Blog

Showing all posts tagged

📝 Posted:
💰 Funded by:
Blue Bolt, [Anonymous], Splashman
🏷️ Tags:

TH05's OP.EXE? It's not one of the 📝 main blockers for multilingual translation support, but fine, let's push it to 100% RE. This didn't go all too quickly after all, though – sure, we were only missing the High Score viewer, but that's technically a menu. By now, we all know the level of code quality we can reasonably expect from ZUN's menu code, especially if we simultaneously look at how it's implemented in TH04 as well. But how much could I possibly say about even a static screen?

  1. Generating the initial High Score lists
  2. TH04/TH05's High Score viewer
  3. TH05-exclusive palette bugs when switching between the main menu and the High Score viewer
  4. Please don't fund ZUN Soft logo finalization just yet 🙇

Then again, with half of the funding for this push not being constrained to RE, OP.EXE wasn't the worst choice. In both TH04 and TH05, the High Score viewer's code is preceded by all the functions needed to handle the GENSOU.SCR scorefile format, which I already RE'd 📝 in late 2019. Back then, it turned out to be one of the most needlessly inconsistent pieces of code in all of PC-98 Touhou, with a slightly different implementation in each of the 6 binaries that was waiting for its equally messy decompilation ever since.
Most of these inconsistencies just add bloat, but TH05's different stage number defaults for the Extra Stage do have the tiniest visible impact on the game. Since 2019 was before we had our current system of classifying weird code, let's take a quick look at this again:

Screenshot of TH05's High Score viewer, showing the default GENSOU.SCR data for the Extra Stage as generated by OP.EXE Screenshot of TH05's High Score viewer, showing the default GENSOU.SCR data for the Extra Stage as generated by MAINE.EXE with the same decreasing stage numbers as for the regular stages
In the end, this is a landmine, albeit a slightly unusual one. OP.EXE always needs to load GENSOU.SCR to determine whether the Extra Stage is unlocked and can be selected in the main menu. If that file is corrupted or doesn't exist yet, OP.EXE will always recreate it. Therefore, MAINE.EXE's recreation code would only ever run if GENSOU.SCR got deleted or corrupted while playing the game. This can only happen through code that runs outside the game or as the result of failing hardware, and thus goes beyond our criteria for observability.

On to the actual High Score screen then! The OP.EXE code I decompiled here only covers the viewer, the actual score registration is part of MAINE.EXE and is a completely different beast that only shares a few code snippets at best. This means that I'll have to do this all over again at some point down the line, which will result in another few pushes that look very similar to this one. 🥲
By now, it's no surprise that even this static screen has more or less the same density of bugs, landmines, and bloat as ZUN's more dynamic and animated menus. This time however, the worst source of bloat lies more on the meta level: TH04's version explicitly spells out every single loading and rendering call for both of that game's playable characters, rather than covering them with loops like TH05 does for its four characters. As a result, the two games only share 3¼ out of the 7 functions in even this simple viewer screen. It definitely didn't have to be this way.

On the bright side, the code starts off with a feature that probably only scoreplayers and their followers have been consciously aware of: The High Score screens can display 9-digit scores without glitches, unlike the in-game HUD's infamous overflow that turns the 8th digit into a letter once the score exceeds 100 million points.
To understand why this is such a surprise, we have to look at how scores are tracked in-game where the glitch does happen. This brings us back to the binary-coded decimal format that the final three PC-98 Touhou games use for their scores, which we didn't have to deal with 📝 for almost three years. On paper, the fixed-size array of 8 digits used by the three games would leave no room for a 9th one, so why don't we get a counterstop at 99,999,999 points, similar to what happens in modern Touhou? Let's look at the concrete example of adding, say, 200,000 points to a score of 99,899,990 points, and step through the algorithm for the most significant four digits:

score BCD delta
09 09 08 09 09 09 09 00 + 00 00 02 00 00 00 00 00
= 09 09 08 09 09 09 09 00 + 00 00 02 00 00 00 00 00
= 09 0A 00 09 09 09 09 00 + 00 00 02 00 00 00 00 00
= 0A 00 00 09 09 09 09 00 + 00 00 02 00 00 00 00 00
= 0A 00 00 09 09 09 09 00
It sure is neat how ZUN arranged the gaiji font in such a way that the HUD's rendering is an exact visual representation of the bytes in memory… at least for scores between 100,000,000 (A0000000) and 159,999,999 (F9999999) inclusive.
Formatted as big-endian for easier reading. Here's the relevant undecompilable ASM code, featuring the venerable AAA instruction.

In other words: The carry of each addition is regularly added to the next digit as if it were binary, and then the next iteration has to adjust that value as necessary and pass along any carry to the digit after that. But once we've reached the most significant digit, there is no way for its carry to go. So it just stays there, leaving the last digit with a value greater than 9 and effectively turning it from a BCD digit into a regular old 8-bit binary value. This leaves us with a maximum representable score of 2,559,999,999 points (FF 09 09 09 09 09 09 09) – and with the scores achieved by current TAS runs being far below that limit in both games, it's definitely not worth it to bother about rendering that 10th score digit anywhere.
In the High Score screens, ZUN also zero-padded each score to 8 digits, but only blitted the 9th digit into the padding between name and score if it's nonzero. From this code detail alone, we can tell that ZUN was fully aware of ≥100 million points being possible, but probably considered such high scores unlikely enough to not bother rearranging the in-game HUD to support 9 digits. After all, it only looks like there's plenty of unused space next to the HUD, but in reality, it's tightly surrounded by important VRAM regions on both sides: The 32 pixels to the left provide the much-needed sprite garbage area to support 📝 visually clipped sprites despite master.lib's lack of sprite clipping, and the 64 pixels to the right are home to the 📝 tile source area:

Constructed screenshot of TH04's in-game layout during the Elly boss fight, showing off how a score of 99,999,999 points would be reduced to the 8-digit 🎝9999999 string, with the PC-98's text layer hidden to reveal the sprite garbage areas and tile source areas that tightly surround the HUD Constructed screenshot of TH04's in-game layout during the Elly boss fight, showing off how a score of 99,999,999 points would be reduced to the 8-digit 🎝9999999 string; with the PC-98's text layer visible, it might seem as if it was no big deal to expand the HUD into render 9-digit scores
It sure wouldn't have been impossible. You could either sacrifice the two tiles that would cover the 9th digit in both the HiScore and Score row, or – even better – move these tiles under the existing padding space within the HUD. 📝 The tile sections of TH04 and TH05 already address their images using raw VRAM addresses, so this wouldn't have even required an additional tile index→VRAM address lookup table.

And sure enough, ZUN confirms this awareness in TH04's OMAKE.TXT:

9999万でもカンストしませんが、ゲーム中の得点表示、1千万の位が英字 表記となります。つまり、100000000点はA0000000点と表示 されます。(ネームレジスト画面は普通に表示されます) でも、1億点以上出せる人いるのかな。

(And indeed, the first documented legitimate run that crossed 100 million only happened 11 years after the game's release, with Reimu A on Normal difficulty.)

