⮜ Blog

⮜ List of tags

Showing all posts tagged good-code-

📝 Posted:
🚚 Summary of:
P0130, P0131
⌨ Commits:
6d69ea8...576def5, 576def5...dc9e3ee
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ pc98+ blitting+ good-code- jank+ gameplay+ boss+ rng+

50% hype! 🎉 But as usual for TH01, even that final set of functions shared between all bosses had to consume two pushes rather than one…

First up, in the ongoing series "Things that TH01 draws to the PC-98 graphics layer that really should have been drawn to the text layer instead": The boss HP bar. Oh well, using the graphics layer at least made it possible to have this half-red, half-white pattern for the middle section.
This one pattern is drawn by making surprisingly good use of the GRCG. So far, we've only seen it used for fast monochrome drawing:

// Setting up fast drawing using color #9 (1001 in binary)
grcg_setmode(GC_RMW);
outportb(0x7E, 0xFF); // Plane 0: (B): (********)
outportb(0x7E, 0x00); // Plane 1: (R): (        )
outportb(0x7E, 0x00); // Plane 2: (G): (        )
outportb(0x7E, 0xFF); // Plane 3: (E): (********)

// Write a checkerboard pattern (* * * * ) in color #9 to the top-left corner,
// with transparent blanks. Requires only 1 VRAM write to a single bitplane:
// The GRCG automatically writes to the correct bitplanes, as specified above
*(uint8_t *)(MK_FP(0xA800, 0)) = 0xAA;
But since this is actually an 8-pixel tile register, we can set any 8-pixel pattern for any bitplane. This way, we can get different colors for every one of the 8 pixels, with still just a single VRAM write of the alpha mask to a single bitplane:
grcg_setmode(GC_RMW); //  Final color: (A7A7A7A7)
outportb(0x7E, 0x55); // Plane 0: (B): ( * * * *)
outportb(0x7E, 0xFF); // Plane 1: (R): (********)
outportb(0x7E, 0x55); // Plane 2: (G): ( * * * *)
outportb(0x7E, 0xAA); // Plane 3: (E): (* * * * )
And I thought TH01 only suffered the drawbacks of PC-98 hardware, making so little use of its actual features that it's perhaps not fair to even call it "a PC-98 game"… Still, I'd say that "bad PC-98 port of an idea" describes it best.

However, after that tiny flash of brilliance, the surrounding HP rendering code goes right back to being the typical sort of confusing TH01 jank. There's only a single function for the three distinct jobs of

  • incrementing HP during the boss entrance animation,
  • decrementing HP if hit by the Orb, and
  • redrawing the entire bar, because it's still all in VRAM, and Sariel wants different backgrounds,
with magic numbers to select between all of these.

VRAM of course also means that the backgrounds behind the individual hit points have to be stored, so that they can be unblitted later as the boss is losing HP. That's no big deal though, right? Just allocate some memory, copy what's initially in VRAM, then blit it back later using your foundational set of blitting funct– oh, wait, TH01 doesn't have this sort of thing, right :tannedcirno: The closest thing, 📝 once again, are the .PTN functions. And so, the game ends up handling these 8×16 background sprites with 16×16 wrappers around functions for 32×32 sprites. :zunpet: That's quite the recipe for confusion, especially since ZUN preferred copy-pasting the necessary ridiculous arithmetic expressions for calculating positions, .PTN sprite IDs, and the ID of the 16×16 quarter inside the 32×32 sprite, instead of just writing simple helper functions. He did manage to make the result mostly bug-free this time around, though! There's one minor hit point discoloration bug if the red-white or white sections start at an odd number of hit points, but that's never the case for any of the original 7 bosses.
The remaining sloppiness is ultimately inconsequential as well: The game always backs up twice the number of hit point backgrounds, and thus uses twice the amount of memory actually required. Also, this self-restriction of only unblitting 16×16 pixels at a time requires any remaining odd hit point at the last position to, of course, be rendered again :onricdennat:


After stumbling over the weakest imaginable random number generator, we finally arrive at the shared boss↔orb collision handling function, the final blocker among the final blockers. This function takes a whopping 12 parameters, 3 of them being references to int values, some of which are duplicated for every one of the 7 bosses, with no generic boss struct anywhere. 📝 Previously, I speculated that YuugenMagan might have been the first boss to be programmed for TH01. With all these variables though, there is some new evidence that SinGyoku might have been the first one after all: It's the only boss to use its own HP and phase frame variables, with the other bosses sharing the same two globals.

While this function only handles the response to a boss↔orb collision, it still does way too much to describe it briefly. Took me quite a while to frame it in terms of invincibility (which is the main impact of all of this that can be observed in gameplay code). That made at least some sort of sense, considering the other usages of the variables passed as references to that function. Turns out that YuugenMagan, Kikuri, and Elis abuse what's meant to be the "invincibility frame" variable as a frame counter for some of their animations 🙄
Oh well, the game at least doesn't call the collision handling function during those, so "invincibility frame" is technically still a correct variable name there.


