasers at the end of the white wing preparation pattern reuse the 6-pixel
width of Yumeko's final laser pattern. This actually has an effect on
gameplay: Since these lasers are active for the first 8 frames after
Shinki's wings appear on screen, the player can get hit by them in the last
2 frames after they grew to their final width.
Of course, there are more than enough safespots between the lasers.
Speaking about that wing sprite: If you look at ST05.BB2 (or
any other file with a large sprite, for that matter), you notice a rather
weird file layout:
A large sprite split into multiple smaller ones with a width of
64 pixels each? What's this, hardware sprite limitations? On my
PC-98?!
And it's not a limitation of the sprite width field in the BFNT+ header
either. Instead, it's master.lib's BFNT functions which are limited to
sprite widths up to 64 pixels… or at least that's what
MASTER.MAN claims. Whatever the restriction was, it seems to be
completely nonexistent as of master.lib version 0.23, and none of the
master.lib functions used by the games have any issues with larger
sprites.
Since ZUN stuck to the supposed 64-pixel width limit though, it's now the
game that expects Shinki's winged form to consist of 4 physical
sprites, not just 1. Any conversion from another, more logical sprite sheet
layout back into BFNT+ must therefore replicate the original number of
sprites. Otherwise, the sequential IDs ("patnums") assigned to every newly
loaded sprite no longer match ZUN's hardcoded IDs, causing the game to
crash. This is exactly what used to happen with -Tom-'s
MysticTK automation scripts,
which combined these exact sprites into a single large one. This issue has
now been fixed – just in case there are some underground modders out there
who used these scripts and wonder why their game crashed as soon as the
Shinki fight started.
And then the code quality takes a nosedive with Shinki's main function.
Even in TH05, these boss and midboss update
functions are still very imperative:
The origin point of all bullet types used by a boss must be manually set
to the current boss/midboss position; there is no concept of a bullet type
tracking a certain entity.
The same is true for the target point of a player's homing shots…
… and updating the HP bar. At least the initial fill animation is
abstracted away rather decently.
Incrementing the phase frame variable also must be done manually. TH05
even "innovates" here by giving the boss update function exclusive ownership
of that variable, in contrast to TH04 where that ownership is given out to
the player shot collision detection (?!) and boss defeat helper
functions.
Speaking about collision detection: That is done by calling different
functions depending on whether the boss is supposed to be invincible or
not.
Timeout conditions? No standard way either, and all done with manual
if statements. In combination with the regular phase end
condition of lowering (mid)boss HP to a certain value, this leads to quite a
convoluted control flow.
The manual calls to the score bonus functions for cleared phases at least provide some sense of orientation.
One potentially nice aspect of all this imperative freedom is that
phases can end outside of HP boundaries… by manually incrementing the
phase variable and resetting the phase frame variable to 0.
The biggest WTF in there, however, goes to using one of the 16 state bytes
as a "relative phase" variable for differentiating between boss phases that
share the same branch within the switch(boss.phase)
statement. While it's commendable that ZUN tried to reduce code duplication
for once, he could have just branched depending on the actual
boss.phase variable? The same state byte is then reused in the
"devil" pattern to track the activity state of the big jerky lasers in the
second half of the pattern. If you somehow managed to end the phase after
the first few bullets of the pattern, but before these lasers are up,
Shinki's update function would think that you're still in the phase
before the "devil" pattern. The main function then sequence-breaks
right to the defeat phase, skipping the final pattern with the burning Makai
background. Luckily, the HP boundaries are far away enough to make this
impossible in practice.
The takeaway here: If you want to use the state bytes for your custom
boss script mods, alias them to your own 16-byte structure, and limit each
of the bytes to a clearly defined meaning across your entire boss script.
One final discovery that doesn't seem to be documented anywhere yet: Shinki
actually has a hidden bomb shield during her two purple-wing phases.
uth05win got this part slightly wrong though: It's not a complete
shield, and hitting Shinki will still deal 1 point of chip damage per
frame. For comparison, the first phase lasts for 3,000 HP, and the "devil"
pattern phase lasts for 5,800 HP.
And there we go, 3rd PC-98 Touhou boss
script* decompiled, 28 to go! 🎉 In case you were expecting a fix for
the Shinki death glitch: That one
is more appropriately fixed as part of the Mai & Yuki script. It also
requires new code, should ideally look a bit prettier than just removing
cheetos between one frame and the next, and I'd still like it to fit within
the original position-dependent code layout… Let's do that some other
time.
Not much to say about the Stage 1 midboss, or midbosses in general even,
except that their update functions have to imperatively handle even more
subsystems, due to the relative lack of helper functions.
The remaining ¾ of the third push went to a bunch of smaller RE and
finalization work that would have hardly got any attention otherwise, to
help secure that 50% RE mark. The nicest piece of code in there shows off
what looks like the optimal way of setting up the
📝 GRCG tile register for monochrome blitting
in a variable color:
mov ah, palette_index ; Any other non-AL 8-bit register works too.
; (x86 only supports AL as the source operand for OUTs.)
rept 4 ; For all 4 bitplanes…
shr ah, 1 ; Shift the next color bit into the x86 carry flag
sbb al, al ; Extend the carry flag to a full byte
; (CF=0 → 0x00, CF=1 → 0xFF)
out 7Eh, al ; Write AL to the GRCG tile register
endm
Thanks to Turbo C++'s inlining capabilities, the loop body even decompiles
into a surprisingly nice one-liner. What a beautiful micro-optimization, at
a place where micro-optimization doesn't hurt and is almost expected.
Unfortunately, the micro-optimizations went all downhill from there,
becoming increasingly dumb and undecompilable. Was it really necessary to
save 4 x86 instructions in the highly unlikely case of a new spark sprite
being spawned outside the playfield? That one 2D polar→Cartesian
conversion function then pointed out Turbo C++ 4.0J's woefully limited
support for 32-bit micro-optimizations. The code generation for 32-bit
📝 pseudo-registers is so bad that they almost
aren't worth using for arithmetic operations, and the inline assembler just
flat out doesn't support anything 32-bit. No use in decompiling a function
that you'd have to entirely spell out in machine code, especially if the
same function already exists in multiple other, more idiomatic C++
variations.
Rounding out the third push, we got the TH04/TH05 DEMO?.REC
replay file reading code, which should finally prove that nothing about the
game's original replay system could serve as even just the foundation for
community-usable replays. Just in case anyone was still thinking that.
Next up: Back to TH01, with the Elis fight! Got a bit of room left in the
cap again, and there are a lot of things that would make a lot of
sense now:
TH04 would really enjoy a large number of dedicated pushes to catch up
with TH05. This would greatly support the finalization of both games.
Continuing with TH05's bosses and midbosses has shown to be good value
for your money. Shinki would have taken even less than 2 pushes if she
hadn't been the first boss I looked at.
Oh, and I also added Seihou as a selectable goal, for the two people out
there who genuinely like it. If I ever want to quit my day job, I need to
branch out into safer territory that isn't threatened by takedowns, after
all.
Been 📝 a while since we last looked at any of
TH03's game code! But before that, we need to talk about Y coordinates.
During TH03's MAIN.EXE, the PC-98 graphics GDC runs in its
line-doubled 640×200 resolution, which gives the in-game portion its
distinctive stretched low-res look. This lower resolution is a consequence
of using 📝 Promisence Soft's SPRITE16 driver:
Its performance simply stems from the fact that it expects sprites to be
stored in the bottom half of VRAM, which allows them to be blitted using the
same EGC-accelerated VRAM-to-VRAM copies we've seen again and again in all
other games. Reducing the visible resolution also means that the sprites can
be stored on both VRAM pages, allowing the game to still be double-buffered.
If you force the graphics chip to run at 640×400, you can see them:
The full VRAM contents during TH03's in-game portion, as seen when forcing the system into a 640×400 resolution.
•
Note that the text chip still displays its overlaid contents at 640×400,
which means that TH03's in-game portion technically runs at two
resolutions at the same time.
But that means that any mention of a Y coordinate is ambiguous: Does it
refer to undoubled VRAM pixels, or on-screen stretched pixels? Especially
people who have known about the line doubling for years might almost expect
technical blog posts on this game to use undoubled VRAM coordinates. So,
let's introduce a new formatting convention for both on-screen
640×400 and undoubled 640×200 coordinates,
and always write out both to minimize the confusion.