However, the highest score that the High Score screens of both games can display without visual glitches is not 999,999,999, as you would expect from 9 digits, but rather…

Screenshot of TH04's High Score viewer showing a score of 959,999,999 points for both Reimu and Marisa, which is the highest score that this screen can display without glitches Screenshot of TH05's High Score viewer showing a score of 959,999,999 points for all characters, which is the highest score that this screen can display without glitches
959 million?
(Also, this 9th digit nicely highlights a slight asymmetry in TH04's screen, where Marisa gets 4 fewer pixels of padding between names and scores.)

What a weird limit. Regardless of whether GENSOU.SCR saves its scores in a sane unsigned 32-bit format or a silly 8-digit BCD one, this limit makes no sense in either representation. In fact, GENSOU.SCR goes even further than BCD values, and instead uses… the ID of the corresponding gaiji in the 📝 bold font? :zunpet:
How cute. No matter how you look at it, storing digits with an added offset of 160 makes no sense:

It does start to explain the 959 million limit, though. Since each digit in GENSOU.SCR takes up 1 byte as well, they are indeed limited to a maximum value of (255 - 160) = 95 before they wrap back to 0.
But wait. If the game simply subtracts 160 from the gaiji index to get the digit value, shouldn't this subtraction also wrap back around from 0 to 255 and recover higher values without issue? The answer is, 📝 again, C's integer promotion: Splitting the binary value into two digits involves a division by 10, the C standard mandates that a regular untyped 10 is always of type int, the uint8_t digit operand gets promoted to match, and the result is actually negative and thus doesn't even get recognized as a 9th digit because no negative value is ≥10.

So what would happen if we were to enter a score that exceeds this limit? The registration screen in MAINE.EXE doesn't display the 9th digit and the 8th one wraps around. But it still sorts the score correctly, so at least the internal processing seems to work without any problem…

Screenshot of registering a score of 999,999,999 points in TH04, showing off how such a score would wrap around to 39,999,999 points, despite being sorted correctly. Screenshot of registering a score of 999,999,999 points in TH05, showing off how such a score would wrap around to 39,999,999 points, despite being sorted correctly.
(160 + 99) = 259, which wraps around to 3, so this makes perfect sense. We'll figure out the exact logic behind the differently colored sprite once RE progress reaches this screen.

But once you try viewing this score, you're instead greeted with VRAM corruption resulting from master.lib's super_put() function not bounds-checking the negative sprite IDs passed by the viewer:

Screenshot showing how trying to view a score above 959 million points in TH04's High Score viewer leads to VRAM corruption due to master.lib trying to blit a sprite with a negative ID Screenshot showing how trying to view a score above 959 million points in TH05's High Score viewer leads to VRAM corruption due to master.lib trying to blit a sprite with a negative ID

In a rare case for PC-98 Touhou, the High Score viewer also hides two interesting details regarding its BGM. Just like for the graphics, ZUN also coded a fade-in call for the music. In abbreviated ASM code:

mov ax, 0000h ; PMD AH=00H (start music playback)
int 60h
mov ax, 0280h ; PMD AH=02H (fade in/out)
int 60h
PMD API documentation is here.

However, the AH=02H fade-in call has no effect because AH=00h resets the music volume and would need to be followed by a volume-lowering AH=19h call. But even if there was such a call, the fade-in would sound terrible. 80h corresponds to the fastest possible fade-in speed of -128, which is almost but not quite instant. As such, the fade-in would leave the initial note on each channel muted while the rest of the track fades in very abruptly, which clashes badly with the bass and chord notes you'd expect to hear in the name registration themes of the two games:

At least the first issue could have been avoided if PMD's AH=00h call took optional parameters that describe the initial playback state instead of relying on these mutating calls later on. After all, it might be entirely possible for a bunch of interrupts to fire between AH=00h and these further calls, and if those interrupts take a while, the FM chip might have already played a few samples at PMD's default volume. Sure, Real Mode doesn't stop you from wrapping this sequence in CLI and STI instructions to work around this issue, but why rely on even more CPU state mutation when there would have been plenty of free x86 registers for passing more initial state to AH=00h?

The second detail is the complete opposite: It's a fade-out when leaving the menu, it uses PMD's slowest fade speed, and it does work and sound good. However, the speed is so slow that you typically barely notice the feature before the main menu theme starts playing again. But ZUN hid a small easter egg in the code: After the title screen background faded back in, the games wait for all inputs to be released before moving back into the main menu and playing the title screen theme. By holding any key when leaving the High Score viewer, you can therefore listen to the fade-out for as long as you want.
Although when I said that it works, this does not include TH04. 📝 As 📝 usual, this game's menus do not address the PC-98's keyboard scancode quirk with regard to held keys, causing the loop to break even while the player is still holding a key. There are 21 not yet RE'd input polling calls in TH02 and TH04 that will most certainly reveal similar inconsistencies, are you excited yet? :tannedcirno:
But in TH05, holding a key indeed reveals the hidden-content of a 37-second fade-out:

I'm holding Esc here, but this works with any key, even the ⬅️ left and ➡️ right arrow keys that don't quit out of the menu.

As you can already tell by the markers, the final bugs in TH05's (and only TH05's) OP.EXE are palette-related and revealed by switching between these two screens:

  1. Why does the title screen initially use an ever so slightly darker palette than it does when returning from the menu?
  2. What's with the sudden palette change between frames 1 and 2? Why are the colors suddenly much brighter?

1) is easily traced and attributed to an off-by-one error in the animation's palette fade code, but 2) is slightly more complex. This palette glitch only happens if the High Score viewer is the first palette-changing submenu you enter after the 📝 title animation. Just like 📝 TH03's character portraits, both TH04 and TH05 load the sprites for the High Score screen's digits (SCNUM.BFT) and rank indicator (HI_M.BFT) as soon as the title animation has finished. Since these are regular BFNT sprite sheets, ZUN loads them using master.lib's super_entry_bfnt(), and that's where the issue hides: master.lib's blocking palette fade functions operate on master.lib's main 8-bit palette, and super_entry_bfnt() overwrites this palette with the one in the BFNT header. Synchronizing the hardware palette with this newly loaded one would have immediately revealed this possibly unintended state mutation, but I get why master.lib might not have wanted to do that – after all, 📝 palette uploads aren't exactly cheap and would be very noticeable when loading multiple sprite sheets in a row.
In any case, this is no problem in TH04 as that game's HI_M.BFT and OP1.PI have identical palettes. But in TH05, HI_M.BFT has a significantly brighter palette:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OP1.PI
HI01.PI / HI_M.BFT

