🎉 After almost 3 years, TH04 finally caught up to TH05 and is now 100%
position-independent as well! 🎉
For a refresher on what this means and does not mean, check the
announcements from back in 2019 and 2020 when we chased the goal for TH05's
📝 OP.EXE and
📝 the rest of the game. These also feature
some demo videos that show off the kind of mods you were able to efficiently
code back then. With the occasional reverse-engineering attention it
received over the years, TH04's code should now be slightly easier to work
with than TH05's was back in the day. Although not by much – TH04 has
remained relatively unpopular among backers, and only received more than the
funded attention because it shares most of its core code with the more
popular TH05. Which, coincidentally, ended up becoming
📝 the reason for getting this done now.
Not that it matters a lot. Ever since we reached 100% PI for TH05, community
and backer interest in position independence has dropped to near zero. We
just didn't end up seeing the expected large amount of community-made mods
that PI was meant to facilitate, and even the
📝 100% decompilation of TH01 changed nothing
about that. But that's OK; after all, I do appreciate the business of
continually getting commissioned for all the
📝 large-scale mods. Not focusing on PI is
also the correct choice for everyone who likes reading these blog posts, as
it often means that I can't go that much into detail due to cutting corners
and piling up technical debt left and right.
Surprisingly, this only took 1.25 pushes, almost twice as fast as expected.
As that's closer to 1 push than it is to 2, I'm OK with releasing it like
this – especially since it was originally meant to come out three days ago.
🍋 Unfortunately, it was delayed thanks to surprising
website bugs and a certain piece of code that was way more difficult to
document than it was to decompile… The next push will have slightly less
content in exchange, though.
📝 P0240 and P0241 already covered the final
remaining structures, so I only needed to do some superficial RE to prove
the remaining numeric literals as either constants or memory addresses. For
example, I initially thought I'd have to decompile the dissolve animations
in the staff roll, but I only needed to identify a single function pointer
type to prove all false positives as screen coordinates there. Now, the TH04
staff roll would be another fast and cheap decompilation, similar to the
custom entity types of TH04. (And TH05 as well!)
The one piece of code I did have to decompile was Stage 4's carpet
lighting animation, thanks to hex literals that were way too complicated to
leave in ASM. And this one probably takes the crown for TH04's worst set of
landmines and bloat that still somehow results in no observable bugs or
quirks.
This animation starts at frame 1664, roughly 29.5 seconds into the stage,
and quickly turns the stage background into a repeated row of dark-red plaid
carpet tiles by moving out from the center of the playfield towards the
edges. Afterward, the animation repeats with a brighter set of tiles that is
then used for the rest of the stage. As I explained
📝 a while ago in the context of TH02, the
stage tile and map formats in PC-98 Touhou can't express animations, so all
of this needed to be hardcoded in the binary.
And ZUN did start out making the right decision by only using fully-lit
carpet tiles for all tile sections defined in ST03.MAP. This
way, the animation can simply disable itself after it completed, letting the
rest of the stage render normally and use new tile sections that are only
defined for the final light level. This means that the "initial" dark
version of the carpet is as much a result of hardcoded tile manipulation as
the animation itself.
But then, ZUN proceeded to implement it all by directly manipulating the
ring buffer of on-screen tiles. This is the lowest level before the tiles
are rendered, and rather detached from the defined content of the
📝 .MAP tile sections. Which leads to a whole
lot of problems:
If you decide to do this kind of tile ring modification, it should ideally
happen at a very specific point: after scrolling in new tiles into
the ring buffer, but before blitting any scrolled or invalidated
tiles to VRAM based on the ring buffer. Which is not where ZUN chose to put
it, as he placed the call to the stage-specific render function after both
of those operations. By the time the function is
called, the tile renderer has already blitted a few lines of the fully-lit
carpet tiles from the defined .MAP tile section, matching the scroll speed.
Fortunately, these are hidden behind the black TRAM cells above and below
the playfield…
Still, the code needs to get rid of them before they would become visible.
ZUN uses the regular tile invalidation function for this, which will only
cause actual redraws on the next frame. Again, the tile rendering call has
already happened by the time the Stage 4-specific rendering function gets
called.
But wait, this game also flips VRAM pages between frames to provide a
tear-free gameplay experience. This means that the intended redraw of the
new tiles actually hits the wrong VRAM page.
And sure, the code does attempt to invalidate these newly blitted lines
every frame – but only relative to the current VRAM Y coordinate that
represents the top of the hardware-scrolled screen. Once we're back on the
original VRAM page on the next frame, the lines we initially set out to
remove could have already scrolled past that point, making it impossible to
ever catch up with them in this way.
The only real "solution": Defining the height of the tile invalidation
rectangle at 3× the scroll speed, which ensures that each invalidation call
covers 3 frames worth of newly scrolled-in lines. This is not intuitive at
all, and requires an understanding of everything I have just written to even
arrive at this conclusion. Needless to say that ZUN didn't comprehend it
either, and just hardcoded an invalidation height that happened to be enough
for the small scroll speeds defined in ST03.STD for the first
30 seconds of the stage.
The effect must consistently modify the tile ring buffer to "fix" any new
tiles, overriding them with the intended light level. During the animation,
the code not only needs to set the old light level for any tiles that are
still waiting to be replaced, but also the new light level for any tiles
that were replaced – and ZUN forgot the second part. As a result, newly scrolled-in tiles within the already animated
area will "remain" untouched at light level 2 if the scroll speed is fast
enough during the transition from light level 0 to 1.
All that means that we only have to raise the scroll speed for the effect to
fall apart. Let's try, say, 4 pixels per frame rather than the original
0.25:
All of this could have been so much simpler and actually stable if ZUN
applied the tile changes directly onto the .MAP. This is a much more
intuitive way of expressing what is supposed to happen to the map, and would
have reduced the code to the actually necessary tile changes for the first
frame and each individual frame of the animation. It would have still
required a way to force these changes into the tile ring buffer, but ZUN
could have just used his existing full-playfield redraw functions for that.
In any case, there would have been no need for any per-frame tile
fixing and redrawing. The CPU cycles saved this way could have then maybe
been put towards writing the tile-replacing part of the animation in C++
rather than ASM…
Wow, that was an unreasonable amount of research into a feature that
superficially works fine, just because its decompiled code didn't make
sense. To end on a more positive note, here are
some minor new discoveries that might actually matter to someone:
The laser part of Marisa's Illusion Laser shot type always does 3
points of damage per frame, regardless of the player's power level. Its
hitbox also remains identical on all power levels, no matter how wide the
laser appears on screen. The strength difference between the levels purely
comes from the number of frames the laser stays active before a fixed
non-damaging 32-frame cooldown time:
Power level
Frames per cycle (including 32-frame cooldown)
2
64
3
72
4
88
5
104
6
128
7
144
8
168
9
192
The decay animation for player shots is faster in TH05 (12 frames) than in
TH04 (16 frames).
In the first phase of her Stage 6 fight, Yuuka moves along one of two
randomly chosen hardcoded paths, defined as a set of 5 movement angles.
After reaching the final point and firing a danmaku pattern, she teleports
back to her initial position to repeat the path one more time before the
phase times out.
Similarly, TH04's Stage 3 midboss also goes through 12 fixed movement angles
before flying off the playfield.
The formulas for calculating the skill rating on both TH04's and TH05's
final verdict screen are going to be very long and complicated.
Next up: ¾ of a push filled with random boilerplate, finalization, and TH01
code cleanup work, while I finish the preparations for Shuusou Gyoku's
OpenGL backend. This month, everything should finally work out as intended:
I'll complete both tasks in parallel, ship the former to free up the cap,
and then ship the latter once its 5th push is fully funded.
OK, let's decompile TH02's HUD code first, gain a solid understanding of how
increasing the score works, and then look at the item system of this game.
Should be no big deal, no surprises expected, let's go!
…Yeah, right, that's never how things end up in ReC98 land.
And so, we get the usual host of newly discovered
oddities in addition to the expected insights into the item mechanics. Let's
start with the latter:
Some regular stage enemies appear to randomly drop either or items. In reality, there is
very little randomness at play here: These items are picked from a
hardcoded, repeating ring of 10 items
(𝄆 𝄇), and the only source of
randomness is the initial position within this ring, which changes at
the beginning of every stage. ZUN further increased the illusion of
randomness by only dropping such a semi-random item for every
3rd defeated enemy that is coded to drop one, and also having
enemies that drop fixed, non-random items. I'd say it's a decent way of
ensuring both randomness and balance.
There's a 1/512 chance for such a semi-random
item drop to turn into a item instead –
which translates to 1/1536 enemies due to the
fixed drop rate.
Edit (2023-06-11): These are the only ways that items can randomly drop in this game. All other drops, including
any items, are scripted and deterministic.
After using a continue (both after a Game Over, or after manually
choosing to do so through the Pause menu for whatever reason), the
next
(Stage number + 1) semi-random item
drops are turned into items instead.