Alright, now what's the thing gonna be? The enemy structure is highly
overloaded, being used for enemies, fireballs, and explosions with seemingly
different semantics for each. Maybe a bit too much to be figured out in what
should ideally be a single push, especially with all the functions that
would need to be decompiled? Bullet code would be easier, but not exactly
single-push material either. As it turns out though, there's something more
fundamental left to be done first, which both of these subsystems depend on:
collision detection!
And it's implemented exactly how I always naively imagined collision
detection to be implemented in a fixed-resolution 2D bullet hell game with
small hitboxes: By keeping a separate 1bpp bitmap of both playfields in
memory, drawing in the collidable regions of all entities on every frame,
and then checking whether any pixels at the current location of the player's
hitbox are set to 1. It's probably not done in the other games because their
single data segment was already too packed for the necessary 17,664 bytes to
store such a bitmap at pixel resolution, and 282,624 bytes for a bitmap at
Q12.4 subpixel resolution would have been prohibitively expensive in 16-bit
Real Mode DOS anyway. In TH03, on the other hand, this bitmap is doubly
useful, as the AI also uses it to elegantly learn what's on the playfield.
By halving the resolution and only tracking tiles of 2×2 / 2×1 pixels, TH03 only requires an adequate total
of 6,624 bytes of memory for the collision bitmaps of both playfields.
So how did the implementation not earn the good-code tag
this time? Because the code for drawing into these bitmaps is undecompilable
hand-written x86 assembly. And not just your usual
ASM that was basically compiled from C and then edited to maybe optimize
register allocation and maybe replace a bunch of local variables with
self-modifying code, oh no. This code is full of overly clever bit
twiddling, abusing the fact that the 16-bit AX,
BX, CX, and DX registers can also be
accessed as two 8-bit registers, calculations that change the semantic
meaning behind the value of a register, or just straight-up reassignments of
different values to the same small set of registers. Sure, in some way it is
impressive, and it all does work and correctly covers every edge
case, but come on. This could have all been a lot more readable in
exchange for just a few CPU cycles.
What's most interesting though are the actual shapes that these functions
draw into the collision bitmap. On the surface, we have:
vertical slopes at any angle across the whole playfield; exclusively
used for Chiyuri's diagonal laser EX attack
straight vertical lines, with a width of 1 tile; exclusively used for
the 2×2 / 2×1 hitboxes of bullets
rectangles at arbitrary sizes
But only 2) actually draws a full solid line. 1) and 3) are only ever drawn
as horizontal stripes, with a hardcoded distance of 2 vertical tiles
between every stripe of a slope, and 4 vertical tiles between every stripe
of a rectangle. That's 66-75% of each rectangular entity's intended hitbox
not actually taking part in collision detection. Now, if player hitboxes
were ≤ 6 / 3 pixels, we'd have one
possible explanation of how the AI can "cheat", because it could just
precisely move through those blank regions at TAS speeds. So, let's make
this two pushes after all and tell the complete story, since this is one of
the more interesting aspects to still be documented in this game.
And the code only gets worse. While the player
collision detection function is decompilable, it might as well not
have been, because it's just more of the same "optimized", hard-to-follow
assembly. With the four splittable 16-bit registers having a total of 20
different meanings in this function, I would have almost preferred
self-modifying code…
In fact, it was so bad that it prompted some maintenance work on my inline
assembly coding standards as a whole. Turns out that the _asm
keyword is not only still supported in modern Visual Studio compilers, but
also in Clang with the -fms-extensions flag, and compiles fine
there even for 64-bit targets. While that might sound like amazing news at
first ("awesome, no need to rewrite this stuff for my x86_64 Linux
port!"), you quickly realize that almost all inline assembly in this
codebase assumes either PC-98 hardware, segmented 16-bit memory addressing,
or is a temporary hack that will be removed with further RE progress.
That's mainly because most of the raw arithmetic code uses Turbo C++'s
register pseudovariables where possible. While they certainly have their
drawbacks, being a non-standard extension that's not supported in other
x86-targeting C compilers, their advantages are quite significant: They
allow this code to stay in the same language, and provide slightly more
immediate portability to any other architecture, together with
📝 readability and maintainability improvements that can get quite significant when combined with inlining:
// This one line compiles to five ASM instructions, which would need to be
// spelled out in any C compiler that doesn't support register pseudovariables.
// By adding typed aliases for these registers via `#define`, this code can be
// both made even more readable, and be prepared for an easier transformation
// into more portable local variables.
_ES = (((_AX * 4) + _BX) + SEG_PLANE_B);
However, register pseudovariables might cause potential portability issues
as soon as they are mixed with inline assembly instructions that rely on
their state. The lazy way of "supporting pseudo-registers" in other
compilers would involve declaring the full set as global variables, which
would immediately break every one of those instances:
_DI = 0;
_AX = 0xFFFF;
// Special x86 instruction doing the equivalent of
//
// *reinterpret_cast(MK_FP(_ES, _DI)) = _AX;
// _DI += sizeof(uint16_t);
//
// Only generated by Turbo C++ in very specific cases, and therefore only
// reliably available through inline assembly.
asm { movsw; }
What's also not all too standardized, though, are certain variants of
the asm keyword. That's why I've now introduced a distinction
between the _asm keyword for "decently sane" inline assembly,
and the slightly less standard asm keyword for inline assembly
that relies on the contents of pseudo-registers, and should break on
compilers that don't support them. So yeah, have some minor
portability work in exchange for these two pushes not having all that much
in RE'd content.
With that out of the way and the function deciphered, we can confirm the
player hitboxes to be a constant 8×8 /
8×4 pixels, and prove that the hit stripes are nothing but
an adequate optimization that doesn't affect gameplay in any way.
And what's the obvious thing to immediately do if you have both the
collision bitmap and the player hitbox? Writing a "real hitbox" mod, of
course:
Reorder the calls to rendering functions so that player and shot sprites
are rendered after bullets
Blank out all player sprite pixels outside an
8×8 / 8×4 box around the center
point
After the bullet rendering function, turn on the GRCG in RMW mode and
set the tile register set to the background color
Stretch the negated contents of collision bitmap onto each playfield,
leaving only collidable pixels untouched
Do the same with the actual, non-negated contents and a white color, for
extra contrast against the background. This also makes sure to show any
collidable areas whose sprite pixels are transparent, such as with the moon
enemy. (Yeah, how unfair.) Doing that also loses a lot of information about
the playfield, such as enemy HP indicated by their color, but what can you
do:
A decently busy TH03 in-game frame and its underlying collision bitmap,
showing off all three different collision shapes together with the
player hitboxes.
2022-02-18-TH03-real-hitbox.zip
The secret for writing such mods before having reached a sufficient level of
position independence? Put your new code segment into DGROUP,
past the end of the uninitialized data section. That's why this modded
MAIN.EXE is a lot larger than you would expect from the raw amount of new code: The file now actually needs to store all these
uninitialized 0 bytes between the end of the data segment and the first
instruction of the mod code – normally, this number is simply a part of the
MZ EXE header, and doesn't need to be redundantly stored on disk. Check the
th03_real_hitbox
branch for the code.
And now we know why so many "real hitbox" mods for the Windows Touhou games
are inaccurate: The games would simply be unplayable otherwise – or can
you dodge rapidly moving 2×2 /
2×1 blocks as an 8×8 /
8×4 rectangle that is smaller than your shot sprites,
especially without focused movement? I can't.
Maybe it will feel more playable after making explosions visible, but that
would need more RE groundwork first.
It's also interesting how adding two full GRCG-accelerated redraws of both
playfields per frame doesn't significantly drop the game's frame rate – so
why did the drawing functions have to be micro-optimized again? It
would be possible in one pass by using the GRCG's TDW mode, which
should theoretically be 8× faster, but I have to stop somewhere.
Next up: The final missing piece of TH04's and TH05's
bullet-moving code, which will include a certain other
type of projectile as well.