And that's 100% RE for TH05's OP.EXE! 🎉 TH04's counterpart is not far behind either now, and only misses its title screen animation to reach the same mark.
As for 100% finalization, there's still the not yet decompiled TH04/TH05 version of the ZUN Soft logo that separates both OP.EXE binaries from this goal. But as I've mentioned 📝 time and time again, the most fitting moment for decompiling that animation would be right before reaching 100% on the entirety of either game. Really – as long as we aren't there, your funding is better invested into literally anything else. The ZUN Soft logo does not interact with or block work on any other part of the game, and any potential modding should be easy enough on the ASM level.
But thankfully, nobody actually scrolls down to the Finalized section. So I can rest assured that no one will take that moment away from me! :onricdennat:

Next up: I'd kinda like to stay with PC-98 Touhou for a little longer, but the current backlog is pulling into too many different directions and doesn't convincingly point toward one goal over any other. TH02 is close, but with an active subscription, it makes more sense to accumulate 3 pushes of funding and then go for that game's bullet system in January. This is why I'm OK with subscriptions exceeding the cap every once in a while, because they do allow me to plan ahead in the long term.
So, let's wait a few days for all of you to capture the open towards something more specific. But if the backlog stays as indecisive as it is now, I'll instead go for finishing the Shuusou Gyoku Linux port, hopefully in time for the holiday season.
As for prices, indeed seems to be the point where my supply meets the community's demand for this project and the store no longer sells out immediately. So for the time being, we're going to stay at that push price and I won't increase it any further upon hitting the cap.

📝 Posted:
💰 Funded by:
[Anonymous], 32th System
🏷️ Tags:

Remember when ReC98 was about researching the PC-98 Touhou games? After over half a year, we're finally back with some actual RE and decompilation work. The 📝 build system improvement break was definitely worth it though, the new system is a pure joy to use and injected some newfound excitement into day-to-day development.
And what game would be better suited for this occasion than TH03, which currently has the highest number of individual backers interested in it. Funding the full decompilation of TH03's OP.EXE is the clearest signal you can send me that 📝 you want your future TH03 netplay to be as seamlessly integrated and user-friendly as possible. We're just two menu screens away from reaching that goal anyway, and the character selection screen fits nicely into a single push.

  1. TH03's character selection screen
  2. Improved blog navigability

The code of a menu typically starts with loading all its graphics, and TH03's character selection already stands out in that regard due to the sheer amount of image data it involves. Each of the game's 9 selectable characters comes with

  1. a 192×192-pixel portrait (??SL.CD2),
  2. a 32×44-pixel pictogram describing her Extra Attack (in SLEX.CD2), and
  3. a 128×16-pixel image of her name (in CHNAME.BFT). While this image just consists of regular boldfaced versions of font ROM glyphs that the game could just render procedurally, pre-rendering these names and keeping them around in memory does make sense for performance reasons, as we're soon going to see. What doesn't make sense, though, is the fact that this is a 16-color BFNT image instead of a monochrome one, wasting both memory and rendering time.

Luckily, ZUN was sane enough to draw each character's stats programmatically. If you've ever looked through this game's data, you might have wondered where the game stores the sprite for an individual stat star. There's SLWIN.CDG, but that file just contains a full stat window with five stars in all three rows. And sure enough, ZUN renders each character's stats not by blitting sprites, but by painting (5 - value) yellow rectangles over the existing stars in that image. :tannedcirno:

TH03's SLWIN.CDG, showing off how ZUN baked all 15 possible stat stars into the image
The only stat-related image you will find as part of the game files. The number of stat stars per character is hardcoded and not based on any other internal constant we know about.
Together with the EXTRA🎔 window and the question mark portrait for Story Mode, all of this sums up to 255,216 bytes of image data across 14 files. You could remove the unnecessary alpha plane from SLEX.CD2 (-1,584 bytes) or store CHNAME.BFT in a 1-bit format (-6,912 bytes), but using 3.3% less memory barely makes a difference in the grand scheme of things.
From the code, we can assume that loading such an amount of data all at once would have led to a noticeable pause on the game's target PC-98 models. The obvious alternative would be to just start out with the initially visible images and lazy-load the data for other characters as the cursors move through the menu, but the resulting mini-latencies would have been bound to cause minor frame drops as well. Instead, ZUN opted for a rather creative solution: By segmenting the loading process into four parts and moving three of these parts ahead into the main menu, we instead get four smaller latencies in places where they don't stick out as much, if at all:

  1. The loading process starts at the logo animation, with Ellen's, Kotohime's, and Kana's portraits getting loaded after the 東方時空 letters finished sliding in. Why ZUN chose to start with characters #3, #4, and #5 is anyone's guess. :zunpet:
  2. Reimu's, Mima's, and Marisa's portraits as well as all 9 EXTRA🎔 attack pictograms are loaded at the end of the flash animation once the full title image is shown on screen and before the game is waiting for the player to press a key.
  3. The stat and EXTRA🎔 windows are loaded at the end of the main menu's slide-in animation… together with the question mark portrait for Story Mode, even though the player might not actually want to play Story Mode.
  4. Finally, the game loads Rikako's, Chiyuri's, and Yumemi's portraits after it cleared VRAM upon entering the Select screen, regardless of whether the latter two are even unlocked.

I don't like how ZUN implemented this split by using three separately named standalone functions with their own copy-pasted character loop, and the load calls for specific files could have also been arranged in a more optimal order. But otherwise, this has all the ingredients of good-code. As usual, though, ZUN then definitively ruins it all by counteracting the intended latency hiding with… deliberately added latency frames:

Sure, maybe loading the fourth part's 69,120 bytes from a highly fragmented hard drive might have even taken longer than 30 frames on a period-correct PC-98, but the point still stands that these delays don't solve the problem they are supposed to solve.


But the unquestionable main attraction of this menu is its fancy background animation. Mathematically, it consists of Lissajous curves with a twist: Instead of calculating each point as x = sin((fx·t)+ẟx) y = sin((fy·t)+ẟy) , TH03 effectively calculates its points as x = cos(fx·((t+ẟx) % 0xFF)) y = sin(fy·((t+ẟy) % 0xFF)) , due to t and being 📝 8-bit angles. Since the result of the addition remains 8-bit as well, it can and will regularly overflow before the frequency scaling factors fx and fy are applied, thus leading to sudden jumps between both ends of the 8-bit value range. The combination of this overflow and the gradual changes to fx and fy create all these interesting splits along the 360° of the curve:

At a high level, there really is just one big curve and one small curve, plus an array of trailing curves that approximate motion blur by subtracting from ẟx and ẟy.