Items can contribute up to 25 points to the skill value and subsequent
rating (あなたの腕前) on the final verdict
screen. Doing well at item collection first increases a separate
collect_skill value:
Item
Collection condition
collect_skill change
below max power
+1
at or above max power
+2
value == 51,200
+8
value ≥20,000 and <51,200
+4
value ≥10,000 and <20,000
+2
value <10,000
+1
with 5 bombs in stock
+16
Note, again, the lack of anything involving
items. At the maximum of 5 lives, the item spawn function transforms
them into bomb items anyway. It is possible though to gain
the 5th life by reaching one of the extend scores while a
item is still on screen; in that case,
collecting the 1-up has no effect at all.
Every 32 collect_skill points will then raise the
item_skill by 1, whereas every 16 dropped items will lower
it by 1. Before launching into the ending sequence,
item_skill is clamped to the [0; 25] range and
added to the other skill-relevant metrics we're going to look at in
future pushes.
When losing a life, the game will drop a single
and 4 randomly picked or items in a random order
around Reimu's position. Contrary to an
unsourced Touhou Wiki edit from 2009, each of the 4 does have an
equal and independent chance of being either a
or item.
Finally, and perhaps most
interestingly, item values! These are
determined by the top Y coordinate of an item during the frame it is
collected on. The maximum value of 51,200 points applies to the top 48
pixels of the playfield, and drops off as soon as an item falls below
that line. For the rest of the playfield, point items then use a formula
of (28,000 - (top Y coordinate of item in
screen space × 70)):
Onto score tracking then, which only took a single commit to raise another
big research question. It's widely known that TH02 grants extra lives upon
reaching a score of 1, 2, 3, 5, or 8 million points. But what hasn't been
documented is the fact that the game does not stop at the end of the
hardcoded extend score array. ZUN merely ends it with a sentinel value of
999,999,990 points, but if the score ever increased beyond this value, the
game will interpret adjacent memory as signed 32-bit score values and
continue giving out extra lives based on whatever thresholds it ends up
finding there. Since the following bytes happen to turn into a negative
number, the next extra life would be awarded right after gaining another 10
points at exactly 1,000,000,000 points, and the threshold after that would
be 11,114,905,600 points. Without an explicit counterstop, the number of
score-based extra lives is theoretically unlimited, and would even continue
after the signed 32-bit value overflowed into the negative range. Although
we certainly have bigger problems once scores ever reach that point…
That said, it seems impossible that any of this could ever happen
legitimately. The current high scores of 42,942,800 points on
Lunatic and 42,603,800 points on
Extra don't even reach 1/20 of ZUN's sentinel
value. Without either a graze or a bullet cancel system, the scoring
potential in this game is fairly limited, making it unlikely for high scores
to ever increase by that additional order of magnitude to end up anywhere
near the 1 billion mark.
But can we really be sure? Is this a landmine because it's impossible
to ever reach such high scores, or is it a quirk because these extends
could be observed under rare conditions, perhaps as the result of
other quirks? And if it's the latter, how many of these adjacent bytes do we
need to preserve in cleaned-up versions and ports? We'd pretty much need to
know the upper bound of high scores within the original stage and boss
scripts to tell. This value should be rather easy to calculate in a
game with such a simple scoring system, but doing that only makes sense
after we RE'd all scoring-related code and could efficiently run such
simulations. It's definitely something we'd need to look at before working
on this game's debloated version in the far future, which is
when the difference between quirks and landmines will become relevant.
Still, all that uncertainty just because ZUN didn't restrict a loop to the
size of the extend threshold array…
TH02 marks a pivotal point in how the PC-98 Touhou games handle the current
score. It's the last game to use a 32-bit variable before the later games
would regrettably start using arrays of binary-coded
decimals. More importantly though, TH02 is also the first game to
introduce the delayed score counting animation, where the displayed score
intentionally lags behind and gradually counts towards the real one over
multiple frames. This could be implemented in one of two ways:
Keep the displayed score as a separate variable inside the presentation
layer, and let it gradually count up to the real score value passed in from
the logic layer
Burden the game logic with this presentation detail, and split the score
into two variables: One for the displayed score, and another for the
delta between that score and the actual one. Newly gained points are
first added to the delta variable, and then gradually subtracted from there
and added to the real score before being displayed.
And by now, we can all tell which option ZUN picked for the rest of the
PC-98 games, even if you don't remember
📝 me mentioning this system last year.
📝 Once again, TH02 immortalized ZUN's initial
attempt at the concept, which lacks the abstraction boundaries you'd want
for managing this one piece of state across two variables, and messes up the
abstractions it does have. In addition to the regular score
transfer/render function, the codebase therefore has
a function that transfers the current delta to the score immediately,
but does not re-render the HUD, and
a function that adds the delta to the score and re-renders the HUD, but
does not reset the delta.
And – you guessed it – I wouldn't have mentioned any of this if it didn't
result in one bug and one quirk in TH02. The bug resulting from 1) is pretty
minor: The function is called when losing a life, and simply stops any
active score-counting animation at the value rendered on the frame where the
player got hit. This one is only a rendering issue – no points are lost, and
you just need to gain 10 more for the rendered value to jump back up to its
actual value. You'll probably never notice this one because you're likely
busy collecting the single spawned around Reimu
when losing a life, which always awards at least 10 points.
The quirk resulting from 2) is more intriguing though. Without a separate
reset of the score delta, the function effectively awards the current delta
value as a one-time point bonus, since the same delta will still be
regularly transferred to the score on further game frames.
This function is called at the start of every dialog sequence. However, TH02
stops running the regular game loop between the post-boss dialog and the
next stage where the delta is reset, so we can only observe this quirk for
the pre-boss sequences and the dialog before Mima's form change.
Unfortunately, it's not all too exploitable in either case: Each of the
pre-boss dialog sequences is preceded by an ungrazeable pellet pattern and
followed by multiple seconds of flying over an empty playfield with zero
scoring opportunities. By the time the sequence starts, the game will have
long transferred any big score delta from max-valued point items. It's
slightly better with Mima since you can at least shoot her and use a bomb to
keep the delta at a nonzero value, but without a health bar, there is little
indication of when the dialog starts, and it'd be long after Mima
gave out her last bonus items in any case.
But two of the bosses – that is, Rika, and the Five Magic Stones – are
scrolled onto the playfield as part of the stage script, and can also be hit
with player shots and bombs for a few seconds before their dialog starts.
While I'll only get to cover shot types and bomb damage within the next few
TH02 pushes, there is an obvious initial strategy for maximizing the effect
of this quirk: Spreading out the A-Type / Wide / High Mobility shot to land
as many hits as possible on all Five Magic Stones, while firing off a bomb.
Wow, a grand total of 1,750 extra points! Totally worth wasting a bomb for…
yeah, probably not. But at the very least, it's
something that a TAS score run would want to keep in mind. And all that just
because ZUN "forgot" a single score_delta = 0; assignment at
the end of one function…
And that brings TH02 over the 30% RE mark! Next up: 100% position
independence for TH04. If anyone wants to grab the
that have now been freed up in the cap: Any small Touhou-related task would
be perfect to round out that upcoming TH04 PI delivery.
📝 Posted:
🏷 Tags:
Turns out I was not quite done with the TH01 Anniversary Edition yet.
You might have noticed some white streaks at the beginning of Sariel's
second form, which are in fact a bug that I accidentally added to the
initial release.
These can be traced back to a quirk
I wasn't aware of, and hadn't documented so far. When defeating Sariel's
first form during a pattern that spawns pellets, it's likely for the second
form to start with additional pellets that resemble the previous pattern,
but come out of seemingly nowhere. This shouldn't really happen if you look
at the code: Nothing outside the typical pattern code spawns new pellets,
and all existing ones are reset before the form transition…
Except if they're currently showing the 10-frame delay cloud
animation , activated for all pellets during the symmetrical radial 2-ring
pattern in Phase 2 and left activated for the rest of the fight. These
pellets will continue their animation after the transition to the second
form, and turn into regular pellets you have to dodge once their animation
completed.
By itself, this is just one more quirk to keep in mind during refactoring.
It only turned into a bug in the Anniversary Edition because the game tracks
the number of living pellets in a separate counter variable. After resetting
all pellets, this counter is simply set to 0, regardless of any delay cloud
pellets that may still be alive, and it's merely incremented or decremented
when pellets are spawned or leave the playfield.
In the original game, this counter is only used as an optimization to skip
spawning new pellets once the cap is reached. But with batched
EGC-accelerated unblitting, it also makes sense to skip the rather costly
setup and shutdown of the EGC if no pellets are active anyway. Except if the
counter you use to check for that case can be 0 even if there are
pellets alive, which consequently don't get unblitted…
There is an optimal fix though: Instead of unconditionally resetting the
living pellet counter to 0, we decrement it for every pellet that
does get reset. This preserves the quirk and gives us a
consistently correct counter, allowing us to still skip every unnecessary
loop over the pellet array.
Ultimately, this was a harmless bug that didn't affect gameplay, but it's
still something that players would have probably reported a few more times.