Here we go, TH01 Sariel! This is the single biggest boss fight in all of
PC-98 Touhou: If we include all custom effect code we previously decompiled,
it amounts to a total of 10.31% of all code in TH01 (and 3.14%
overall). These 8 pushes cover the final 8.10% (or 2.47% overall),
and are likely to be the single biggest delivery this project will ever see.
Considering that I only managed to decompile 6.00% across all games in 2021,
2022 is already off to a much better start!
So, how can Sariel's code be that large? Well, we've got:
16 danmaku patterns; including the one snowflake detonating into a giant
94×32 hitbox
Gratuitous usage of floating-point variables, bloating the binary thanks
to Turbo C++ 4.0J's particularly horrid code generation
The hatching birds that shoot pellets
3 separate particle systems, sharing the general idea, overall code
structure, and blitting algorithm, but differing in every little detail
The "gust of wind" background transition animation
5 sets of custom monochrome sprite animations, loaded from
BOSS6GR?.GRC
A further 3 hardcoded monochrome 8×8 sprites for the "swaying leaves"
pattern during the second form
In total, it's just under 3,000 lines of C++ code, containing a total of 8
definite ZUN bugs, 3 of them being subpixel/pixel confusions. That might not
look all too bad if you compare it to the
📝 player control function's 8 bugs in 900 lines of code,
but given that Konngara had 0… (Edit (2022-07-17):
Konngara contains two bugs after all: A
📝 possible heap corruption in test or debug mode,
and the infamous
📝 temporary green discoloration.)
And no, the code doesn't make it obvious whether ZUN coded Konngara or
Sariel first; there's just as much evidence for either.
Some terminology before we start: Sariel's first form is separated
into four phases, indicated by different background images, that
cycle until Sariel's HP reach 0 and the second, single-phase form
starts. The danmaku patterns within each phase are also on a cycle,
and the game picks a random but limited number of patterns per phase before
transitioning to the next one. The fight always starts at pattern 1 of phase
1 (the random purple lasers), and each new phase also starts at its
respective first pattern.
Sariel's bugs already start at the graphics asset level, before any code
gets to run. Some of the patterns include a wand raise animation, which is
stored in BOSS6_2.BOS:
Umm… OK? The same sprite twice, just with slightly different
colors? So how is the wand lowered again?
The "lowered wand" sprite is missing in this file simply because it's
captured from the regular background image in VRAM, at the beginning of the
fight and after every background transition. What I previously thought to be
📝 background storage code has therefore a
different meaning in Sariel's case. Since this captured sprite is fully
opaque, it will reset the entire 128×128 wand area… wait, 128×128, rather
than 96×96? Yup, this lowered sprite is larger than necessary, wasting 1,967
bytes of conventional memory. That still doesn't quite explain the
second sprite in BOSS6_2.BOS though. Turns out that the black
part is indeed meant to unblit the purple reflection (?) in the first
sprite. But… that's not how you would correctly unblit that?
The first sprite already eats up part of the red HUD line, and the second
one additionally fails to recover the seal pixels underneath, leaving a nice
little black hole and some stray purple pixels until the next background
transition. Quite ironic given that both
sprites do include the right part of the seal, which isn't even part of the
animation.
Just like Konngara, Sariel continues the approach of using a single function
per danmaku pattern or custom entity. While I appreciate that this allows
all pattern- and entity-specific state to be scoped locally to that one
function, it quickly gets ugly as soon as such a function has to do more than one thing.
The "bird function" is particularly awful here: It's just one if(…)
{…} else if(…) {…} else if(…) {…} chain with different
branches for the subfunction parameter, with zero shared code between any of
these branches. It also uses 64-bit floating-point double as
its subpixel type… and since it also takes four of those as parameters
(y'know, just in case the "spawn new bird" subfunction is called), every
call site has to also push four double values onto the stack.
Thanks to Turbo C++ even using the FPU for pushing a 0.0 constant, we
have already reached maximum floating-point decadence before even having
seen a single danmaku pattern. Why decadence? Every possible spawn position
and velocity in both bird patterns just uses pixel resolution, with no
fractional component in sight. And there goes another 720 bytes of
conventional memory.
Speaking about bird patterns, the red-bird one is where we find the first
code-level ZUN bug: The spawn cross circle sprite suddenly disappears after
it finished spawning all the bird eggs. How can we tell it's a bug? Because
there is code to smoothly fly this sprite off the playfield, that
code just suddenly forgets that the sprite's position is stored in Q12.4
subpixels, and treats it as raw screen pixels instead.
As a result, the well-intentioned 640×400
screen-space clipping rectangle effectively shrinks to 38×23 pixels in the
top-left corner of the screen. Which the sprite is always outside of, and
thus never rendered again.
The intended animation is easily restored though:
Sariel's third pattern, and the first to spawn birds, in its original
and fixed versions. Note that I somewhat fixed the bird hatch animation
as well: ZUN's code never unblits any frame of animation there, and
simply blits every new one on top of the previous one.
Also, did you know that birds actually have a quite unfair 14×38-pixel
hitbox? Not that you'd ever collide with them in any of the patterns…
Another 3 of the 8 bugs can be found in the symmetric, interlaced spawn rays
used in three of the patterns, and the 32×32 debris "sprites" shown at their endpoint, at
the edge of the screen. You kinda have to commend ZUN's attention to detail
here, and how he wrote a lot of code for those few rapidly animated pixels
that you most likely don't
even notice, especially with all the other wrong pixels
resulting from rendering glitches. One of the bugs in the very final pattern
of phase 4 even turns them into the vortex sprites from the second pattern
in phase 1 during the first 5 frames of
the first time the pattern is active, and I had to single-step the blitting
calls to verify it.
It certainly was annoying how much time I spent making sense of these bugs,
and all weird blitting offsets, for just a few pixels… Let's look at
something more wholesome, shall we?
So far, we've only seen the PC-98 GRCG being used in RMW (read-modify-write)
mode, which I previously
📝 explained in the context of TH01's red-white HP pattern.
The second of its three modes, TCR (Tile Compare Read), affects VRAM reads
rather than writes, and performs "color extraction" across all 4 bitplanes:
Instead of returning raw 1bpp data from one plane, a VRAM read will instead
return a bitmask, with a 1 bit at every pixel whose full 4-bit color exactly
matches the color at that offset in the GRCG's tile register, and 0
everywhere else. Sariel uses this mode to make sure that the 2×2 particles
and the wind effect are only blitted on top of "air color" pixels, with
other parts of the background behaving like a mask. The algorithm:
Set the GRCG to TCR mode, and all 8 tile register dots to the air
color
Read N bits from the target VRAM position to obtain an N-bit mask where
all 1 bits indicate air color pixels at the respective position
AND that mask with the alpha plane of the sprite to be drawn, shifted to
the correct start bit within the 8-pixel VRAM byte
Set the GRCG to RMW mode, and all 8 tile register dots to the color that
should be drawn
Write the previously obtained bitmask to the same position in VRAM
Quite clever how the extracted colors double as a secondary alpha plane,
making for another well-earned good-code tag. The wind effect really doesn't deserve it, though:
ZUN calculates every intermediate result inside this function
over and over and over again… Together with some ugly
pointer arithmetic, this function turned into one of the most tedious
decompilations in a long while.
This gradual effect is blitted exclusively to the front page of VRAM,
since parts of it need to be unblitted to create the illusion of a gust of
wind. Then again, anything that moves on top of air-colored background –
most likely the Orb – will also unblit whatever it covered of the effect…
As far as I can tell, ZUN didn't use TCR mode anywhere else in PC-98 Touhou.
Tune in again later during a TH04 or TH05 push to learn about TDW, the final
GRCG mode!
Speaking about the 2×2 particle systems, why do we need three of them? Their
only observable difference lies in the way they move their particles:
Up or down in a straight line (used in phases 4 and 2,
respectively)
Left or right in a straight line (used in the second form)
Left and right in a sinusoidal motion (used in phase 3, the "dark
orange" one)
Out of all possible formats ZUN could have used for storing the positions
and velocities of individual particles, he chose a) 64-bit /
double-precision floating-point, and b) raw screen pixels. Want to take a
guess at which data type is used for which particle system?