In a rather unusual display of mathematical purity, ZUN fully re-calculates all variables and every point on every frame from just the single byte of state that indicates the current time within the animation's 128-frame cycle. However, that beauty is quickly tarnished by the actual cost of fully recalculating these curves every frame:

This is decidedly more than the 1.17 million cycles we have between each VSync on the game's target 66 MHz CPUs. So it's not surprising that this effect is not rendered at 56.4 FPS, but instead drops the frame rate of the entire menu by targeting a hardcoded 1 frame per 3 VSync interrupts, or 18.8 FPS. Accordingly, I reduced the frame rate of the video above to represent the actual animation cycle as cleanly as possible.
Apparently, ZUN also tested the game on the 33 MHz PC-98 model that he targeted with TH01 and TH02, and realized that 4,096 points were way too much even at 18.8 FPS. So he also added a mechanism that decrements the number of trailing curves if the last frame took ≥5 VSync interrupts, down to a minimum of only a single extra curve. You can see this in action by underclocking the CPU in your Neko Project fork of choice.

But were any of these measures really necessary? Couldn't ZUN just have allocated a 12 KiB ring buffer to keep the coordinates of previous curves, thus reducing per-frame calculations to just 512 points? Well, he could have, but we now can't use such a buffer to optimize the original animation. The 8-bit main angle offset/animation cycle variable advances by 0x02 every frame, but some of the trailing curves subtract odd numbers from this variable and thus fall between two frames of the main curves.
So let's shelve the idea of high-level algorithmic optimizations. In this particular case though, even micro-optimizations can have massive benefits. The sheer number of points magnifies the performance impact of every suboptimal code generation decision within the inner point loop:

Multiplied by the number of points, even these low-hanging fruit already save a whopping ≥753,664 cycles per frame on an i486, without writing a single line of ASM! On Pentium CPUs such as the one in the PC-9821Xa7 that ZUN supposedly developed this game on, the savings are slightly smaller because far calls are much faster, but still come in at a hefty ≥491,520 cycles. Thus, this animation easily beats 📝 TH01's sprite blitting and unblitting code, which just barely hit the 6-digit mark of wasted cycles, and snatches the crown of being the single most unoptimized code in all of PC-98 Touhou.
The incredible irony here is that TH03 is the point where ZUN 📝 really 📝 started 📝 going 📝 overboard with useless ASM micro-optimizations, yet he didn't even begin to optimize the one thing that would have actually benefitted from it. Maybe he 📝 once again went for the 📽️ cinematic look 📽️ on purpose?

Unlike TH01's sprites though, all this wasted performance doesn't really matter much in the end. Sure, optimizing the animation would give us more trailing curves on slower PC-98 models, but any attempt to increase the frame rate by interpolating angles would send us straight into fanfiction territory. Due to the 0x02/2.8125° increment per cycle, tripling the frame rate of this animation would require a change to a very awkward (log2384) = 8.58-bit angle format, complete with a new 384-entry sine/cosine lookup table. And honestly, the effect does look quite impressive even at 18.8 FPS.


There are three more bugs and quirks in this animation that are unrelated to performance:

Now with the full 18 curves, a direction change of the smaller trailing curves at the end of the loop that only looks slightly odd, and a reversed and more natural plotting order.

If you want to play with the math in a more user-friendly and high-res way, here's a Desmos graph of the full animation, converted to 360° angles and with toggles for the discontinuity and trail count fixes.


Now that we fully understand how the curve animation works, there's one more issue left to investigate. Let's actually try holding the Z key to auto-select Reimu on the very first frame of the Story Mode Select screen:

The confirmation flash even happens before the menu's first page flip.

Stepping through the individual frames of the video above reveals quite a bit of tearing, particularly when VRAM is cleared in frame 1 and during the menu's first page flip in frame 49. This might remind you of 📝 the tearing issues in the Music Rooms – and indeed, this tearing is once again the expected result of ZUN landmines in the code, not an emulation bug. In fact, quite the contrary: Scanline-based rendering is a mark of quality in an emulator, as it always requires more coding effort and processing power than not doing it. Everyone's favorite two PC-98 emulators from 20 years ago might look nicer on a per-frame basis, but only because they effectively hide ZUN's frequent confusion around VRAM page flips.
To understand these tearing issues, we need to consider two more code details:

  1. If a frame took longer than 3 VSync interrupts to render, ZUN flips the VRAM pages immediately without waiting for the next VSync interrupt.
  2. The hardware palette fade-out is the last thing done at the end of the per-frame rendering loop, but before busy-waiting for the VSync interrupt.

The combination of 1) and the aforementioned 30-frame delay quirk explains Frame 49. There, the page flip happens within the second frame of the three-frame chunk while the electron beam is drawing row #156. DOSBox-X doesn't try to be cycle-accurate to specific CPUs, but 1 menu frame taking 1.39 real-time frames at 56.4 FPS is roughly in line with the cycle counting we did earlier.
Frame 97 is the much more intriguing one, though. While it's mildly amusing to see the palette actually go brighter for a single frame before it fades out, the interesting aspect here is that 2) practically guarantees its palette changes to happen mid-frame. And since the CRT's electron beam might be anywhere at that point… yup, that's how you'd get more than 16 colors out of the PC-98's 16-color graphics mode. 🎨
Let's exaggerate the brightness difference a bit in case the original difference doesn't come across too clearly on your display:

Frame 97 of the video above, with a brighter initial palette to highlight the mid-frame palette change
Probably not too much of a reason for demosceners to get excited; generic PC-98 code that doesn't try to target specific CPUs would still need a way of reliably timing such mid-frame palette changes. Bit 6 (0x40) of I/O port 0xA0 indicates HBlank, and the usual documentation suggests that you could just busy-wait for that bit to flip, but an HBlank interrupt would be much nicer.

This reproduces on both DOSBox-X and Neko Project 21/W, although the latter needs the Screen → Real palettes option enabled to actually emulate a CRT electron beam. Unfortunately, I couldn't confirm it on real hardware because my PC-9821Nw133's screen vinegar'd at the beginning of the year. But just as with the image loading times, TH03's remaining code sorts of indicate that mid-frame palette changes were noticeable on real hardware, by means of this little flag I RE'd way back in March 2019. Sure, palette_show() takes >2,850 cycles on a 486 to downconvert master.lib's 8-bit palette to the GDC's 4-bit format and send it over, and that might add up with more than one palette-changing effect per frame. But tearing is a way more likely explanation for deferring all palette updates until after VSync and to the next frame.

And that completes another menu, placing us a very likely 2 pushes away from completing TH03's OP.EXE! Not many of those left now…


To balance out this heavy research into a comparatively small amount of code, I slotted in 2024's Part 2 of my usual bi-annual website improvements. This time, they went toward future-proofing the blog and making it a lot more navigable. You've probably already noticed the changes, but here's the full changelog:

Speaking of microblogging platforms, I've now also followed a good chunk of the Touhou community to Bluesky! The algorithms there seem to treat my posts much more favorably than Twitter has been doing lately, despite me having less than 1/10 of mostly automatically migrated followers there. For now, I'm going to cross-post new stuff to both platforms, but I might eventually spend a push to migrate my entire tweet history over to a self-hosted PDS to own the primary source of this data.