So here's a free bugfix:
Starting the year with a delivery that wasn't delayed until the last
day of the month for once, nice! Still, very soon and
high-maintenance did not go well together…
It definitely wasn't Sara's fault though. As you would expect from a Stage 1
Boss, her code was no challenge at all. Most of the TH02, TH04, and TH05
bosses follow the same overall structure, so let's introduce a new table to
replace most of the boilerplate overview text:
Phase #
Patterns
HP boundary
Timeout condition
(Entrance)
4,650
288 frames
2
4
2,550
2,568 frames
(= 32 patterns)
3
4
450
5,296 frames
(= 24 patterns)
4
1
0
1,300 frames
Total
9
9,452 frames
In Phases 2 and 3, Sara cycles between waiting, moving randomly for a
fixed 28 frames, and firing a random pattern among the 4 phase-specific
ones. The pattern selection makes sure to never
pick any pattern twice in a row. Both phases contain spiral patterns that
only differ in the clockwise or counterclockwise turning direction of the
spawner; these directions are treated as individual unrelated patterns, so
it's possible for the "same" pattern to be fired multiple times in a row
with a flipped direction.
The two phases also differ in the wait and pattern durations:
In Phase 2, the wait time starts at 64 frames and decreases by 12
frames after the first 5 patterns each, ending on a minimum of 4 frames.
In Phase 3, it's a constant 16 frames instead.
All Phase 2 patterns are fired for 28 frames, after a 16-frame
gather animation. The Phase 3 pattern time starts at 80 frames and
increases by 24 frames for the first 6 patterns, ending at 200 frames
for all later ones.
Phase 4 consists of the single laser corridor pattern with additional
random bullets every 16 frames.
And that's all the gameplay-relevant detail that ZUN put into Sara's code. It doesn't even make sense to describe the remaining
patterns in depth, as their groups can significantly change between
difficulties and rank values. The
📝 general code structure of TH05 bosses
won't ever make for good-code, but Sara's code is just a
lesser example of what I already documented for Shinki.
So, no bugs, no unused content, only inconsequential bloat to be found here,
and less than 1 push to get it done… That makes 9 PC-98 Touhou bosses
decompiled, with 22 to go, and gets us over the sweet 50% overall
finalization mark! 🎉 And sure, it might be possible to pass through the
lasers in Sara's final pattern, but the boss script just controls the
origin, angle, and activity of lasers, so any quirk there would be part of
the laser code… wait, you can do what?!?
TH05 expands TH04's one-off code for Yuuka's Master and Double Sparks into a
more featureful laser system, and Sara is the first boss to show it off.
Thus, it made sense to look at it again in more detail and finalize the code
I had purportedly
📝 reverse-engineered over 4 years ago.
That very short delivery notice already hinted at a very time-consuming
future finalization of this code, and that prediction certainly came true.
On the surface, all of the low-level laser ray rendering and
collision detection code is undecompilable: It uses the SI and
DI registers without Turbo C++'s safety backups on the stack,
and its helper functions take their input and output parameters from
convenient registers, completely ignoring common calling conventions. And
just to raise the confusion even further, the code doesn't just set
these registers for the helper function calls and then restores their
original values, but permanently shifts them via additions and
subtractions. Unfortunately, these convenient registers also include the
BP base pointer to the stack frame of a function… and shifting
that register throws any intuition behind accessed local variables right out
of the window for a good part of the function, requiring a correctly shifted
view of the stack frame just to make sense of it again.
How could such code even have been written?! This
goes well beyond the already wrong assumption that using more stack space is
somehow bad, and straight into the territory of self-inflicted pain.
So while it's not a lot of instructions, it's quite dense and really hard to
follow. This code would really benefit from a decompilation that
anchors all this madness as much as possible in existing C++ structures… so
let's decompile it anyway?
Doing so would involve emitting lots of raw machine code bytes to hide the
SI and DI registers from the compiler, but I
already had a certain
📝 batshit insane compiler bug workaround abstraction
lying around that could make such code more readable. Hilariously, it only
took this one additional use case for that abstraction to reveal itself as
premature and way too complicated. Expanding
the core idea into a full-on x86 instruction generator ended up simplifying
the code structure a lot. All we really want there is a way to set all
potential parameters to e.g. a specific form of the MOV
instruction, which can all be expressed as the parameters to a force-inlined
__emit__() function. Type safety can help by providing
overloads for different operand widths here, but there really is no need for
classes, templates, or explicit specialization of templates based on
classes. We only need a couple of enums with opcode, register,
and prefix constants from the x86 reference documentation, and a set of
associated macros that token-paste pseudoregisters onto the prefixes of
these enum constants.
And that's how you get a custom compile-time assembler in a 1994 C++
compiler and expand the limits of decompilability even further. What's even
truly left now? Self-modifying code, layout tricks that can't be replicated
with regularly structured control flow… and that's it. That leaves quite a
few functions I previously considered undecompilable to be revisited once I
get to work on making this game more portable.
With that, we've turned the low-level laser code into the expected horrible
monstrosity that exposes all the hidden complexity in those few ASM
instructions. The high-level part should be no big deal now… except that
we're immediately bombarded with Fixup overflow errors at link
time? Oh well, time to finally learn the true way of fixing this highly
annoying issue in a second new piece of decompilation tech – and one
that might actually be useful for other x86 Real Mode retro developers at
that.
Earlier in the RE history of TH04 and TH05, I often wrote about the need to
split the two original code segments into multiple segments within two
groups, which makes it possible to slot in code from different
translation units at arbitrary places within the original segment. If we
don't want to define a unique segment name for each of these slotted-in
translation units, we need a way to set custom segment and group names in C
land. Turbo C++ offers two #pragmas for that:
#pragma option -zCsegment -zPgroup – preferred in most
cases as it's equivalent to setting the default segment and group via the
command line, but can only be used at the beginning of a translation unit,
before the first non-preprocessor and non-comment C language token
#pragma codeseg segment <group> – necessary if a
translation unit needs to emit code into two or more segments
For the most part, these #pragmas work well, but they seemed to
not help much when it came to calling near functions declared
in different segments within the same group. It took a bit of trial and
error to figure out what was actually going on in that case, but there
is a clear logic to it:
Symbols are allocated to the segment and group that's active during
their first appearance, no matter whether that appearance is a declaration
or definition. Any later appearance of the function in a different segment
is ignored.
The linker calculates the 16-bit offsets of such references relative to
the symbol's declared segment, not its actual one. Turbo C++ does
not show an error or warning if the declared and actual segments are
different, as referencing the same symbol from multiple segments is a valid
use case. The linker merely throws the Fixup overflow error if
the calculated distance exceeds 64 KiB and thus couldn't possibly fit
within a near reference. With a wrong segment declaration
though, your code can be incorrect long before a fixup hits that limit.
Summarized in code:
#pragma option -zCfoo_TEXT -zPfoo
void bar(void);
void near qux(void); // defined somewhere else, maybe in a different segment
#pragma codeseg baz_TEXT baz
// Despite the segment change in the line above, this function will still be
// put into `foo_TEXT`, the active segment during the first appearance of the
// function name.
void bar(void) {
}
// This function hasn't been declared yet, so it will go into `baz_TEXT` as
// expected.
void baz(void) {
// This `near` function pointer will be calculated by subtracting the
// flat/linear address of qux() inside the binary from the base address
// of qux()'s declared segment, i.e., `foo_TEXT`.
void (near *ptr_to_qux)(void) = qux;
}
So yeah, you might have to put #pragma codeseg into your
headers to tell the linker about the correct segment of a
near function in advance. 🤯 This is an important insight for
everyone using this compiler, and I'm shocked that none of the Borland C++
books documented the interaction of code segment definitions and
near references at least at this level of clarity. The TASM
manuals did have a few pages on the topic of groups, but that syntax
obviously doesn't apply to a C compiler. Fixup overflows in particular are
such a common error and really deserved better than the unhelpful 🤷
of an explanation that ended up in the User's Guide. Maybe this whole
technique of custom code segment names was considered arcane even by 1993,
judging from the mere three sentences that #pragma codeseg was
documented with? Still, it must have been common knowledge among Amusement
Makers, because they couldn't have built these exact binaries without
knowing about these details. This is the true solution to
📝 any issues involving references to near functions,
and I'm glad to see that ZUN did not in fact lie to the compiler. 👍
OK, but now the remaining laser code compiles, and we get to write
C++ code to draw some hitboxes during the two collision-detected states of
each laser. These confirm what the low-level code from earlier already
uncovered: Collision detection against lasers is done by testing a
12×12-pixel box at every 16 pixels along the length of a laser, which leaves
obvious 4-pixel gaps at regular intervals that the player can just pass
through. This adds
📝 yet📝 another📝 quirk to the growing list of quirks that
were either intentional or must have been deliberately left in the game
after their initial discovery. This is what constants were invented for, and
there really is no excuse for not using them – especially during
intoxicated coding, and/or if you don't have a compile-time abstraction for
Q12.4 literals.