If you picked double for 1) and 2), and raw screen pixels for
3), you are of course correct! Not that I'm implying
that it should have been the other way round – screen pixels would have
perfectly fit all three systems use cases, as all 16-bit coordinates
are extended to 32 bits for trigonometric calculations anyway. That's what,
another 1.080 bytes of wasted conventional memory? And that's even
calculated while keeping the current architecture, which allocates
space for 3×30 particles as part of the game's global data, although only
one of the three particle systems is active at any given time.
That's it for the first form, time to put on "Civilization
of Magic"! Or "死なばもろとも"? Or "Theme of 地獄めくり"? Or whatever SYUGEN is
supposed to mean…
… and the code of these final patterns comes out roughly as exciting as
their in-game impact. With the big exception of the very final "swaying
leaves" pattern: After 📝 Q4.4,
📝 Q28.4,
📝 Q24.8, and double variables,
this pattern uses… decimal subpixels? Like, multiplying the number by
10, and using the decimal one's digit to represent the fractional part?
Well, sure, if you really insist on moving the leaves in cleanly
represented integer multiples of ⅒, which is infamously impossible in IEEE
754. Aside from aesthetic reasons, it only really combines less precision
(10 possible fractions rather than the usual 16) with the inferior
performance of having to use integer divisions and multiplications rather
than simple bit shifts. And it's surely not because the leaf sprites needed
an extended integer value range of [-3276, +3276], compared to
Q12.4's [-2047, +2048]: They are clipped to 640×400 screen space
anyway, and are removed as soon as they leave this area.
This pattern also contains the second bug in the "subpixel/pixel confusion
hiding an entire animation" category, causing all of
BOSS6GR4.GRC to effectively become unused:
The "swaying leaves" pattern. ZUN intended a splash animation to be
shown once each leaf "spark" reaches the top of the playfield, which is
never displayed in the original game.
At least their hitboxes are what you would expect, exactly covering the
30×30 pixels of Reimu's sprite. Both animation fixes are available on the th01_sariel_fixes
branch.
After all that, Sariel's main function turned out fairly unspectacular, just
putting everything together and adding some shake, transition, and color
pulse effects with a bunch of unnecessary hardware palette changes. There is
one reference to a missing BOSS6.GRP file during the
first→second form transition, suggesting that Sariel originally had a
separate "first form defeat" graphic, before it was replaced with just the
shaking effect in the final game.
Speaking about the transition code, it is kind of funny how the… um,
imperative and concrete nature of TH01 leads to these 2×24
lines of straight-line code. They kind of look like ZUN rattling off a
laundry list of subsystems and raw variables to be reinitialized, making
damn sure to not forget anything.
Whew! Second PC-98 Touhou boss completely decompiled, 29 to go, and they'll
only get easier from here! 🎉 The next one in line, Elis, is somewhere
between Konngara and Sariel as far as x86 instruction count is concerned, so
that'll need to wait for some additional funding. Next up, therefore:
Looking at a thing in TH03's main game code – really, I have little
idea what it will be!
Now that the store is open again, also check out the
📝 updated RE progress overview I've posted
together with this one. In addition to more RE, you can now also directly
order a variety of mods; all of these are further explained in the order
form itself.
Yup, there still are features that can be fully covered in a single push
and don't lead to sprawling blog posts. The giant
STAGE number and
HARRY UP messages, as well as the
flashing transparent 東方★靈異伝 at the beginning of each scene are drawn
by retrieving the glyphs for each letter from font ROM, and then "blitting"
them to text RAM by placing a colored fullwidth 16×16 square at every pixel
that is set in the font bitmap.
And 📝 once again, ZUN's code there matches
the mediocre example code for the related hardware interrupt from the
PC-9801 Programmers' Bible. It's not 100% copied this time, but
definitely inspired by the code on page 121. Therefore, we can conclude
that these letters are probably only displayed as these 16× scaled glyphs
because that book had code on how to achieve this effect.
ZUN "improved" on the example code by implementing a write-only cursor over
the entire text RAM that fills every 16×16 cell with a differently colored
space character, fully clearing the text RAM as a side effect. For once, he
even removed some redundancy here by using helper functions! It's all still
far from good-code though. For example, there's a
function for filling 5 rows worth of cells, which he uses for both the top
and bottom margin of these letters. But since the bottom margin starts at
the 22nd line, the code writes past the 25th line and into the second TRAM
page. Good that this page is not used by either the hardware or the game.
These cursor functions can actually write any fullwidth JIS code point to
text RAM… and seem to do that in a rather simplified way, because shouldn't
you set the most significant bit to indicate the right half of a fullwidth
character? That's what's written in the same book that ZUN copied all
functions out of, after all. 🤔 Researching this led me down quite the
rabbit hole, where I found an oddity in PC-98 text RAM rendering that no
single one of the widely-used PC-98 emulators gets completely right. I'm
almost done with the 2-push research into this issue, which will
include fixes for DOSBox-X and Neko Project II. The only thing I'm missing
to get these fully accurate is a screenshot of the output created by this binary, on any PC-98 model made by EPSON:
2021-09-12-jist0x28.com.zip
That's the reason why this push was rather delayed. Thanks in advance to
anyone who'd like to help with this!
In maybe more disappointing news: Sariel is going to be delayed for a while
longer. 😕 The player- and HUD-related functions, which previously delayed
further progress there, turned out to call a lot of not yet RE'd functions
themselves. Seems as if we're doing most of the
card-flipping code second, after all? Next up: Point and
bomb items, which at least are a significant step in terms of position
independence.
Didn't quite get to cover background rendering for TH05's Stage 1-5
bosses in this one, as I had to reverse-engineer two more fundamental parts
involved in boss background rendering before.
First, we got the those blocky transitions from stage tiles to bomb and
boss backgrounds, loaded from BB*.BB and ST*.BB,
respectively. These files store 16 frames of animation, with every bit
corresponding to a 16×16 tile on the playfield. With 384×368 pixels to be
covered, that would require 69 bytes per frame. But since that's a very odd
number to work with in micro-optimized ASM, ZUN instead stores 512×512
pixels worth of bits, ending up with a frame size of 128 bytes, and a
per-frame waste of 59 bytes. At least it was
possible to decompile the core blitting function as __fastcall
for once.
But wait, TH05 comes with, and loads, a bomb .BB file for every character,
not just for the Reimu and Yuuka bomb transitions you see in-game… 🤔
Restoring those unused stage tile → bomb image transition
animations for Mima and Marisa isn't that trivial without having decompiled
their actual bomb animation functions before, so stay tuned!
Interestingly though, the code leaves out what would look like the most
obvious optimization: All stage tiles are unconditionally redrawn
each frame before they're erased again with the 16×16 blocks, no matter if
they weren't covered by such a block in the previous frame, or are
going to be covered by such a block in this frame. The same is true
for the static bomb and boss background images, where ZUN simply didn't
write a .CDG blitting function that takes the dirty tile array into
account. If VRAM writes on PC-98 really were as slow as the games'
README.TXT files claim them to be, shouldn't all the
optimization work have gone towards minimizing them?
Oh well, it's not like I have any idea what I'm talking about here. I'd
better stop talking about anything relating to VRAM performance on PC-98…
Second, it finally was time to solve the long-standing confusion about all
those callbacks that are supposed to render the playfield background. Given
the aforementioned static bomb background images, ZUN chose to make this
needlessly complicated. And so, we have two callback function
pointers: One during bomb animations, one outside of bomb
animations, and each boss update function is responsible for keeping the
former in sync with the latter.
Other than that, this was one of the smoothest pushes we've had in a while;
the hardest parts of boss background rendering all were part of
📝 the last push. Once you figured out that
ZUN does indeed dynamically change hardware color #0 based on the current
boss phase, the remaining one function for Shinki, and all of EX-Alice's
background rendering becomes very straightforward and understandable.
Meanwhile, -Tom- told me about his plans to publicly
release 📝 his TH05 scripting toolkit once
TH05's MAIN.EXE would hit around 50% RE! That pretty much
defines what the next bunch of generic TH05 pushes will go towards:
bullets, shared boss code, and one
full, concrete boss script to demonstrate how it's all combined. Next up,
therefore: TH04's bullet firing code…? Yes, TH04's. I want to see what I'm
doing before I tackle the undecompilable mess that is TH05's bullet firing
code, and you all probably want readable code for that feature as
well. Turns out it's also the perfect place for Blue Bolt's
pending contributions.