And that's it! We're finally ready to start with Konngara, in 2021. I've been waiting quite a while for this, as all this high-level boss code is very likely to speed up TH01 progress quite a bit. Next up though: Closing out 2020 with more of the technical debt in the other games.

📝 Posted:
🚚 Summary of:
P0085
⌨ Commits:
110d6dd...54ee99b
💰 Funded by:
-Tom-
🏷 Tags:
rec98+ th02+ th04+ th05+ blitting+ animation+ waste+ good-code-

Wait, PI for FUUIN.EXE is mainly blocked by the high score menu? That one should really be properly decompiled in a separate RE push, since it's also present in largely identical form in REIIDEN.EXE… but I currently lack the explicit funding to do that.

And as it turns out I shouldn't really capture any of the existing generic RE contributions for it either. Back in 2018 when I ran the crowdfunding on the Touhou Patch Center Discord server, I said that generic RE contributions would never go towards TH01. No one was interested in that game back then, and as it's significantly different from all the other games, it made sense to only cover it if explicitly requested.
As Touhou Patch Center still remains one of the biggest supporters and advertisers for ReC98, someone recently believed that this rule was still in effect, despite not being mentioned anywhere on this website.

Fast forward to today, and TH01 has become the single most supported game lately, with plenty of incomplete pushes still open to be completed. Reverse-engineering it has proven to be quite efficient, yielding lots of completion percentage points per push. This, I suppose, is exactly what backers that don't give any specific priorities are mainly interested in. Therefore, I will allocate future partial contributions to TH01, whenever it makes sense.

So, instead of rushing TH01 PI, let's wait for Ember2528's April subscription, and get the 25% total RE milestone with some TH05 PI progress instead. This one primarily focused on the gather circles (spirals…?), the third-last missing entity type in TH05. These are rendered using the same 8×8 pellet sprite introduced in TH02… except that the actual pellets received a darkened bottom part in TH04 . Which, in turn, is actually rendered quite efficiently – the games first render the top white part of all pellets, followed by the bottom gray part of all pellets. The PC-98 GRCG is used throughout the process, doing its typical job of accelerating monochrome blitting, and by arranging the rendering like this, only two GRCG color changes are required to draw any number of pellets. I guess that makes it quite a worthwhile optimization? Don't ask me for specific performance numbers or even saved cycles, though :onricdennat:

Next up, one more TH05 PI push!

📝 Posted:
🚚 Summary of:
P0083
⌨ Commits:
f6cbff0...dfac2f2
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ file-format+ waste+ good-code-

Nope, RL has given me plenty of things to do from home after all, so the current cap still remains an accurate representation of my free time. 😕

For now though, we've got one more TH01 file format push, covering the core functions for loading and displaying the 32×32 and 16×16 sprites from the .PTN files, as announced – and probably one of the last ones for quite a while to yield both RE and PI progress way above average. But what is this, error return values in a ZUN game?! And actually good code for deriving the alpha channel from the 16th color in the hardware palette?! Sure, the rest of the code could still be improved a lot, but that was quite a surprise, especially after the spaghetti code of 📝 the last push. That makes up for two of the .PTN structure fields (one of them always 0, and one of them always 1) remaining unused, and therefore unknown.

ZUN also uses the .PTN image slots to store the background of frequently updated VRAM sections, in order to be able to repeatedly draw on top of them – like for example the HUD area where the score and time numbers are drawn. Future games would simply use the text RAM and gaiji for those numbers. This would have worked just fine for TH01 too – especially since all the functions decompiled so far align the VRAM X coordinate to the 8-pixel byte grid, which is the simplest way of accessing VRAM given the PC-98's planar memory layout. Looks as if ZUN simply wasn't aware of gaiji during the development of TH01.

This won't be the last time I cover the .PTN format, since all the blitting functions that actually use alpha are exclusive to REIIDEN.EXE, and currently out of decompilation reach. But after some more long overdue cleaning work, TH01 has now passed both TH02 and even TH04 to become the second-most reverse-engineered game in all of ReC98, in terms of absolute numbers! 🎉

Also, PI for TH01's OP.EXE is imminent. Next up though, we've first got the probably final double-speed push for TH01, covering the last set of duplicated functions between the three binaries – quite fitting for the currently last fully funded, outstanding TH01 RE push. Then, we also might get FUUIN.EXE PI within the same push afterwards? After that, TH01 progress will be slowing down, since I'd then have to cover either the main menu or in-game code or the cutscenes, depending on what the backers request. (By default, it's going to be in-game code, of course.)