Using subpixel coordinates in collision detection also introduces a slight
inaccuracy into any hitbox visualization recorded in-engine on a 16-color
PC-98. Since we have to render discrete pixels, we cannot exactly place a
Q12.4 coordinate in the 93.75% of cases where the fractional part is
non-zero. This is why pretty much every laser segment hitbox in the video
above shows up as 7×7 rather than 6×6: The actual W×H area of each box is 13
pixels smaller, but since the hitbox lies between these pixels, we
cannot indicate where it lies exactly, and have to err on the
side of caution. It's also why Reimu's box slightly changes size as she
moves: Her non-diagonal movement speed is 3.5 pixels per frame, and the
constant focused movement in the video above halves that to 1.75 pixels,
making her end up on an exact pixel every 4 frames. Looking forward to the
glorious future of displays that will allow us to scale up the playfield to
16× its original pixel size, thus rendering the game at its exact internal
resolution of 6144×5888 pixels. Such a port would definitely add a lot of
value to the game…
The remaining high-level laser code is rather unremarkable for the most
part, but raises one final interesting question: With no explicitly defined
limit, how wide can a laser be? Looking at the laser structure's 1-byte
width field and the unsigned comparisons all throughout the update and
rendering code, the answer seems to be an obvious 255 pixels. However, the
laser system also contains an automated shrinking state, which can be most
notably seen in Mai's wheel pattern. This state shrinks a laser by 2 pixels
every 2 frames until it reached a width of 0. This presents a problem with
odd widths, which would fall below 0 and overflow back to 255 due to the
unsigned nature of this variable. So rather than, I don't know, treating
width values of 0 as invalid and stopping at a width of 1, or even adding a
condition for that specific case, the code just performs a signed
comparison, effectively limiting the width of a shrinkable laser to a
maximum of 127 pixels. This small signedness
inconsistency now forces the distinction between shrinkable and
non-shrinkable lasers onto every single piece of code that uses lasers. Yet
another instance where
📝 aiming for a cinematic 30 FPS look
made the resulting code much more complicated than if ZUN had just evenly
spread out the subtraction across 2 frames. 🤷
Oh well, it's not as if any of the fixed lasers in the original scripts came
close to any of these limits. Moving lasers are much more streamlined and
limited to begin with: Since they're hardcoded to 6 pixels, the game can
safely assume that they're always thinner than the 28 pixels they get
gradually widened to during their decay animation.
Finally, in case you were missing a mention of hitboxes in the previous
paragraph: Yes, the game always uses the aforementioned 12×12 boxes,
regardless of a laser's width.
That was what, 50% of this blog post just being about complications that
made laser difficult for no reason? Next up: The first TH01 Anniversary
Edition build, where I finally get to reap the rewards of having a 100%
decompiled game and write some good code for once.
Whew, TH01's boss code just had to end with another beast of a boss, taking
way longer than it should have and leaving uncomfortably little time for the
rest of the game. Let's get right into the overview of YuugenMagan, the most
sequential and scripted battle in this game:
The fight consists of 14 phases, numbered (of course) from 0 to 13.
Unlike all other bosses, the "entrance phase" 0 is a proper gameplay-enabled
part of the fight itself, which is why I also count it here.
YuugenMagan starts with 16 HP, second only to Sariel's 18+6. The HP bar
visualizes the HP threshold for the end of phases 3 (white part) and 7
(red-white part), respectively.
All even-numbered phases change the color of the 邪 kanji in the stage
background, and don't check for collisions between the Orb and any eye.
Almost all of them consequently don't feature an attack, except for phase
0's 1-pixel lasers, spawning symmetrically from the left and right edges of
the playfield towards the center. Which means that yes, YuugenMagan is in
fact invincible during this first attack.
All other attacks are part of the odd-numbered phases:
Phase 1: Slow pellets from the lateral eyes. Ends
at 15 HP.
Phase 3: Missiles from the southern eyes, whose
angles first shift away from Reimu's tracked position and then towards
it. Ends at 12 HP.
Phase 5: Circular pellets sprayed from the lateral
eyes. Ends at 10 HP.
Phase 7: Another missile pattern, but this time
with both eyes shifting their missile angles by the same
(counter-)clockwise delta angles. Ends at 8 HP.
Phase 9: The 3-pixel 3-laser sequence from the
northern eye. Ends at 2 HP.
Phase 11: Spawns the pentagram with one corner out
of every eye, then gradually shrinks and moves it towards the center of
the playfield. Not really an "attack" (surprise) as the pentagram can't
reach the player during this phase, but collision detection is
technically already active here. Ends at 0 HP, marking the earliest
point where the fight itself can possibly end.
Phase 13: Runs through the parallel "pentagram
attack phases". The first five consist of the pentagram alternating its
spinning direction between clockwise and counterclockwise while firing
pellets from each of the five star corners. After that, the pentagram
slams itself into the player, before YuugenMagan loops back to phase
10 to spawn a new pentagram. On the next run through phase 13, the
pentagram grows larger and immediately slams itself into the player,
before starting a new pentagram attack phase cycle with another loop
back to phase 10.
Since the HP bar fills up in a phase with no collision detection,
YuugenMagan is immune to
📝 test/debug mode heap corruption. It's
generally impossible to get YuugenMagan's HP into negative numbers, with
collision detection being disabled every other phase, and all odd-numbered
phases ending immediately upon reaching their HP threshold.
All phases until the very last one have a timeout condition, independent
from YuugenMagan's current HP:
Phase 0: 331 frames
Phase 1: 1101 frames
Phases 2, 4, 6, 8, 10, and 12: 70 frames each
Phases 3 and 7: 5 iterations of the pattern, or
1845 frames each
Phase 5: 5 iterations of the pattern, or 2230
frames
Phase 9: The full duration of the sequence, or 491
frames
Phase 11: Until the pentagram reached its target
position, or 221 frames
This makes it possible to reach phase 13 without dealing a single point of
damage to YuugenMagan, after almost exactly 2½ minutes on any difficulty.
Your actual time will certainly be higher though, as you will have to
HARRY UP at least once during the attempt.
And let's be real, you're very likely to subsequently lose a
life.
At a pixel-perfect 81×61 pixels, the Orb hitboxes are laid out rather
generously this time, reaching quite a bit outside the 64×48 eye sprites:
And that's about the only positive thing I can say about a position
calculation in this fight. Phase 0 already starts with the lasers being off
by 1 pixel from the center of the iris. Sure, 28 may be a nicer number to
add than 29, but the result won't be byte-aligned either way? This is
followed by the eastern laser's hitbox somehow being 24 pixels larger than
the others, stretching a rather unexpected 70 pixels compared to the 46 of
every other laser.
On a more hilarious note, the eye closing keyframe contains the following
(pseudo-)code, comprising the only real accidentally "unused" danmaku
subpattern in TH01:
// Did you mean ">= RANK_HARD"?
if(rank == RANK_HARD) {
eye_north.fire_aimed_wide_5_spread();
eye_southeast.fire_aimed_wide_5_spread();
eye_southwest.fire_aimed_wide_5_spread();
// Because this condition can never be true otherwise.
// As a result, no pellets will be spawned on Lunatic mode.
// (There is another Lunatic-exclusive subpattern later, though.)
if(rank == RANK_LUNATIC) {
eye_west.fire_aimed_wide_5_spread();
eye_east.fire_aimed_wide_5_spread();
}
}
After a few utility functions that look more like a quickly abandoned
refactoring attempt, we quickly get to the main attraction: YuugenMagan
combines the entire boss script and most of the pattern code into a single
2,634-instruction function, totaling 9,677 bytes inside
REIIDEN.EXE. For comparison, ReC98's version of this code
consists of at least 49 functions, excluding those I had to add to work
around ZUN's little inconsistencies, or the ones I added for stylistic
reasons.
In fact, this function is so large that Turbo C++ 4.0J refuses to generate
assembly output for it via the -S command-line option, aborting
with a Compiler table limit exceeded in function error.
Contrary to what the Borland C++ 4.0 User Guide suggests, this
instance of the error is not at all related to the number of function bodies
or any metric of algorithmic complexity, but is simply a result of the
compiler's internal text representation for a single function overflowing a
64 KiB memory segment. Merely shortening the names of enough identifiers
within the function can help to get that representation down below 64 KiB.
If you encounter this error during regular software development, you might
interpret it as the compiler's roundabout way of telling you that it inlined
way more function calls than you probably wanted to have inlined. Because
you definitely won't explicitly spell out such a long function
in newly-written code, right?
At least it wasn't the worst copy-pasting job in this
game; that trophy still goes to 📝 Elis. And
while the tracking code for adjusting an eye's sprite according to the
player's relative position is one of the main causes behind all the bloat,
it's also 100% consistent, and might have been an inlined class method in
ZUN's original code as well.
The clear highlight in this fight though? Almost no coordinate is
precisely calculated where you'd expect it to be. In particular, all
bullet spawn positions completely ignore the direction the eyes are facing
to:
Due to their effect on gameplay, these inaccuracies can't even be called
"bugs", and made me devise a new "quirk" category instead. More on that in
the TH01 100% blog post, though.
While we did see an accidentally unused bullet pattern earlier, I can
now say with certainty that there are no truly unused danmaku
patterns in TH01, i.e., pattern code that exists but is never called.
However, the code for YuugenMagan's phase 5 reveals another small piece of
danmaku design intention that never shows up within the parameters of
the original game.
By default, pellets are clipped when they fly past the top of the playfield,
which we can clearly observe for the first few pellets of this pattern.