Next up: Staying with main menus, but jumping forward to TH04 and TH05 and finalizing some code there. Should be a quick one.

📝 Posted:
💰 Funded by:
GhostPhanom, Yanga, Arandui, Lmocinemod
🏷️ Tags:

Whew, TH01's boss code just had to end with another beast of a boss, taking way longer than it should have and leaving uncomfortably little time for the rest of the game. Let's get right into the overview of YuugenMagan, the most sequential and scripted battle in this game:


At a pixel-perfect 81×61 pixels, the Orb hitboxes are laid out rather generously this time, reaching quite a bit outside the 64×48 eye sprites:

TH01 YuugenMagan's hitboxes.

And that's about the only positive thing I can say about a position calculation in this fight. Phase 0 already starts with the lasers being off by 1 pixel from the center of the iris. Sure, 28 may be a nicer number to add than 29, but the result won't be byte-aligned either way? This is followed by the eastern laser's hitbox somehow being 24 pixels larger than the others, stretching a rather unexpected 70 pixels compared to the 46 of every other laser.
On a more hilarious note, the eye closing keyframe contains the following (pseudo-)code, comprising the only real accidentally "unused" danmaku subpattern in TH01:

// Did you mean ">= RANK_HARD"?
if(rank == RANK_HARD) {
	eye_north.fire_aimed_wide_5_spread();
	eye_southeast.fire_aimed_wide_5_spread();
	eye_southwest.fire_aimed_wide_5_spread();

	// Because this condition can never be true otherwise.
	// As a result, no pellets will be spawned on Lunatic mode.
	// (There is another Lunatic-exclusive subpattern later, though.)
	if(rank == RANK_LUNATIC) {
		eye_west.fire_aimed_wide_5_spread();
		eye_east.fire_aimed_wide_5_spread();
	}
}

Featuring the weirdly extended hitbox for the eastern laser, as well as an initial Reimu position that points out the disparity between byte-aligned rendering and the internal coordinates one final time.

After a few utility functions that look more like a quickly abandoned refactoring attempt, we quickly get to the main attraction: YuugenMagan combines the entire boss script and most of the pattern code into a single 2,634-instruction function, totaling 9,677 bytes inside REIIDEN.EXE. For comparison, ReC98's version of this code consists of at least 49 functions, excluding those I had to add to work around ZUN's little inconsistencies, or the ones I added for stylistic reasons.
In fact, this function is so large that Turbo C++ 4.0J refuses to generate assembly output for it via the -S command-line option, aborting with a Compiler table limit exceeded in function error. Contrary to what the Borland C++ 4.0 User Guide suggests, this instance of the error is not at all related to the number of function bodies or any metric of algorithmic complexity, but is simply a result of the compiler's internal text representation for a single function overflowing a 64 KiB memory segment. Merely shortening the names of enough identifiers within the function can help to get that representation down below 64 KiB. If you encounter this error during regular software development, you might interpret it as the compiler's roundabout way of telling you that it inlined way more function calls than you probably wanted to have inlined. Because you definitely won't explicitly spell out such a long function in newly-written code, right? :tannedcirno:
At least it wasn't the worst copy-pasting job in this game; that trophy still goes to 📝 Elis. And while the tracking code for adjusting an eye's sprite according to the player's relative position is one of the main causes behind all the bloat, it's also 100% consistent, and might have been an inlined class method in ZUN's original code as well.

The clear highlight in this fight though? Almost no coordinate is precisely calculated where you'd expect it to be. In particular, all bullet spawn positions completely ignore the direction the eyes are facing to:

Pellets unexpectedly spawned at the exact
	bottom center of an eye
Combining the bottom of the pupil with the exact horizontal center of the sprite as a whole might sound like a good idea, but looks especially wrong if the eye is facing right.
Missile spawn positions in the TH01
	YuugenMagan fight
Here it's the other way round: OK for a right-facing eye, really wrong for a left-facing one.
Spawn position of the 3-pixel laser in the
	TH01 YuugenMagan fight
Dude, the eye is even supposed to track the laser in this one!
The final center position of the regular
	pentagram in the TH01 YuugenMagan fight
Hint: That's not the center of the playfield. At least the pellets spawned from the corners are sort of correct, but with the corner calculates precomputed, you could only get them wrong on purpose.

Due to their effect on gameplay, these inaccuracies can't even be called "bugs", and made me devise a new "quirk" category instead. More on that in the TH01 100% blog post, though.


While we did see an accidentally unused bullet pattern earlier, I can now say with certainty that there are no truly unused danmaku patterns in TH01, i.e., pattern code that exists but is never called. However, the code for YuugenMagan's phase 5 reveals another small piece of danmaku design intention that never shows up within the parameters of the original game.
By default, pellets are clipped when they fly past the top of the playfield, which we can clearly observe for the first few pellets of this pattern. Interestingly though, the second subpattern actually configures its pellets to fall straight down from the top of the playfield instead. You never see this happening in-game because ZUN limited that subpattern to a downwards angle range of 0x73 or 162°, resulting in none of its pellets ever getting close to the top of the playfield. If we extend that range to a full 360° though, we can see how ZUN might have originally planned the pattern to end:

YuugenMagan's phase 5 patterns on every difficulty, with the second subpattern extended to reveal the different pellet behavior that remained in the final game code. In the original game, the eyes would stop spawning bullets on the marked frame.

If we also disregard everything else about YuugenMagan that fits the upcoming definition of quirk, we're left with 6 "fixable" bugs, all of which are a symptom of general blitting and unblitting laziness. Funnily enough, they can all be demonstrated within a short 9-second part of the fight, from the end of phase 9 up until the pentagram starts spinning in phase 13:

  1. General flickering whenever any sprite overlaps an eye. This is caused by only reblitting each eye every 3 frames, and is an issue all throughout the fight. You might have already spotted it in the videos above.
  2. Each of the two lasers is unblitted and blitted individually instead of each operation being done for both lasers together. Remember how 📝 ZUN unblits 32 horizontal pixels for every row of a line regardless of its width? That's why the top part of the left, right-moving laser is never visible, because it's blitted before the other laser is unblitted.
  3. ZUN forgot to unblit the lasers when phase 9 ends. This footage was recorded by pressing ↵ Return in test mode (game t or game d), and it's probably impossible to achieve this during actual gameplay without TAS techniques. You would have to deal the required 6 points of damage within 491 frames, with the eye being invincible during 240 of them. Simply shooting up an Orb with a horizontal velocity of 0 would also only work a single time, as boss entities always repel the Orb with a horizontal velocity of ±4.
  4. The shrinking pentagram is unblitted after the eyes were blitted, adding another guaranteed frame of flicker on top of the ones in 1). Like in 2), the blockiness of the holes is another result of unblitting 32 pixels per row at a time.
  5. Another missing unblitting call in a phase transition, as the pentagram switches from its not quite correctly interpolated shrunk form to a regular star polygon with a radius of 64 pixels. Indirectly caused by the massively bloated coordinate calculation for the shrink animation being done separately for the unblitting and blitting calls. Instead of, y'know, just doing it once and storing the result in variables that can later be reused.
  6. The pentagram is not reblitted at all during the first 100 frames of phase 13. During that rather long time, it's easily possible to remove it from VRAM completely by covering its area with player shots. Or HARRY UP pellets.