Alright, onto Konngara! Let's quickly move the escape sequences used later
in the battle to C land, and then we can immediately decompile the loading
and entrance animation function together with its filenames. Might as well
reverse-engineer those escape sequences while I'm at it, though – even if
they aren't implemented in DOSBox-X, they're well documented in all those
Japanese PDFs, so this should be no big deal…
…wait, ESC )3 switches to "graph mode"? As opposed to the
default "kanji mode", which can be re-entered via ESC )0?
Let's look up graph mode in the PC-9801 Programmers' Bible then…
> Kanji cannot be handled in this mode.
…and that's apparently all it has to say. Why have it then, on a platform
whose main selling point is a kanji ROM, and where Shift-JIS (and, well,
7-bit ASCII) are the only native encodings? No support for graph mode in
DOSBox-X either… yeah, let's take a deep dive into NEC's
IO.SYS, and get to the bottom of this.
And yes, graph mode pretty much just disables Shift-JIS decoding for
characters written via INT 29h, the lowest-level way of "just
printing a char" on DOS, which every printf()
will ultimately end up calling. Turns out there is a use for it though,
which we can spot by looking at the 8×16 half-width section of font ROM:
The half-width glyphs marked in red
correspond to the byte ranges from 0x80-0x9F and 0xE0-0xFF… which Shift-JIS
defines as lead bytes for two-byte, full-width characters. But if we turn
off Shift-JIS decoding…
(Yes, that g in the function row is how NEC DOS
indicates that graph mode is active. Try it yourself by pressing
Ctrl+F4!)
Jackpot, we get those half-width characters when printing their
corresponding bytes. I've
re-implemented all my findings into DOSBox-X, which will include graph
mode in the upcoming 0.83.14 release. If P0140 looks a bit empty as a
result, that's why – most of the immediate feature work went into
DOSBox-X, not into ReC98. That's the beauty of "anything" pushes.
So, after switching to graph mode, TH01 does… one of the slowest possible
memset()s over all of text RAM – one printf(" ")
call for every single one of its 80×25 half-width cells – before switching
back to kanji mode. What a waste of RE time…? Oh well, at least we've now
got plenty of proof that these weird escape sequences actually do
nothing of interest.
As for the Konngara code itself… well, it's script-like code, what can you
say. Maybe minimally sloppy in some places, but ultimately harmless.
One small thing that might not be widely known though: The large,
blue-green Siddhaṃ seed syllables are supposed to show up immediately, with
no delay between them? Good to know. Clocking your emulator too low tends
to roll them down from the top of the screen, and will certainly add a
noticeable delay between the four individual images.
… Wait, but this means that ZUN could have intended this "effect".
Why else would he not only put those syllables into four individual images
(and therefore add at least the latency of disk I/O between them), but also
show them on the foreground VRAM page, rather than on the "back buffer"?
Meanwhile, in 📝 another instance of "maybe
having gone too far in a few places":
Expressing distances on the playfield as fractions of its width
and height, just to avoid absolute numbers? Raw numbers are bad because
they're in screen space in this game. But we've already been throwing
PLAYFIELD_ constants into the mix as a way of explicitly
communicating screen space, and keeping raw number literals for the actual
playfield coordinates is looking increasingly sloppy… I don't know,
fractions really seemed like the most sensible thing to do with what we're
given here. 😐
So, 2 pushes in, and we've got the loading code, the entrance animation,
facial expression rendering, and the first one out of Konngara's 12
danmaku patterns. Might not sound like much, but since that first pattern
involves those
blue-green diamond sprites and therefore is one of the more complicated
ones, it all amounts to roughly 21.6% of Konngara's code. That's 7 more
pushes to get Konngara done, then? Next up though: Two pushes of website
improvements.
50% hype! 🎉 But as usual for TH01, even that final set of functions
shared between all bosses had to consume two pushes rather than one…
First up, in the ongoing series "Things that TH01 draws to the PC-98
graphics layer that really should have been drawn to the text layer
instead": The boss HP bar. Oh well, using the graphics layer at least made
it possible to have this half-red, half-white pattern
for the middle section.
This one pattern is drawn by making surprisingly good use of the GRCG. So
far, we've only seen it used for fast monochrome drawing:
// Setting up fast drawing using color #9 (1001 in binary)
grcg_setmode(GC_RMW);
outportb(0x7E, 0xFF); // Plane 0: (B): (********)
outportb(0x7E, 0x00); // Plane 1: (R): ( )
outportb(0x7E, 0x00); // Plane 2: (G): ( )
outportb(0x7E, 0xFF); // Plane 3: (E): (********)
// Write a checkerboard pattern (* * * * ) in color #9 to the top-left corner,
// with transparent blanks. Requires only 1 VRAM write to a single bitplane:
// The GRCG automatically writes to the correct bitplanes, as specified above
*(uint8_t *)(MK_FP(0xA800, 0)) = 0xAA;
But since this is actually an 8-pixel tile register, we can set any
8-pixel pattern for any bitplane. This way, we can get different colors
for every one of the 8 pixels, with still just a single VRAM write of the
alpha mask to a single bitplane:
And I thought TH01 only suffered the drawbacks of PC-98 hardware, making
so little use of its actual features that it's perhaps not fair to even
call it "a PC-98 game"… Still, I'd say that "bad PC-98 port of an idea"
describes it best.
However, after that tiny flash of brilliance, the surrounding HP rendering
code goes right back to being the typical sort of confusing TH01 jank.
There's only a single function for the three distinct jobs of
incrementing HP during the boss entrance animation,
decrementing HP if hit by the Orb, and
redrawing the entire bar, because it's still all in VRAM, and Sariel
wants different backgrounds,
with magic numbers to select between all of these.
VRAM of course also means that the backgrounds behind the individual hit
points have to be stored, so that they can be unblitted later as the boss
is losing HP. That's no big deal though, right? Just allocate some memory,
copy what's initially in VRAM, then blit it back later using your
foundational set of blitting funct– oh, wait, TH01 doesn't have this sort
of thing, right The closest thing,
📝 once again, are the .PTN functions. And
so, the game ends up handling these 8×16 background sprites with 16×16
wrappers around functions for 32×32 sprites.
That's quite the recipe for confusion, especially since ZUN
preferred copy-pasting the necessary ridiculous arithmetic expressions for
calculating positions, .PTN sprite IDs, and the ID of the 16×16 quarter
inside the 32×32 sprite, instead of just writing simple helper functions.
He did manage to make the result mostly bug-free this time
around, though! (Edit (2022-05-31): Nope, there's a
📝 potential heap corruption after all, which can be triggered in some fights in test mode (game t) or debug mode (game d).)
There's one minor hit point discoloration bug if the red-white or white
sections start at an odd number of hit points, but that's never the case for
any of the original 7 bosses.
The remaining sloppiness is ultimately inconsequential as well: The game
always backs up twice the number of hit point backgrounds, and thus
uses twice the amount of memory actually required. Also, this
self-restriction of only unblitting 16×16 pixels at a time requires any
remaining odd hit point at the last position to, of course, be rendered
again
After stumbling over the weakest imaginable random number
generator, we finally arrive at the shared boss↔orb collision
handling function, the final blocker among the final blockers. This
function takes a whopping 12 parameters, 3 of them being references to
int values, some of which are duplicated for every one of the
7 bosses, with no generic boss struct anywhere.
📝 Previously, I speculated that YuugenMagan might have been the first boss to be programmed for TH01.
With all these variables though, there is some new evidence that SinGyoku
might have been the first one after all: It's the only boss to use its own
HP and phase frame variables, with the other bosses sharing the same two
globals.
While this function only handles the response to a boss↔orb
collision, it still does way too much to describe it briefly. Took me
quite a while to frame it in terms of invincibility (which is the
main impact of all of this that can be observed in gameplay code). That
made at least some sort of sense, considering the other usages of
the variables passed as references to that function. Turns out that
YuugenMagan, Kikuri, and Elis abuse what's meant to be the "invincibility
frame" variable as a frame counter for some of their animations 🙄
Oh well, the game at least doesn't call the collision handling function
during those, so "invincibility frame" is technically still a
correct variable name there.