Interestingly though, the second subpattern actually configures its pellets
to fall straight down from the top of the playfield instead. You never see
this happening in-game because ZUN limited that subpattern to a downwards
angle range of 0x73 or 162°, resulting in none of its pellets
ever getting close to the top of the playfield. If we extend that range to a
full 360° though, we can see how ZUN might have originally planned the
pattern to end:
If we also disregard everything else about YuugenMagan that fits the
upcoming definition of quirk, we're left with 6 "fixable" bugs, all
of which are a symptom of general blitting and unblitting laziness. Funnily
enough, they can all be demonstrated within a short 9-second part of the
fight, from the end of phase 9 up until the pentagram starts spinning in
phase 13:
General flickering whenever any sprite overlaps an eye. This is caused
by only reblitting each eye every 3 frames, and is an issue all throughout
the fight. You might have already spotted it in the videos above.
Each of the two lasers is unblitted and blitted individually instead of
each operation being done for both lasers together. Remember how
📝 ZUN unblits 32 horizontal pixels for every row of a line regardless of its width?
That's why the top part of the left, right-moving laser is never visible,
because it's blitted before the other laser is unblitted.
ZUN forgot to unblit the lasers when phase 9 ends. This footage was
recorded by pressing ↵ Return in test mode (game t or
game d), and it's probably impossible to achieve this during
actual gameplay without TAS techniques. You would have to deal the required
6 points of damage within 491 frames, with the eye being invincible during
240 of them. Simply shooting up an Orb with a horizontal velocity of 0 would
also only work a single time, as boss entities always repel the Orb with a
horizontal velocity of ±4.
The shrinking pentagram is unblitted after the eyes were blitted,
adding another guaranteed frame of flicker on top of the ones in 1). Like in
2), the blockiness of the holes is another result of unblitting 32 pixels
per row at a time.
Another missing unblitting call in a phase transition, as the pentagram
switches from its not quite correctly interpolated shrunk form to a regular
star polygon with a radius of 64 pixels. Indirectly caused by the massively
bloated coordinate calculation for the shrink animation being done
separately for the unblitting and blitting calls. Instead of, y'know, just
doing it once and storing the result in variables that can later be
reused.
The pentagram is not reblitted at all during the first 100 frames of
phase 13. During that rather long time, it's easily possible to remove
it from VRAM completely by covering its area with player shots. Or HARRY UP pellets.
Definitely an appropriate end for this game's entity blitting code.
I'm really looking forward to writing a
proper sprite system for the Anniversary Edition…
And just in case you were wondering about the hitboxes of these pentagrams
as they slam themselves into Reimu:
62 pixels on the X axis, centered around each corner point of the star, 16
pixels below, and extending infinitely far up. The latter part becomes
especially devious because the game always collision-detects
all 5 corners, regardless of whether they've already clipped through
the bottom of the playfield. The simultaneously occurring shape distortions
are simply a result of the line drawing function's rather poor
re-interpolation of any line that runs past the 640×400 VRAM boundaries;
📝 I described that in detail back when I debugged the shootout laser crash.
Ironically, using fixed-size hitboxes for a variable-sized pentagram means
that the larger one is easier to dodge.
The final puzzle in TH01's boss code comes
📝 once again in the form of weird hardware
palette changes. The 邪 kanji on the background
image goes through various colors throughout the fight, which ZUN
implemented by gradually incrementing and decrementing either a single one
or none of the color's three 4-bit components at the beginning of each
even-numbered phase. The resulting color sequence, however, doesn't
quite seem to follow these simple rules:
Phase 0: #DD5邪
Phase 2: #0DF邪
Phase 4: #F0F邪
Phase 6: #00F邪, but at the
end of the phase?!
Phase 8: #0FF邪, at the start
of the phase, #0F5邪, at the end!?
Phase 10: #FF5邪, at the start of
the phase, #F05邪, at the end
Second repetition of phase 12: #005邪
shortly after the start of the phase?!
Adding some debug output sheds light on what's going on there:
Yup, ZUN had so much trust in the color clamping done by his hardware
palette functions that he did not clamp the increment operation on the
stage_palette itself. Therefore, the 邪
colors and even the timing of their changes from Phase 6 onwards are
"defined" by wildly incrementing color components beyond their intended
domain, so much that even the underlying signed 8-bit integer ends up
overflowing. Given that the decrement operation on the
stage_paletteis clamped though, this might be another
one of those accidents that ZUN deliberately left in the game,
📝 similar to the conclusion I reached with infinite bumper loops.
But guess what, that's also the last time we're going to encounter this type
of palette component domain quirk! Later games use master.lib's 8-bit
palette system, which keeps the comfort of using a single byte per
component, but shifts the actual hardware color into the top 4 bits, leaving
the bottom 4 bits for added precision during fades.
OK, but now we're done with TH01's bosses! 🎉That was the
8th PC-98 Touhou boss in total, leaving 23 to go.
With all the necessary research into these quirks going well into a fifth
push, I spent the remaining time in that one with transferring most of the
data between YuugenMagan and the upcoming rest of REIIDEN.EXE
into C land. This included the one piece of technical debt in TH01 we've
been carrying around since March 2015, as well as the final piece of the
ending sequence in FUUIN.EXE. Decompiling that executable's
main() function in a meaningful way requires pretty much all
remaining data from REIIDEN.EXE to also be moved into C land,
just in case you were wondering why we're stuck at 99.46% there.
On a more disappointing note, the static initialization code for the
📝 5 boss entity slots ultimately revealed why
YuugenMagan's code is as bloated and redundant as it is: The 5 slots really
are 5 distinct variables rather than a single 5-element array. That's why
ZUN explicitly spells out all 5 eyes every time, because the array he could
have just looped over simply didn't exist. 😕 And while these slot variables
are stored in a contiguous area of memory that I could just have
taken the address of and then indexed it as if it were an array, I
didn't want to annoy future port authors with what would technically be
out-of-bounds array accesses for purely stylistic reasons. At least it
wasn't that big of a deal to rewrite all boss code to use these distinct
variables, although I certainly had to get a bit creative with Elis.
Next up: Finding out how many points we got in totle, and hoping that ZUN
didn't hide more unexpected complexities in the remaining 45 functions of
this game. If you have to spare, there are two ways
in which that amount of money would help right now:
I'm expecting another subscription transaction
from Yanga before the 15th, which would leave to
round out one final TH01 RE push. With that, there'd be a total of 5 left in
the backlog, which should be enough to get the rest of this game done.
I really need to address the performance and usability issues
with all the small videos in this blog. Just look at the video immediately
above, where I disabled the controls because they would cover the debug text
at the bottom… Edit (2022-10-31):… which no longer is an
issue with our 📝 custom video player.
I already reserved this month's anonymous contribution for this work, so it would take another to be turned into a full push.
Oh look, it's another rather short and straightforward boss with a rather
small number of bugs and quirks. Yup, contrary to the character's
popularity, Mima's premiere is really not all that special in terms of code,
and continues the trend established with
📝 Kikuri and
📝 SinGyoku. I've already covered
📝 the initial sprite-related bugs last November,
so this post focuses on the main code of the fight itself. The overview:
The TH01 Mima fight consists of 3 phases, with phases 1 and 3 each
corresponding to one half of the 12-HP bar.
📝 Just like with SinGyoku, the distinction
between the red-white and red parts is purely visual once again, and doesn't
reflect anything about the boss script. As usual, all of the phases have to
be completed in order.
Phases 1 and 3 cycle through 4 danmaku patterns each, for a total of 8.
The cycles always start on a fixed pattern.
3 of the patterns in each phase feature rotating white squares, thus
introducing a new sprite in need of being unblitted.
Phase 1 additionally features the "hop pattern" as the last one in its
cycle. This is the only pattern where Mima leaves the seal in the center of
the playfield to hop from one edge of the playfield towards the other, while
also moving slightly higher up on the Y axis, and staying on the final
position for the next pattern cycle. For the first time, Mima selects a
random starting edge, which is then alternated on successive cycles.
Since the square entities are local to the respective pattern function,
Phase 1 can only end once the current pattern is done, even if Mima's HP are
already below 6. This makes Mima susceptible to the
📝 test/debug mode HP bar heap corruption bug.
Phase 2 simply consists of a spread-in teleport back to Mima's initial
position in the center of the playfield. This would only have been strictly
necessary if phase 1 ended on the hop pattern, but is done regardless of the
previous pattern, and does provide a nice visual separation between the two
main phases.
That's it – nothing special in Phase 3.
And there aren't even any weird hitboxes this time. What is maybe
special about Mima, however, is how there's something to cover about all of
her patterns. Since this is TH01, it's won't surprise anyone that the
rotating square patterns are one giant copy-pasta of unblitting, updating,
and rendering code. At least ZUN placed the core polar→Cartesian
transformation in a separate function for creating regular polygons
with an arbitrary number of sides, which might hint toward some more varied
shapes having been planned at one point?
5 of the 6 patterns even follow the exact same steps during square update
frames:
Calculate square corner coordinates
Unblit the square
Update the square angle and radius
Use the square corner coordinates for spawning pellets or missiles
Recalculate square corner coordinates
Render the square
Notice something? Bullets are spawned before the corner coordinates
are updated. That's why their initial positions seem to be a bit off – they
are spawned exactly in the corners of the square, it's just that it's
the square from 8 frames ago.