Definitely an appropriate end for this game's entity blitting code. :onricdennat: I'm really looking forward to writing a proper sprite system for the Anniversary Edition…

And just in case you were wondering about the hitboxes of these pentagrams as they slam themselves into Reimu:

62 pixels on the X axis, centered around each corner point of the star, 16 pixels below, and extending infinitely far up. The latter part becomes especially devious because the game always collision-detects all 5 corners, regardless of whether they've already clipped through the bottom of the playfield. The simultaneously occurring shape distortions are simply a result of the line drawing function's rather poor re-interpolation of any line that runs past the 640×400 VRAM boundaries; 📝 I described that in detail back when I debugged the shootout laser crash. Ironically, using fixed-size hitboxes for a variable-sized pentagram means that the larger one is easier to dodge.


The final puzzle in TH01's boss code comes 📝 once again in the form of weird hardware palette changes. The kanji on the background image goes through various colors throughout the fight, which ZUN implemented by gradually incrementing and decrementing either a single one or none of the color's three 4-bit components at the beginning of each even-numbered phase. The resulting color sequence, however, doesn't quite seem to follow these simple rules:

Adding some debug output sheds light on what's going on there:

Since each iteration of phase 12 adds 63 to the red component, integer overflow will cause the color to infinitely alternate between dark-blue and red colors on every 2.03 iterations of the pentagram phase loop. The 65th iteration will therefore be the first one with a dark-blue color for a third iteration in a row – just in case you manage to stall the fight for that long.

Yup, ZUN had so much trust in the color clamping done by his hardware palette functions that he did not clamp the increment operation on the stage_palette itself. :zunpet: Therefore, the 邪 colors and even the timing of their changes from Phase 6 onwards are "defined" by wildly incrementing color components beyond their intended domain, so much that even the underlying signed 8-bit integer ends up overflowing. Given that the decrement operation on the stage_palette is clamped though, this might be another one of those accidents that ZUN deliberately left in the game, 📝 similar to the conclusion I reached with infinite bumper loops.
But guess what, that's also the last time we're going to encounter this type of palette component domain quirk! Later games use master.lib's 8-bit palette system, which keeps the comfort of using a single byte per component, but shifts the actual hardware color into the top 4 bits, leaving the bottom 4 bits for added precision during fades.

OK, but now we're done with TH01's bosses! 🎉That was the 8th PC-98 Touhou boss in total, leaving 23 to go.


With all the necessary research into these quirks going well into a fifth push, I spent the remaining time in that one with transferring most of the data between YuugenMagan and the upcoming rest of REIIDEN.EXE into C land. This included the one piece of technical debt in TH01 we've been carrying around since March 2015, as well as the final piece of the ending sequence in FUUIN.EXE. Decompiling that executable's main() function in a meaningful way requires pretty much all remaining data from REIIDEN.EXE to also be moved into C land, just in case you were wondering why we're stuck at 99.46% there.
On a more disappointing note, the static initialization code for the 📝 5 boss entity slots ultimately revealed why YuugenMagan's code is as bloated and redundant as it is: The 5 slots really are 5 distinct variables rather than a single 5-element array. That's why ZUN explicitly spells out all 5 eyes every time, because the array he could have just looped over simply didn't exist. 😕 And while these slot variables are stored in a contiguous area of memory that I could just have taken the address of and then indexed it as if it were an array, I didn't want to annoy future port authors with what would technically be out-of-bounds array accesses for purely stylistic reasons. At least it wasn't that big of a deal to rewrite all boss code to use these distinct variables, although I certainly had to get a bit creative with Elis.

Next up: Finding out how many points we got in totle, and hoping that ZUN didn't hide more unexpected complexities in the remaining 45 functions of this game. If you have to spare, there are two ways in which that amount of money would help right now:

📝 Posted:
💰 Funded by:
[Anonymous], Yanga
🏷️ Tags:

Oh look, it's another rather short and straightforward boss with a rather small number of bugs and quirks. Yup, contrary to the character's popularity, Mima's premiere is really not all that special in terms of code, and continues the trend established with 📝 Kikuri and 📝 SinGyoku. I've already covered 📝 the initial sprite-related bugs last November, so this post focuses on the main code of the fight itself. The overview:


And there aren't even any weird hitboxes this time. What is maybe special about Mima, however, is how there's something to cover about all of her patterns. Since this is TH01, it's won't surprise anyone that the rotating square patterns are one giant copy-pasta of unblitting, updating, and rendering code. At least ZUN placed the core polar→Cartesian transformation in a separate function for creating regular polygons with an arbitrary number of sides, which might hint toward some more varied shapes having been planned at one point?
5 of the 6 patterns even follow the exact same steps during square update frames:

  1. Calculate square corner coordinates
  2. Unblit the square
  3. Update the square angle and radius
  4. Use the square corner coordinates for spawning pellets or missiles
  5. Recalculate square corner coordinates
  6. Render the square

Notice something? Bullets are spawned before the corner coordinates are updated. That's why their initial positions seem to be a bit off – they are spawned exactly in the corners of the square, it's just that it's the square from 8 frames ago. :tannedcirno:

Mima's first pattern on Normal difficulty.

Once ZUN reached the final laser pattern though, he must have noticed that there's something wrong there… or maybe he just wanted to fire those lasers independently from the square unblit/update/render timer for a change. Spending an additional 16 bytes of the data segment for conveniently remembering the square corner coordinates across frames was definitely a decent investment.

Mima's laser pattern on Lunatic difficulty, now with correct laser spawn positions. If this pattern reminds you of the game crashing immediately when defeating Mima, 📝 check out the Elis blog post for the details behind this bug, and grab the bugfix patch from there.

When Mima isn't shooting bullets from the corners of a square or hopping across the playfield, she's raising flame pillars from the bottom of the playfield within very specifically calculated random ranges… which are then rendered at byte-aligned VRAM positions, while collision detection still uses their actual pixel position. Since I don't want to sound like a broken record all too much, I'll just direct you to 📝 Kikuri, where we've seen the exact same issue with the teardrop ripple sprites. The conclusions are identical as well.