And that's it! We're finally ready to start with Konngara, in 2021. I've
been waiting quite a while for this, as all this high-level boss code is
very likely to speed up TH01 progress quite a bit. Next up though: Closing
out 2020 with more of the technical debt in the other games.
Alright, back to continuing the master.hpp transition started
in P0124, and repaying technical debt. The last blog post already
announced some ridiculous decompilations… and in fact, not a single
one of the functions in these two pushes was decompilable into
idiomatic C/C++ code.
As usual, that didn't keep me from trying though. The TH04 and TH05
version of the infamous 16-pixel-aligned, EGC-accelerated rectangle
blitting function from page 1 to page 0 was fairly average as far as
unreasonable decompilations are concerned.
The big blocker in TH03's MAIN.EXE, however, turned out to be
the .MRS functions, used to render the gauge attack portraits and bomb
backgrounds. The blitting code there uses the additional FS and GS segment
registers provided by the Intel 386… which
are not supported by Turbo C++'s inline assembler, and
can't be turned into pointers, due to a compiler bug in Turbo C++ that
generates wrong segment prefix opcodes for the _FS and
_GS pseudo-registers.
Apparently I'm the first one to even try doing that with this compiler? I
haven't found any other mention of this bug…
Compiling via assembly (#pragma inline) would work around
this bug and generate the correct instructions. But that would incur yet
another dependency on a 16-bit TASM, for something honestly quite
insignificant.
What we can always do, however, is using __emit__() to simply
output x86 opcodes anywhere in a function. Unlike spelled-out inline
assembly, that can even be used in helper functions that are supposed to
inline… which does in fact allow us to fully abstract away this compiler
bug. Regular if() comparisons with pseudo-registers
wouldn't inline, but "converting" them into C++ template function
specializations does. All that's left is some C preprocessor abuse
to turn the pseudo-registers into types, and then we do retain a
normal-looking poke() call in the blitting functions in the
end. 🤯
Yeah… the result is
batshitinsane.
I may have gone too far in a few places…
One might certainly argue that all these ridiculous decompilations
actually hurt the preservation angle of this project. "Clearly, ZUN
couldn't have possibly written such unreasonable C++ code.
So why pretend he did, and not just keep it all in its more natural ASM
form?" Well, there are several reasons:
Future port authors will merely have to translate all the
pseudo-registers and inline assembly to C++. For the former, this is
typically as easy as replacing them with newly declared local variables. No
need to bother with function prolog and epilog code, calling conventions, or
the build system.
No duplication of constants and structures in ASM land.
As a more expressive language, C++ can document the code much better.
Meticulous documentation seems to have become the main attraction of ReC98
these days – I've seen it appreciated quite a number of times, and the
continued financial support of all the backers speaks volumes. Mods, on the
other hand, are still a rather rare sight.
Having as few .ASM files in the source tree as possible looks better to
casual visitors who just look at GitHub's repo language breakdown. This way,
ReC98 will also turn from an "Assembly project" to its rightful state
of "C++ project" much sooner.
And finally, it's not like the ASM versions are
gone – they're still part of the Git history.
Unfortunately, these pushes also demonstrated a second disadvantage in
trying to decompile everything possible: Since Turbo C++ lacks TASM's
fine-grained ability to enforce code alignment on certain multiples of
bytes, it might actually be unfeasible to link in a C-compiled object file
at its intended original position in some of the .EXE files it's used in.
Which… you're only going to notice once you encounter such a case. Due to
the slightly jumbled order of functions in the
📝 second, shared code segment, that might
be long after you decompiled and successfully linked in the function
everywhere else.
And then you'll have to throw away that decompilation after all 😕 Oh
well. In this specific case (the lookup table generator for horizontally
flipping images), that decompilation was a mess anyway, and probably
helped nobody. I could have added a dummy .OBJ that does nothing but
enforce the needed 2-byte alignment before the function if I
really insisted on keeping the C version, but it really wasn't
worth it.
Now that I've also described yet another meta-issue, maybe there'll
really be nothing to say about the next technical debt pushes?
Next up though: Back to actual progress
again, with TH01. Which maybe even ends up pushing that game over the 50%
RE mark?
Turns out that TH04's player selection menu is exactly three times as
complicated as TH05's. Two screens for character and shot type rather than
one, and a way more intricate implementation for saving and restoring the
background behind the raised top and left edges of a character picture
when moving the cursor between Reimu and Marisa. TH04 decides to backup
precisely only the two 256×8 (top) and 8×244 (left) strips behind the
edges, indicated in red in the picture
below.
These take up just 4 KB of heap memory… but require custom blitting
functions, and expanding this explicitly hardcoded approach to TH05's 4
characters would have been pretty annoying. So, rather than, uh, not
explicitly hardcoding it all, ZUN decided to just be lazy with the backup
area in TH05, saving the entire 640×400 screen, and thus spending 128 KB
of heap memory on this rather simple selection shadow effect.
So, this really wasn't something to quickly get done during the first half
of a push, even after already having done TH05's equivalent of this menu.
But since life is very busy right now, I also used the occasion to start
addressing another code organization annoyance: master.lib's single master.h header file.
Now that ReC98 is trying to develop (or at least mimic) a more
type-safe C++ foundation to model the PC-98 hardware, a pure C header
(with counter-productive C++ extensions) is becoming increasingly
unidiomatic. By moving some of the original assumptions about function
parameters into the type system, we can also reduce the reliance on its
Japanese-only documentation without having to translate it
It's quite bloated, with at least 2800 lines of code that
currently are #included into the vast majority of files, not
counting master.h's recursively included C standard library
headers. PC-98 Touhou only makes direct use of a rather small fraction of
its contents.
And finally, all the DOS/V compatibility definitions are especially
useless in the context of ReC98. As I've noted
📝 time and
📝 time again, porting PC-98 Touhou to
IBM-compatible DOS won't be easy, and MASTER_DOSV won't be
helping much. Therefore, my upstream version of ReC98 will never include
all of master.lib. There's no point in lengthening compile times for
everyone by default, and those will be getting quite noticeable
after moving to a full 16-bit build process.
(Actually, what retro system ports should rather be doing: Get rid
of master.lib's original ASM code, replace it with
readable, modern
C++, and then simply convert the optimized assembly output of modern
compilers to your ISA of choice. Improving the landscape of such
assembly or object file converters would benefit everyone!)
So, time to start a new master.hpp header that would contain
just the declarations from master.h that PC-98 Touhou
actually needs, plus some semantic (yes, semantic) sugar. Comparing just
the old master.h to just the new master.hpp
after roughly 60% of the transition has been completed, we get median
build times of 319 ms for master.h, and 144 ms for
master.hpp on my (admittedly rather slow) DOSBox setup.
Nice!
As of this push, ReC98 consists of 107 translation units that have to be
compiled with Turbo C++ 4.0J. Fully rebuilding all of these currently
takes roughly 37.5 seconds in DOSBox. After the transition to
master.hpp is done, we could therefore shave some 10 to 15
seconds off this time, simply by switching header files. And that's just
the beginning, as this will also pave the way for further
#include optimizations. Life in this codebase will be great!
Unfortunately, there wasn't enough time to repay some of the actual
technical debt I was looking forward to, after all of this. Oh well, at
least we now also have nice identifiers for the three different boldface
options that are used when rendering text to VRAM, after procrastinating
that issue for almost 11 months. Next up, assuming the existing
subscriptions: More ridiculous decompilations of things that definitely
weren't originally written in C, and a big blocker in TH03's
MAIN.EXE.
Back to TH01, and its boss sprite format… with a separate class for
storing animations that only differs minutely from the
📝 regular boss entity class I covered last time?
Decompiling this class was almost free, and the main reason why the first
of these pushes ended up looking pretty huge.
Next up were the remaining shape drawing functions from the code segment
that started with the .GRC functions. P0105 already started these with the
(surprisingly sanely implemented) 8×8 diamond, star, and… uh, snowflake
(?) sprites
,
prominently seen in the Konngara, Elis, and Sariel fights, respectively.