Once ZUN reached the final laser pattern though, he must have noticed that
there's something wrong there… or maybe he just wanted to fire those
lasers independently from the square unblit/update/render timer for a
change. Spending an additional 16 bytes of the data segment for conveniently
remembering the square corner coordinates across frames was definitely a
decent investment.
When Mima isn't shooting bullets from the corners of a square or hopping
across the playfield, she's raising flame pillars from the bottom of the playfield within very specifically calculated
random ranges… which are then rendered at byte-aligned VRAM positions, while
collision detection still uses their actual pixel position. Since I don't
want to sound like a broken record all too much, I'll just direct you to
📝 Kikuri, where we've seen the exact same issue with the teardrop ripple sprites.
The conclusions are identical as well.
However, I'd say that the saddest part about this pattern is how choppy it
is, with the circle/pillar entities updating and rendering at a meager 7
FPS. Why go that low on purpose when you can just make the game render ✨
smoothly ✨ instead?
The reason quickly becomes obvious: With TH01's lack of optimization, going
for the full 56.4 FPS would have significantly slowed down the game on its
intended 33 MHz CPUs, requiring more than cheap surface-level ASM
optimization for a stable frame rate. That might very well have been ZUN's
reason for only ever rendering one circle per frame to VRAM, and designing
the pattern with these time offsets in mind. It's always been typical for
PC-98 developers to target the lowest-spec models that could possibly still
run a game, and implementing dynamic frame rates into such an engine-less
game is nothing I would wish on anybody. And it's not like TH01 is
particularly unique in its choppiness anyway; low frame rates are actually a
rather typical part of the PC-98 game aesthetic.
The final piece of weirdness in this fight can be found in phase 1's hop
pattern, and specifically its palette manipulation. Just from looking at the
pattern code itself, each of the 4 hops is supposed to darken the hardware
palette by subtracting #444 from every color. At the last hop,
every color should have therefore been reduced to a pitch-black
#000, leaving the player completely blind to the movement of
the chasing pellets for 30 frames and making the pattern quite ghostly
indeed. However, that's not what we see in the actual game:
Looking at the frame counter, it appears that something outside the
pattern resets the palette every 40 frames. The only known constant with a
value of 40 would be the invincibility frames after hitting a boss with the
Orb, but we're not hitting Mima here…
But as it turns out, that's exactly where the palette reset comes from: The
hop animation darkens the hardware palette directly, while the
📝 infamous 12-parameter boss collision handler function
unconditionally resets the hardware palette to the "default boss palette"
every 40 frames, regardless of whether the boss was hit or not. I'd classify
this as a bug: That function has no business doing periodic hardware palette
resets outside the invincibility flash effect, and it completely defies
common sense that it does.
That explains one unexpected palette change, but could this function
possibly also explain the other infamous one, namely, the temporary green
discoloration in the Konngara fight? That glitch comes down to how the game
actually uses two global "default" palettes: a default boss
palette for undoing the invincibility flash effect, and a default
stage palette for returning the colors back to normal at the end of
the bomb animation or when leaving the Pause menu. And sure enough, the
stage palette is the one with the green color, while the boss
palette contains the intended colors used throughout the fight. Sending the
latter palette to the graphics chip every 40 frames is what corrects
the discoloration, which would otherwise be permanent.
The green color comes from BOSS7_D1.GRP, the scrolling
background of the entrance animation. That's what turns this into a clear
bug: The stage palette is only set a single time in the entire fight,
at the beginning of the entrance animation, to the palette of this image.
Apart from consistency reasons, it doesn't even make sense to set the stage
palette there, as you can't enter the Pause menu or bomb during a blocking
animation function.
And just 3 lines of code later, ZUN loads BOSS8_A1.GRP, the
main background image of the fight. Moving the stage palette assignment
there would have easily prevented the discoloration.
But yeah, as you can tell, palette manipulation is complete jank in this
game. Why differentiate between a stage and a boss palette to begin with?
The blocking Pause menu function could have easily copied the original
palette to a local variable before darkening it, and then restored it after
closing the menu. It's not so easy for bombs as the intended palette could
change between the start and end of the animation, but the code could have
still been simplified a lot if there was just one global "default palette"
variable instead of two. Heck, even the other bosses who manipulate their
palettes correctly only do so because they manually synchronize the two
after every change. The proper defense against bugs that result from wild
mutation of global state is to get rid of global state, and not to put up
safety nets hidden in the middle of existing effect code.
In any case, that's Mima done! 7th PC-98 Touhou boss fully
decompiled, 24 bosses remaining, and 59 functions left in all of TH01.
In other thrilling news, my call for secondary funding priorities in new
TH01 contributions has given us three different priorities so far. This
raises an interesting question though: Which of these contributions should I
now put towards TH01 immediately, and which ones should I leave in the
backlog for the time being? Since I've never liked deciding on priorities,
let's turn this into a popularity contest instead: The contributions with
the least popular secondary priorities will go towards TH01 first, giving
the most popular priorities a higher chance to still be left over after TH01
is done. As of this delivery, we'd have the following popularity order:
TH05 (1.67 pushes), from T0182
Seihou (1 push), from T0184
TH03 (0.67 pushes), from T0146
Which means that T0146 will be consumed for TH01 next, followed by T0184 and
then T0182. I only assign transactions immediately before a delivery though,
so you all still have the chance to change up these priorities before the
next one.
Next up: The final boss of TH01 decompilation, YuugenMagan… if the current
or newly incoming TH01 funds happen to be enough to cover the entire fight.
If they don't turn out to be, I will have to pass the time with some Seihou
work instead, missing the TH01 anniversary deadline as a result.Edit (2022-07-18): Thanks to Yanga for
securing the funding for YuugenMagan after all! That fight will feature
slightly more than half of all remaining code in TH01's
REIIDEN.EXE and the single biggest function in all of PC-98
Touhou, let's go!
More than 50% of all PC-98 Touhou game code has now been
reverse-engineered! 🎉 While this number isn't equally distributed among the
games, we've got one game very close to 100% and reverse-engineered most of
the core features of two others. During the last 32 months of continuous
funding, I've averaged an overall speed of 1.11% total RE per month. That
looks like a decent prediction of how much more time it will take for 100%
across all games – unless, of course, I'd get to work towards some of the
non-RE goals in the meantime.
70 functions left in TH01, with less than 10,000 ASM instructions
remaining! Due to immense hype, I've temporarily raised the cap by 50% until
August 15. With the last TH01 pushes delivering at roughly 1.5× of the
currently calculated average speed, that should be more than enough to get
TH01 done – especially since I expect YuugenMagan to come with lots of
redundant code. Therefore, please also request a secondary priority for
these final TH01 RE contributions.
So, how did this card-flipping stage obstacle delivery get so horribly
delayed? With all the different layouts showcased in the 28 card-flipping
stages, you'd expect this to be among the more stable and bug-free parts of
the codebase. Heck, with all stage objects being placed on a 32×32-pixel
grid, this is the first TH01-related blog post this year that doesn't have
to describe an alignment-related unblitting glitch!
That alone doesn't mean that this code is free from quirky behavior though,
and we have to look no further than the first few lines of the collision
handling for round bumpers to already find a whole lot of that. Simplified,
they do the following:
Immediately, you wonder why these assignments only exist for the Y
coordinate. Sure, hitting a bumper from the left or right side should happen
less often, but it's definitely possible. Is it really a good idea to warp
the Orb to the top or bottom edge of a bumper regardless?
What's more important though: The fact that these immediate assignments
exist at all. The game's regular Orb physics work by producing a Y velocity
from the single force acting on the Orb and a gravity factor, and are
completely independent of its current Y position. A bumper collision does
also apply a new force onto the Orb further down in the code, but these
assignments still bypass the physics system and are bound to have
some knock-on effect on the Orb's movement.
To observe that effect, we just have to enter Stage 18 on the 地獄/Jigoku route, where it's particularly trivial to
reproduce. At a 📝 horizontal velocity of ±4,
these assignments are exactly what can cause the Orb to endlessly
bounce between two bumpers. As rudimentary as the Orb's physics may be, just
letting them do their work would have entirely prevented these loops:
Now, you might be thinking that these Y assignments were just an attempt to
prevent the Orb from colliding with the same bumper again on the next frame.
After all, those 24 pixels exactly correspond to ⅓ of the height of a
bumper's hitbox with an additional pixel added on top. However, the game
already perfectly prevents repeated collisions by turning off collision
testing with the same bumper for the next 7 frames after a collision. Thus,
we can conclude that ZUN either explicitly coded bumper collision handling
to facilitate these loops, or just didn't take out that code after
inevitably discovering what it did. This is not janky code, it's not a
glitch, it's not sarcasm from my end, and it's not the game's physics being
bad.