Mima's flame pillar pattern. This video was recorded on a particularly unlucky seed that resulted in great disparities between a pillar's internal X coordinate and its byte-aligned on-screen appearance, leading to lots of right-shifted hitboxes.
Also note how the change from the meteor animation to the three-arm 🚫 casting sprite doesn't unblit the meteor, and leaves that job to any sprite that happens to fly over those pixels.

However, I'd say that the saddest part about this pattern is how choppy it is, with the circle/pillar entities updating and rendering at a meager 7 FPS. Why go that low on purpose when you can just make the game render ✨ smoothly ✨ instead?

So smooth it's almost uncanny.

The reason quickly becomes obvious: With TH01's lack of optimization, going for the full 56.4 FPS would have significantly slowed down the game on its intended 33 MHz CPUs, requiring more than cheap surface-level ASM optimization for a stable frame rate. That might very well have been ZUN's reason for only ever rendering one circle per frame to VRAM, and designing the pattern with these time offsets in mind. It's always been typical for PC-98 developers to target the lowest-spec models that could possibly still run a game, and implementing dynamic frame rates into such an engine-less game is nothing I would wish on anybody. And it's not like TH01 is particularly unique in its choppiness anyway; low frame rates are actually a rather typical part of the PC-98 game aesthetic.


The final piece of weirdness in this fight can be found in phase 1's hop pattern, and specifically its palette manipulation. Just from looking at the pattern code itself, each of the 4 hops is supposed to darken the hardware palette by subtracting #444 from every color. At the last hop, every color should have therefore been reduced to a pitch-black #000, leaving the player completely blind to the movement of the chasing pellets for 30 frames and making the pattern quite ghostly indeed. However, that's not what we see in the actual game:

Nothing in the pattern's code would cause the hardware palette to get brighter before the end of the pattern, and yet…
The expected version doesn't look all too unfair, even on Lunatic… well, at least at the default rank pellet speed shown in this video. At maximum pellet speed, it is in fact rather brutal.

Looking at the frame counter, it appears that something outside the pattern resets the palette every 40 frames. The only known constant with a value of 40 would be the invincibility frames after hitting a boss with the Orb, but we're not hitting Mima here… :thonk:
But as it turns out, that's exactly where the palette reset comes from: The hop animation darkens the hardware palette directly, while the 📝 infamous 12-parameter boss collision handler function unconditionally resets the hardware palette to the "default boss palette" every 40 frames, regardless of whether the boss was hit or not. I'd classify this as a bug: That function has no business doing periodic hardware palette resets outside the invincibility flash effect, and it completely defies common sense that it does.

That explains one unexpected palette change, but could this function possibly also explain the other infamous one, namely, the temporary green discoloration in the Konngara fight? That glitch comes down to how the game actually uses two global "default" palettes: a default boss palette for undoing the invincibility flash effect, and a default stage palette for returning the colors back to normal at the end of the bomb animation or when leaving the Pause menu. And sure enough, the stage palette is the one with the green color, while the boss palette contains the intended colors used throughout the fight. Sending the latter palette to the graphics chip every 40 frames is what corrects the discoloration, which would otherwise be permanent.

The green color comes from BOSS7_D1.GRP, the scrolling background of the entrance animation. That's what turns this into a clear bug: The stage palette is only set a single time in the entire fight, at the beginning of the entrance animation, to the palette of this image. Apart from consistency reasons, it doesn't even make sense to set the stage palette there, as you can't enter the Pause menu or bomb during a blocking animation function.
And just 3 lines of code later, ZUN loads BOSS8_A1.GRP, the main background image of the fight. Moving the stage palette assignment there would have easily prevented the discoloration.

But yeah, as you can tell, palette manipulation is complete jank in this game. Why differentiate between a stage and a boss palette to begin with? The blocking Pause menu function could have easily copied the original palette to a local variable before darkening it, and then restored it after closing the menu. It's not so easy for bombs as the intended palette could change between the start and end of the animation, but the code could have still been simplified a lot if there was just one global "default palette" variable instead of two. Heck, even the other bosses who manipulate their palettes correctly only do so because they manually synchronize the two after every change. The proper defense against bugs that result from wild mutation of global state is to get rid of global state, and not to put up safety nets hidden in the middle of existing effect code.

The easiest way of reproducing the green discoloration bug in the TH01 Konngara fight, timed to show the maximum amount of time the discoloration can possibly last.

In any case, that's Mima done! 7th PC-98 Touhou boss fully decompiled, 24 bosses remaining, and 59 functions left in all of TH01.


In other thrilling news, my call for secondary funding priorities in new TH01 contributions has given us three different priorities so far. This raises an interesting question though: Which of these contributions should I now put towards TH01 immediately, and which ones should I leave in the backlog for the time being? Since I've never liked deciding on priorities, let's turn this into a popularity contest instead: The contributions with the least popular secondary priorities will go towards TH01 first, giving the most popular priorities a higher chance to still be left over after TH01 is done. As of this delivery, we'd have the following popularity order:

  1. TH05 (1.67 pushes), from T0182
  2. Seihou (1 push), from T0184
  3. TH03 (0.67 pushes), from T0146

Which means that T0146 will be consumed for TH01 next, followed by T0184 and then T0182. I only assign transactions immediately before a delivery though, so you all still have the chance to change up these priorities before the next one.

Next up: The final boss of TH01 decompilation, YuugenMagan… if the current or newly incoming TH01 funds happen to be enough to cover the entire fight. If they don't turn out to be, I will have to pass the time with some Seihou work instead, missing the TH01 anniversary deadline as a result. Edit (2022-07-18): Thanks to Yanga for securing the funding for YuugenMagan after all! That fight will feature slightly more than half of all remaining code in TH01's REIIDEN.EXE and the single biggest function in all of PC-98 Touhou, let's go!

📝 Posted:
💰 Funded by:
Ember2528
🏷️ Tags:

OK, TH01 missile bullets. Can we maybe have a well-behaved entity type, without any weirdness? Just once?

Ehh, kinda. Apart from another 150 bytes wasted on unused structure members, this code is indeed more on the low end in terms of overall jank. It does become very obvious why dodging these missiles in the YuugenMagan, Mima, and Elis fights feels so awful though: An unfair 46×46 pixel hitbox around Reimu's center pixel, combined with the comeback of 📝 interlaced rendering, this time in every stage. ZUN probably did this because missiles are the only 16×16 sprite in TH01 that is blitted to unaligned X positions, which effectively ends up touching a 32×16 area of VRAM per sprite.
But even if we assume VRAM writes to be the bottleneck here, it would have been totally possible to render every missile in every frame at roughly the same amount of CPU time that the original game uses for interlaced rendering:

That's an optimization that would have significantly benefitted the game, in contrast to all of the fake ones introduced in later games. Then again, this optimization is actually something that the later games do, and it might have in fact been necessary to achieve their higher bullet counts without significant slowdown.