Now, we've also got:
ellipse arcs with a customizable angle distance between the individual
dots – mostly just used for drawing full circles, though
line loops – which are only used for the rotating white squares around
Mima, meaning that the white star in the YuugenMagan fight got a completely
redundant reimplementation
and the surprisingly weirdest one, drawing the red invincibility
sprites.
The weirdness becomes obvious with just a single screenshot:
First, we've got the obvious issue of the sprites not being clipped at the
right edge of VRAM, with the rightmost pixels in each row of the sprite
extending to the beginning of the next row. Well, that's just what you get
if you insist on writing unique low-level blitting code for the majority
of the individual sprites in the game… 🤷
More importantly though, the sprite sheet looks like this:
So how do we even get these fully filled red diamonds?
Well, turns out that the sprites are never consistently unblitted during
their 8 frames of animation. There is a function that looks
like it unblits the sprite… except that it starts with by enabling the
GRCG and… reading from the first bitplane on the background page?
If this was the EGC, such a read would fill some internal registers with
the contents of all 4 bitplanes, which can then subsequently be blitted to
all 4 bitplanes of any VRAM page with a single memory write. But with the
GRCG in RMW mode, reads do nothing special, and simply copy the memory
contents of one bitplane to the read destination. Maybe ZUN thought
that setting the RMW color to red
also sets some internal 4-plane mask register to match that color?
Instead, the rather random pixels read from the first bitplane are then
used as a mask for a second blit of the same red sprite.
Effectively, this only really "unblits" the invincibility pixels that are
drawn on top of Reimu's sprite. Since Reimu is drawn first, the
invincibility sprites are overwritten anyway. But due to the palette color
layout of Reimu's sprite, its pixels end up fully masking away any
invincibility sprite pixels in that second blit, leaving VRAM untouched as
a result. Anywhere else though, this animation quickly turns into the
union of all animation frames.
Then again, if that 16-dot-aligned rectangular unblitting function is all
you know about the EGC, and you can't be bothered to write a perfect
unblitter for 8×8 sprites, it becomes obvious why you wouldn't want to use
it:
Because Reimu would barely be visible under all that flicker. In
comparison, those fully filled diamonds actually look pretty good.
After all that, the remaining time wouldn't have been enough for the next
few essential classes, so I closed out the push with three more VRAM
effects instead:
Single-bitplane pixel inversion inside a 32×32 square – the main effect
behind the discoloration seen in the bomb animation, as well as the
expanding squares at the end of Kikuri's and Sariel's entrance
animation
EGC-accelerated VRAM row copies – the second half of smooth and fully
hardware-accelerated scrolling for backgrounds that are twice the size of
VRAM
And finally, the VRAM page content transition function using meshed 8×8
squares, used for the blocky transition to Sariel's first and second phases.
Which is quite ridiculous in just how needlessly bloated it is. I'm positive
that this sort of thing could have also been accelerated using the PC-98's
EGC… although simply writing better C would have already gone a long way.
The function also comes with three unused mesh patterns.
And with that, ReC98, as a whole, is not only ⅓ done, but I've also fully
caught up with the feature backlog for the first time in the history of
this crowdfunding! Time to go into maintenance mode then, while we wait
for the next pushes to be funded. Got a huge backlog of tiny maintenance
issues to address at a leisurely pace, and of course there's also the
📝 16-bit build system waiting to be
finished.
So, let's finally look at some TH01 gameplay structures! The obvious
choices here are player shots and pellets, which are conveniently located
in the last code segment. Covering these would therefore also help in
transferring some first bits of data in REIIDEN.EXE from ASM
land to C land. (Splitting the data segment would still be quite
annoying.) Player shots are immediately at the beginning…
…but wait, these are drawn as transparent sprites loaded from .PTN files.
Guess we first have to spend a push on
📝 Part 2 of this format.
Hm, 4 functions for alpha-masked blitting and unblitting of both 16×16 and
32×32 .PTN sprites that align the X coordinate to a multiple of 8
(remember, the PC-98 uses a
planar
VRAM memory layout, where 8 pixels correspond to a byte), but only one
function that supports unaligned blitting to any X coordinate, and only
for 16×16 sprites? Which is only called twice? And doesn't come with a
corresponding unblitting function?
Yeah, "unblitting". TH01 isn't
double-buffered,
and uses the PC-98's second VRAM page exclusively to store a stage's
background and static sprites. Since the PC-98 has no hardware sprites,
all you can do is write pixels into VRAM, and any animated sprite needs to
be manually removed from VRAM at the beginning of each frame. Not using
double-buffering theoretically allows TH01 to simply copy back all 128 KB
of VRAM once per frame to do this. But that
would be pretty wasteful, so TH01 just looks at all animated sprites, and
selectively copies only their occupied pixels from the second to the first
VRAM page.
Alright, player shot class methods… oh, wait, the collision functions
directly act on the Yin-Yang Orb, so we first have to spend a push on
that one. And that's where the impression we got from the .PTN
functions is confirmed: The orb is, in fact, only ever displayed at
byte-aligned X coordinates, divisible by 8. It's only thanks to the
constant spinning that its movement appears at least somewhat
smooth.
This is purely a rendering issue; internally, its position is
tracked at pixel precision. Sadly, smooth orb rendering at any unaligned X
coordinate wouldn't be that trivial of a mod, because well, the
necessary functions for unaligned blitting and unblitting of 32×32 sprites
don't exist in TH01's code. Then again, there's so much potential for
optimization in this code, so it might be very possible to squeeze those
additional two functions into the same C++ translation unit, even without
position independence…
More importantly though, this was the right time to decompile the core
functions controlling the orb physics – probably the highlight in these
three pushes for most people.
Well, "physics". The X velocity is restricted to the 5 discrete states of
-8, -4, 0, 4, and 8, and gravity is applied by simply adding 1 to the Y
velocity every 5 frames No wonder that this can
easily lead to situations in which the orb infinitely bounces from the
ground.
At least fangame authors now have
a
reference of how ZUN did it originally, because really, this bad
approximation of physics had to have been written that way on purpose. But
hey, it uses 64-bit floating-point variables!
…sometimes at least, and quite randomly. This was also where I had to
learn about Turbo C++'s floating-point code generation, and how rigorously
it defines the order of instructions when mixing double and
float variables in arithmetic or conditional expressions.
This meant that I could only get ZUN's original instruction order by using
literal constants instead of variables, which is impossible right now
without somehow splitting the data segment. In the end, I had to resort to
spelling out ⅔ of one function, and one conditional branch of another, in
inline ASM. 😕 If ZUN had just written 16.0 instead of
16.0f there, I would have saved quite some hours of my life
trying to decompile this correctly…
To sort of make up for the slowdown in progress, here's the TH01 orb
physics debug mod I made to properly understand them. Edit
(2022-07-12): This mod is outdated,
📝 the current version is here!2020-06-13-TH01OrbPhysicsDebug.zip
To use it, simply replace REIIDEN.EXE, and run the game
in debug mode, via game d on the DOS prompt.
Its code might also serve as an example of how to achieve this sort of
thing without position independence.
Alright, now it's time for player shots though. Yeah, sure, they
don't move horizontally, so it's not too bad that those are also
always rendered at byte-aligned positions. But, uh… why does this code
only use the 16×16 alpha-masked unblitting function for decaying shots,
and just sloppily unblits an entire 16×16 square everywhere else?
The worst part though: Unblitting, moving, and rendering player shots
is done in a single function, in that order. And that's exactly where
TH01's sprite flickering comes from. Since different types of sprites are
free to overlap each other, you'd have to first unblit all types, then
move all types, and then render all types, as done in later
PC-98 Touhou games. If you do these three steps per-type instead, you
will unblit sprites of other types that have been rendered before… and
therefore end up with flicker.
Oh, and finally, ZUN also added an additional sloppy 16×16 square unblit
call if a shot collides with a pellet or a boss, for some
guaranteed flicker. Sigh.
And that's ⅓ of all ZUN code in TH01 decompiled! Next up: Pellets!
🎉 TH01's OP.EXE and FUUIN.EXE are now fully
position-independent! 🎉
What does this mean?