But wait. Couldn't these assignments just be a remnant from a time in
development before ZUN decided on the 7-frame delay on further
collisions? Well, even that explanation stops holding water after the next
few lines of code. Simplified, again:
What's important here is the part that's not in the code – namely,
anything that handles X velocities of -8 or +8. In those cases, the Orb
simply continues in the same horizontal direction. The manual Y assignment
is the only part of the code that actually prevents a collision there, as
the newly applied force is not guaranteed to be enough:
Forgetting to handle ⅖ of your discrete X velocity cases is simply not
something you do by accident. So we might as well say that ZUN deliberately
designed the game to behave exactly as it does in this regard.
Bumpers also come in vertical or horizontal bar shapes. Their collision
handling also turns off further collision testing for the next 7 frames, and
doesn't do any manual coordinate assignment. That's definitely a step up in
cleanliness from round bumpers, but it doesn't seem to keep in mind that the
player can fire a new shot every 4 frames when standing still. That makes it
immediately obvious why this works:
That's the most well-known case of reducing the Orb's horizontal velocity to
0 by exactly hitting it with shots in its center and then button-mashing it
through a horizontal bar. This also works with vertical bars and yields even
more interesting results there, but if we want to have any chance of
understanding what happens there, we have to first go over some basics:
Collision detection for all stage obstacles is done in row-major
order from the top-left to the bottom-right corner of the
playfield.
All obstacles are collision-tested independently from each other, with
the collision response code immediately following the test.
The hitboxes for bumper bars extend far past their 32×32 sprites to make
sure that the Orb can collide with them from any side. They are a
pixel-perfect* 87×56 pixels for horizontal bars, and 57×87 pixels for
vertical ones. Yes, that's no typo, they really do differ in one pixel.
Changing the Y velocity during such a collision just involves applying a
new force with the magnitude of the negated current Y velocity, which can be
done multiple times during a frame without changing the result. This
explains why the force is correctly inverted in the clip above, despite the
Orb colliding with two bumpers simultaneously.
Lacking a similar force system, the X coordinate is simply directly
inverted.
However, if that were everything the game did, kicking the Orb into a column
of vertical bumper bars would lead them to behave more like a rope that the
Orb can climb, as the initial collision with two hitboxes cancels out the
intended sign change that reflects the Orb away from the bars:
While that would have been a fun gameplay mechanic on its own, it
immediately breaks apart once you place two vertical bumper bars next to
each other. Due to how these bumper bar hitboxes extend past their sprites,
any two adjacent vertical bars will end up with the exact same hitbox in
absolute screen coordinates. Stage 17 on the
魔界/Makai route contains exactly such a layout:
ZUN's workaround: Setting a "vertical bumper bar block flag" after any
collision with such a bar, which simply disables any collision with
any vertical bar for the next 7 frames. This quick hack made all
vertical bars work as intended, and avoided the need for involving the Orb's
X velocity in any kind of physics system.
Edit (2022-07-12): This flag only works around glitches
that would be caused by simultaneously colliding with more than one vertical
bar. The actual response to a bumper bar collision still remains unaffected,
and is very naive:
Horizontal bars always invert the Orb's Y velocity
Vertical bars invert either the Y or X velocity depending on whether
the Orb's current X velocity is 0 (Y) or not (X)
These conditions are only correct if the Orb comes in at an angle roughly
between 45° and 135° on either side of a bar. If it's anywhere close to 0°
or 180°, this response will be incorrect, and send the Orb straight
through the bar. Since the large hitboxes make this easily possible, you can
still get the Orb to climb a vertical column, or glide along a horizontal
row:
Here's the hitbox overlay for
地獄/Jigoku Stage 19, and here's an updated
version of the 📝 Orb physics debug mod that
now also shows bumper bar collision frame numbers:
2022-07-10-TH01OrbPhysicsDebug.zip
See the th01_orb_debug
branch for the code. To use it, simply replace REIIDEN.EXE, and
run the game in debug mode, via game d on the DOS prompt. If you
encounter a gameplay situation that doesn't seem to be covered by this blog
post, you can now verify it for yourself. Thanks to touhou-memories for bringing these
issues to my attention! That definitely was a glaring omission from the
initial version of this blog post.
With that clarified, we can now try mashing the Orb into these two vertical
bars:
At first, that workaround doesn't seem to make a difference here. As we
expect, the frame numbers now tell us that only one of the two bumper bars
in a row activates, but we couldn't have told otherwise as the number of
bars has no effect on newly applied Y velocity forces. On a closer look, the
Orb's rise to the top of the playfield is in fact caused by that
workaround though, combined with the unchanged top-to-bottom order of
collision testing. As soon as any bumper bar completed its 7
collision delay frames, it resets the aforementioned flag, which already
reactivates collision handling for any remaining vertical bumper bars during
the same frame. Look out for frames with both a 7 and a 1, like the one marked in the video above:
The 7 will always appear before
the 1 in the row-major order. Whenever
this happens, the current oscillation period is cut down from 7 to 6
frames – and because collision testing runs from top to bottom, this will
always happen during the falling part. Depending on the Y velocity, the
rising part may also be cut down to 6 frames from time to time, but that one
at least has a chance to last for the full 7 frames. This difference
adds those crucial extra frames of upward movement, which add up to send the
Orb to the top. Without the flag, you'd always see the Orb oscillating
between a fixed range of the bar column.
Finally, it's the "top of playfield" force that gradually slows down the Orb
and makes sure it ultimately only moves at sub-pixel velocities, which have
no visible effect. Because
📝 the regular effect of gravity is reset with
each newly applied force, it's completely negated during most of the climb.
This even holds true once the Orb reached the top: Since the Orb requires a
negative force to repeatedly arrive up there and be bounced back, this force
will stay active for the first 5 of the 7 collision frames and not move the
Orb at all. Once gravity kicks in at the 5th frame and adds 1 to
the Y velocity, it's already too late: The new velocity can't be larger than
0.5, and the Orb only has 1 or 2 frames before the flag reset causes it to
be bounced back up to the top again.
Portals, on the other hand, turn out to be much simpler than the old
description that ended up on Touhou Wiki in October 2005 might suggest.
Everything about their teleportations is random: The destination portal, the
exit force (as an integer between -9 and +9), as well as the exit X
velocity, with each of the
📝 5 distinct horizontal velocities having an
equal chance of being chosen. Of course, if the destination portal is next
to the left or right edge of the playfield and it chooses to fire the Orb
towards that edge, it immediately bounces off into the opposite direction,
whereas the 0 velocity is always selected with a constant 20% probability.
The selection process for the destination portal involves a bit more than a
single rand() call. The game bundles all obstacles in a single
structure of dynamically allocated arrays, and only knows how many obstacles
there are in total, not per type. Now, that alone wouldn't have much
of an impact on random portal selection, as you could simply roll a random
obstacle ID and try again if it's not a portal. But just to be extra cute,
ZUN instead iterates over all obstacles, selects any non-entered portal with
a chance of ¼, and just gives up if that dice roll wasn't successful after
16 loops over the whole array, defaulting to the entered portal in that
case.
In all its silliness though, this works perfectly fine, and results in a
chance of 0.7516(𝑛 - 1) for the Orb exiting out of the
same portal it entered, with 𝑛 being the total number of portals in a
stage. That's 1% for two portals, and 0.01% for three. Pretty decent for a
random result you don't want to happen, but that hurts nobody if it does.
The one tiny ZUN bug with portals is technically not even part of the newly
decompiled code here. If Reimu gets hit while the Orb is being sent through
a portal, the Orb is immediately kicked out of the portal it entered, no
matter whether it already shows up inside the sprite of the destination
portal. Neither of the two portal sprites is reset when this happens,
leading to "two Orbs" being visible simultaneously.
This makes very little sense no matter how you look at it. The Orb doesn't
receive a new velocity or force when this happens, so it will simply
re-enter the same portal once the gameplay resumes on Reimu's next life:
That left another ½ of a push over at the end. Way too much time to finish
FUUIN.exe, way too little time to start with Mima… but the bomb
animation fit perfectly in there. No secrets or bugs there, just a bunch of
sprite animation code wasting at least another 82 bytes in the data segment.
The special effect after the kuji-in sprites uses the same single-bitplane
32×32 square inversion effect seen at the end of Kikuri's and Sariel's
entrance animation, except that it's a 3-stack of 16-rings moving at 6, 7,
and 8 pixels per frame respectively. At these comparatively slow speeds, the
byte alignment of each square adds some further noise to the discoloration
pattern… if you even notice it below all the shaking and seizure-inducing
hardware palette manipulation.
And yes, due to the very destructive nature of the effect, the game does in
fact rely on it only being applied to VRAM page 0. While that will cause
every moving sprite to tear holes into the inverted squares along its
trajectory, keeping a clean playfield on VRAM page 1 is what allows all that
pixel damage to be easily undone at the end of this 89-frame animation.
Next up: Mima! Let's hope that stage obstacles already were the most complex
part remaining in TH01…
It only took a record-breaking 1½ pushes to get SinGyoku done!
No 📝 entity synchronization code after
all! Since all of SinGyoku's sprites are 96×96 pixels, ZUN made the rather
smart decision of just using the sphere entity's position to render the
📝 flash and person entities – and their only
appearance is encapsulated in a single sphere→person→sphere transformation
function.
Just like Kikuri, SinGyoku's code as a whole is not a complete
disaster.