Unfortunately, it was only worth decompiling half of the missile code right now, thanks to gratuitous FPU usage in the other half, where 📝 double variables are compared to float literals. That one will have to wait 📝 until after SinGyoku.


After some effectively unused Mima sprite effect code that is so broken that it's impossible to make sense out of it, we get to the final feature I wanted to cover for all bosses in parallel before returning to Sariel: The separate sprite background storage for moving or animated boss sprites in the Mima, Elis, and Sariel fights. But, uh… why is this necessary to begin with? Doesn't TH01 already reserve the other VRAM page for backgrounds?
Well, these sprites are quite big, and ZUN didn't want to blit them from main memory on every frame. After all, TH01 and TH02 had a minimum required clock speed of 33 MHz, half of the speed required for the later three games. So, he simply blitted these boss sprites to both VRAM pages, leading the usual unblitting calls to only remove the other sprites on top of the boss. However, these bosses themselves want to move across the screen… and this makes it necessary to save the stage background behind them in some other way.

Enter .PTN, and its functions to capture a 16×16 or 32×32 square from VRAM into a sprite slot. No problem with that approach in theory, as the size of all these bigger sprites is a multiple of 32×32; splitting a larger sprite into these smaller 32×32 chunks makes the code look just a little bit clumsy (and, of course, slower).
But somewhere during the development of Mima's fight, ZUN apparently forgot that those sprite backgrounds existed. And once Mima's 🚫 casting sprite is blitted on top of her regular sprite, using just regular sprite transparency, she ends up with her infamous third arm:

TH01 Mima's third arm

Ironically, there's an unused code path in Mima's unblit function where ZUN assumes a height of 48 pixels for Mima's animation sprites rather than the actual 64. This leads to even clumsier .PTN function calls for the bottom 128×16 pixels… Failing to unblit the bottom 16 pixels would have also yielded that third arm, although it wouldn't have looked as natural. Still wouldn't say that it was intentional; maybe this casting sprite was just added pretty late in the game's development?


So, mission accomplished, Sariel unblocked… at 2¼ pushes. :thonk: That's quite some time left for some smaller stage initialization code, which bundles a bunch of random function calls in places where they logically really don't belong. The stage opening animation then adds a bunch of VRAM inter-page copies that are not only redundant but can't even be understood without knowing the hidden internal state of the last VRAM page accessed by previous ZUN code…
In better news though: Turbo C++ 4.0 really doesn't seem to have any complexity limit on inlining arithmetic expressions, as long as they only operate on compile-time constants. That's how we get macro-free, compile-time Shift-JIS to JIS X 0208 conversion of the individual code points in the 東方★靈異伝 string, in a compiler from 1994. As long as you don't store any intermediate results in variables, that is… :tannedcirno:

But wait, there's more! With still ¼ of a push left, I also went for the boss defeat animation, which includes the route selection after the SinGyoku fight.
As in all other instances, the 2× scaled font is accomplished by first rendering the text at regular 1× resolution to the other, invisible VRAM page, and then scaled from there to the visible one. However, the route selection is unique in that its scaled text is both drawn transparently on top of the stage background (not onto a black one), and can also change colors depending on the selection. It would have been no problem to unblit and reblit the text by rendering the 1× version to a position on the invisible VRAM page that isn't covered by the 2× version on the visible one, but ZUN (needlessly) clears the invisible page before rendering any text. :zunpet: Instead, he assigned a separate VRAM color for both the 魔界 and 地獄 options, and only changed the palette value for these colors to white or gray, depending on the correct selection. This is another one of the 📝 rare cases where TH01 demonstrates good use of PC-98 hardware, as the 魔界へ and 地獄へ strings don't need to be reblitted during the selection process, only the Orb "cursor" does.

Then, why does this still not count as good-code? When changing palette colors, you kinda need to be aware of everything else that can possibly be on screen, which colors are used there, and which aren't and can therefore be used for such an effect without affecting other sprites. In this case, well… hover over the image below, and notice how Reimu's hair and the bomb sprites in the HUD light up when Makai is selected:

Demonstration of palette changes in TH01's route selection

This push did end on a high note though, with the generic, non-SinGyoku version of the defeat animation being an easily parametrizable copy. And that's how you decompile another 2.58% of TH01 in just slightly over three pushes.


Now, we're not only ready to decompile Sariel, but also Kikuri, Elis, and SinGyoku without needing any more detours into non-boss code. Thanks to the current TH01 funding subscriptions, I can plan to cover most, if not all, of Sariel in a single push series, but the currently 3 pending pushes probably won't suffice for Sariel's 8.10% of all remaining code in TH01. We've got quite a lot of not specifically TH01-related funds in the backlog to pass the time though.

Due to recent developments, it actually makes quite a lot of sense to take a break from TH01: spaztron64 has managed what every Touhou download site so far has failed to do: Bundling all 5 game onto a single .HDI together with pre-configured PC-98 emulators and a nice boot menu, and hosting the resulting package on a proper website. While this first release is already quite good (and much better than my attempt from 2014), there is still a bit of room for improvement to be gained from specific ReC98 research. Next up, therefore:

📝 Posted:
💰 Funded by:
Splashman, Ember2528
🏷️ Tags:

Last part of TH01's main graphics function segment, and we've got even more code that alternates between being boring and being slightly weird. But at least, "boring" also meant "consistent" for once. And so progress continued to be as fast as expected from the last TH01 pushes, yielding 3.3% in TH01 RE%, and 1% in overall RE%, within a single day. There even was enough time to decompile another full code segment, which bundles all the hardware initialization and cleanup calls into single functions to be run when starting and exiting the game. Which might be interesting for at least one person, I guess :tannedcirno:

But seriously, trying to access page 2 on a system with only page 0 and 1? Had to get out my real PC-98 to double-check that I wasn't missing anything here, since every emulator only looks at the bottom bit of the page number. But real hardware seems to do the same, and there really is nothing special to it semantically, being equivalent to page 0. 🤷

Next up in TH01, we'll have some file format code!

📝 Posted:
💰 Funded by:
Yanga, Splashman
🏷️ Tags:

So, the thing that made me so excited about TH01 were all those bulky C reimplementations of master.lib functions. Identical copies in all three executables, trivial to figure out and decompile, removing tons of instructions, and providing a foundation for large parts of the game later. The first set of functions near the end of that shared code segment deals with color palette handling, and master.lib's resident palette structure in particular. (No relation to the game's resident structure.) Which directly starts us out with pretty much all the decompilation difficulties imaginable:

And as it turns out, the game doesn't even use the resident palette feature. Which adds yet another set of functions to the, uh, learning experience that ZUN must have chosen this game to be. I wouldn't be surprised if we manage to uncover actual scrapped beta game content later on, among all the unused code that's bound to still be in there.

At least decompilation should get easier for the next few TH01 pushes now… right?