You can now add any data or code to TH01's main menu or ending cutscenes,
by simply editing the ReC98 source, writing your mod in ASM or C++, and
recompiling the code. Since all absolute memory addresses in OP
and FUUIN have now been converted to labels, this
will work without causing any instability. See the
position independence section in the FAQ for a more thorough
explanation about why this was a problem.
As an example, the most popular TH01 mod idea, replacing MDRV2 with PMD,
could now at least be prototyped and tested in
OP.EXE, without having to worry about x86 instruction lengths.
📝 Check the video I made for the TH04/TH05 OP.EXE PI announcement for a basic overview of how to do that.
What does this not mean?
The original ZUN code hasn't been completely decompiled yet. The final
high-level parts of both the main menu and the cutscenes are still ASM,
which might make modding a bit inconvenient right now.
It's not that much more code though, and could quickly be covered in a few
pushes if requested. Due to the plentiful monthly subscriptions, the shop
will stay closed for regular orders until the end of June, but backers
with outstanding contributions could request that now if they want
to – simply drop me a mail. Otherwise, the "generic TH01 RE" money will
continue to go towards the main game. That way, we'll have more substance
to show once we do decide to decompile the rest of
OP.EXE and FUUIN.EXE, and likely get some press
coverage as a result.
Then again, we've been building up to this point over the last few pushes,
and it only really needed a quick look over the remaining false positives.
The majority of the time therefore went towards more PI in
REIIDEN.EXE, where the bitplane pointers for .BOS files yielded
some quite big gains. Couldn't really find any obvious reason why ZUN used
two slighly different variations on loading and blitting those files,
though…
As the final function in this rather random push, we got TH01's
hardware-powered scrolling function, used for screen shaking effects and
the scrolling backgrounds at the start of the Final Boss stages. And while
I tried to document all these I/O writes… it turned out that ZUN actually
copied the entire function straight from the PC-9801 Programmers'
Bible, with no changes. It's the
setgsta() example function on page 150. Which is terribly
suboptimal and bloated – all those integer divisions are really
not how you'd write such code for a 16-bit compiler from the 90's…
And that gives us 60% PI overall, and 50% PI over all of TH01! Next up:
More structures… and classes, even?
Last part of TH01's main graphics function segment, and we've got even
more code that alternates between being boring and being slightly weird.
But at least, "boring" also meant "consistent" for once. And
so progress continued to be as fast as expected from the last TH01 pushes,
yielding 3.3% in TH01 RE%, and 1% in overall RE%, within a single day.
There even was enough time to decompile another full code segment, which
bundles all the hardware initialization and cleanup calls into single
functions to be run when starting and exiting the game. Which might be
interesting for at least one person, I guess
But seriously, trying to access page 2 on a system with only page 0 and 1?
Had to get out my real PC-98 to double-check that I wasn't missing
anything here, since every emulator only looks at the bottom bit of the
page number. But real hardware seems to do the same, and there really is
nothing special to it semantically, being equivalent to page 0. 🤷
Next up in TH01, we'll have some file format code!
Now that's more like the speed I was expecting! After a few more
unused functions for palette fading and rectangle blitting, we've reached
the big line drawing functions. And the biggest one among them,
drawing a straight line at any angle between two points using
Bresenham's algorithm, actually happens to be the single longest
function present in more than one binary in all of PC-98 Touhou, and #23
on the list of individual longest functions.
And it technically has a ZUN bug! If you pass a point outside the
(0, 0) - (639, 399) screen range, the function will calculate a new point
at the edge of the screen, so that the resulting line will retain the
angle intended by the points given. Except that it does so by calculating
the line slope using an integer division rather than a floating-point one
Doesn't seem like it actually causes any weirdly
skewed lines to be drawn in-game, though; that case is only hit in the
Mima boss fight, which draws a few lines with a bottom coordinate of
400 rather than the maximum of 399. It might also cause the wrong
background pixels to be restored during parts of the YuugenMagan fight,
leading to flickering sprites, but seriously, that's an issue everywhere
you look in this game.
Together with the rendering-text-to-VRAM function we've mostly already
known from TH02, this pushed the total RE percentage well over 20%, and
almost doubled the TH01 RE percentage, all within three pushes. And
comparatively, it went really smoothly, to the point (ha) where I
even had enough time left to also include the single-point functions that
come next in that code segment. Since about half of the remaining
functions in OP.EXE are present in more than just itself,
I'll be able to at least keep up this speed until OP.EXE hits
the 70% RE mark. That is, as long as the backers' priorities continue to
be generic RE or "giving some love to TH01"… we don't have a precedent for
TH01's actual game code yet.
And that's all the TH01 progress funded for January! Next up, we actually
do have a focus on TH03's game and scoring mechanics… or at least
the foundation for that.
With no feedback to 📝 last week's blog post,
I assume you all are fine with how things are going? Alright then, another
one towards position independence, with the same approach as before…
Since -Tom- wanted to learn something about how the PC-98
EGC is used in TH04 and TH05, I took a look at master.lib's
egc_shift_*() functions. These simply do a hardware-accelerated
memmove() of any VRAM region, and are used for screen shaking
effects. Hover over the image below for the raw effect:
Then, I finally wanted to take a look at the bullet structures, but it
required way too much reverse-engineering to even start within ¾ of
a position independence push. Even with the help of uth05win –
bullet handling was changed quite a bit from TH04 to TH05.
What I ultimately settled on was more raw, "boring" PI work based around
an already known set of functions. For this one, I looked at vector
construction… and this time, that actually made the games a little
bit more position-independent, and wasn't just all about removing
false positives from the calculation. This was one of the few sets of
functions that would also apply to TH01, and it revealed just how
chaotically that game was coded. This one commit shows three ways how ZUN
stored regular 2D points in TH01:
"regularly", like in master.lib's Point structure (X
first, Y second)
reversed, (Y first and X second), then obviously with two distinct
variables declared next to each other
… yeah. But in more productive news, this did actually lay the
groundwork for TH04 and TH05 bullet structures. Which might even be coming
up within the next big, 5-push order from Touhou Patch Center? These are
the priorities I got from them, let's see how close I can get!
Turns out I had only been about half done with the drawing routines. The rest was all related to redrawing the scrolling stage backgrounds after other sprites were drawn on top. Since the PC-98 does have hardware-accelerated scrolling, but no hardware-accelerated sprites, everything that draws animated sprites into a scrolling VRAM must then also make sure that the background tiles covered by the sprite are redrawn in the next frame, which required a bit of ZUN code. And that are the functions that have been in the way of the expected rapid reverse-engineering progress that uth05win was supposed to bring. So, looks like everything's going to go really fast now?
… yeah, no, we won't get very far without figuring out these drawing routines.
Which process data that comes from the .STD files.
Which has various arrays related to the background… including one to specify the scrolling speed. And wait, setting that to 0 actually is what starts a boss battle?
So, have a TH05 Boss Rush patch: 2018-12-26-TH05BossRush.zip
Theoretically, this should have also worked for TH04, but for some reason,
the Stage 3 boss gets stuck on the first phase if we do this?
Let's start this stretch with a pretty simple entity type, the growing and shrinking circles shown during bomb animations and around bosses in TH04 and TH05. Which can be drawn in varying colors… wait, what's all this inlined and duplicated GRCG mode and color setting code? Let's move that out into macros too, it takes up too much space when grepping for constants, and will raise a "wait, what was that I/O port doing again" question for most people reading the code again after a few months.
🎉 With this push, we've also hit a milestone! Less than 200,000 unknown x86 instructions remain until we've completely reverse-engineered all of PC-98 Touhou.
> OK, let's do a quick ReC98 update before going back to thcrap, shouldn't take long
> Hm, all that input code is kind of in the way, would be nice to cover that first to ease comparisons with uth05win's source code
> What the hell, why does ZUN do this? Need to do more research
> …
> OK, research done, wait, what are those other functions doing?
> Wha, everything about this is just ever so slightly awkward
Which ended up turning this one update into 2/10, 3/10, 4/10 and 5/10 of zorg's reverse-engineering commits. But at least we now got all shared input functions of TH02-TH05 covered and well understood.