The negative:
It's still exactly as buggy as Kikuri, with both of the ZUN bugs being
rendering glitches in a single function once again.
It also happens to come with a weird hitbox, …
… and some minor questionable and weird pieces of code.
The overview:
SinGyoku's fight consists of 2 phases, with the first one corresponding
to the white part from 8 to 6 HP, and the second one to the rest of the HP
bar. The distinction between the red-white and red parts is purely visual,
and doesn't reflect anything about the boss script.
Both phases cycle between a pellet pattern and SinGyoku's sphere form
slamming itself into the player, followed by it slightly overshooting its
intended base Y position on its way back up.
Phase 1 only consists of the sphere form's half-circle spray pattern.
Technically, the phase can only end during that pattern, but adding
that one additional condition to allow it to end during the slam+return
"pattern" wouldn't have made a difference anyway. The code doesn't rule out
negative HP during the slam (have fun in test or debug mode), but the sum of
invincibility frames alone makes it impossible to hit SinGyoku 7 times
during a single slam in regular gameplay.
Phase 2 features two patterns for both the female and male forms
respectively, which are selected randomly.
This time, we're back to the Orb hitbox being a logical 49×49 pixels in
SinGyoku's center, and the shot hitbox being the weird one. What happens if
you want the shot hitbox to be both offset to the left a bit
and stretch the entire width of SinGyoku's sprite? You get a hitbox
that ends in mid-air, far away from the right edge of the sprite:
Due to VRAM byte alignment, all player shots fired between
gx = 376 and gx = 383 inclusive
appear at the same visual X position, but are internally already partly
outside the hitbox and therefore won't hit SinGyoku – compare the
marked shot at gx = 376 to the one at gx =
380. So much for precisely visualizing hitboxes in this game…
Since the female and male forms also use the sphere entity's coordinates,
they share the same hitbox.
Onto the rendering glitches then, which can – you guessed it – all be found
in the sphere form's slam movement:
ZUN unblits the delta area between the sphere's previous and current
position on every frame, but reblits the sphere itself on… only every second
frame?
For negative X velocities, ZUN made a typo and subtracted the Y velocity
from the right edge of the area to be unblitted, rather than adding the X
velocity. On a cursory look, this shouldn't affect the game all too
much due to the unblitting function's word alignment. Except when it does:
If the Y velocity is much smaller than the X one, the left edge of the
unblitted area can, on certain frames, easily align to a word address past
the previous right edge of the sphere. As a result, not a single sphere
pixel will actually be unblitted, and a small stripe of the sphere will be
left in VRAM for one frame, until the alignment has caught up with the
sphere's movement in the next one.
By having the sphere move from the right edge of the playfield to the
left, this video demonstrates both the lazy reblitting and broken
unblitting at the right edge for negative X velocities. Also, isn't it
funny how Reimu can partly disappear from all the sloppy
SinGyoku-related unblitting going on after her sprite was blitted?
Due to the low contrast of the sphere against the background, you typically
don't notice these glitches, but the white invincibility flashing after a
hit really does draw attention to them. This time, all of these glitches
aren't even directly caused by ZUN having never learned about the
EGC's bit length register – if he just wrote correct code for SinGyoku, none
of this would have been an issue. Sigh… I wonder how many more glitches will
be caused by improper use of this one function in the last 18% of
REIIDEN.EXE.
There's even another bug here, with ZUN hardcoding a horizontal delta of 8
pixels rather than just passing the actual X velocity. Luckily, the maximum
movement speed is 6 pixels on Lunatic, and this would have only turned into
an additional observable glitch if the X velocity were to exceed 24 pixels.
But that just means it's the kind of bug that still drains RE attention to
prove that you can't actually observe it in-game under some
circumstances.
The 5 pellet patterns are all pretty straightforward, with nothing to talk
about. The code architecture during phase 2 does hint towards ZUN having had
more creative patterns in mind – especially for the male form, which uses
the transformation function's three pattern callback slots for three
repetitions of the same pellet group.
There is one more oddity to be found at the very end of the fight:
Right before the defeat white-out animation, the sphere form is explicitly
reblitted for no reason, on top of the form that was blitted to VRAM in the
previous frame, and regardless of which form is currently active. If
SinGyoku was meant to immediately transform back to the sphere form before
being defeated, why isn't the person form unblitted before then? Therefore,
the visibility of both forms is undeniably canon, and there is some
lore meaning to be found here…
In any case, that's SinGyoku done! 6th PC-98 Touhou boss fully
decompiled, 25 remaining.
No FUUIN.EXE code rounding out the last push for a change, as
the 📝 remaining missile code has been
waiting in front of SinGyoku for a while. It already looked bad in November,
but the angle-based sprite selection function definitely takes the cake when
it comes to unnecessary and decadent floating-point abuse in this game.
The algorithm itself is very trivial: Even with
📝 .PTN requiring an additional quarter parameter to access 16×16 sprites,
it's essentially just one bit shift, one addition, and one binary
AND. For whatever reason though, ZUN casts the 8-bit missile
angle into a 64-bit double, which turns the following explicit
comparisons (!) against all possible 4 + 16 boundary angles (!!)
into FPU operations. Even with naive and readable
division and modulo operations, and the whole existence of this function not
playing well with Turbo C++ 4.0J's terrible code generation at all, this
could have been 3 lines of code and 35 un-inlined constant-time
instructions. Instead, we've got this 207-instruction monster… but hey, at
least it works. 🤷
The remaining time then went to YuugenMagan's initialization code, which
allowed me to immediately remove more declarations from ASM land, but more
on that once we get to the rest of that boss fight.
That leaves 76 functions until we're done with TH01! Next up: Card-flipping
stage obstacles.
What's this? A simple, straightforward, easy-to-decompile TH01 boss with
just a few minor quirks and only two rendering-related ZUN bugs? Yup, 2½
pushes, and Kikuri was done. Let's get right into the overview:
Just like 📝 Elis, Kikuri's fight consists
of 5 phases, excluding the entrance animation. For some reason though, they
are numbered from 2 to 6 this time, skipping phase 1? For consistency, I'll
use the original phase numbers from the source code in this blog post.
The main phases (2, 5, and 6) also share Elis' HP boundaries of 10, 6,
and 0, respectively, and are once again indicated by different colors in the
HP bar. They immediately end upon reaching the given number of HP, making
Kikuri immune to the
📝 heap corruption in test or debug mode that can happen with Elis and Konngara.
Phase 2 solely consists of the infamous big symmetric spiral
pattern.
Phase 3 fades Kikuri's ball of light from its default bluish color to bronze over 100 frames. Collision detection is deactivated
during this phase.
In Phase 4, Kikuri activates her two souls while shooting the spinning
8-pellet circles from the previously activated ball. The phase ends shortly
after the souls fired their third spread pellet group.
Note that this is a timed phase without an HP boundary, which makes
it possible to reduce Kikuri's HP below the boundaries of the next
phases, effectively skipping them. Take this video for example,
where Kikuri has 6 HP by the end of Phase 4, and therefore directly
starts Phase 6.
(Obviously, Kikuri's HP can also be reduced to 0 or below, which will
end the fight immediately after this phase.)
Phase 5 combines the teardrop/ripple "pattern" from the souls with the
"two crossed eye laser" pattern, on independent cycles.
Finally, Kikuri cycles through her remaining 4 patterns in Phase 6,
while the souls contribute single aimed pellets every 200 frames.
Interestingly, all HP-bounded phases come with an additional hidden
timeout condition:
Phase 2 automatically ends after 6 cycles of the spiral pattern, or
5,400 frames in total.
Phase 5 ends after 1,600 frames, or the first frame of the
7th cycle of the two crossed red lasers.
If you manage to keep Kikuri alive for 29 of her Phase 6 patterns,
her HP are automatically set to 1. The HP bar isn't redrawn when this
happens, so there is no visual indication of this timeout condition even
existing – apart from the next Orb hit ending the fight regardless of
the displayed HP. Due to the deterministic order of patterns, this
always happens on the 8th cycle of the "symmetric gravity
pellet lines from both souls" pattern, or 11,800 frames. If dodging and
avoiding orb hits for 3½ minutes sounds tiring, you can always watch the
byte at DS:0x1376 in your emulator's memory viewer. Once
it's at 0x1E, you've reached this timeout.
So yeah, there's your new timeout challenge.
The few issues in this fight all relate to hitboxes, starting with the main
one of Kikuri against the Orb. The coordinates in the code clearly describe
a hitbox in the upper center of the disc, but then ZUN wrote a < sign
instead of a > sign, resulting in an in-game hitbox that's not
quite where it was intended to be…
Kikuri's actual hitbox.
Since the Orb sprite doesn't change its shape, we can visualize the
hitbox in a pixel-perfect way here. The Orb must be completely within
the red area for a hit to be registered.
Much worse, however, are the teardrop ripples. It already starts with their
rendering routine, which places the sprites from TAMAYEN.PTN
at byte-aligned VRAM positions in the ultimate piece of if(…) {…}
else if(…) {…} else if(…) {…} meme code. Rather than
tracking the position of each of the five ripple sprites, ZUN suddenly went
purely functional and manually hardcoded the exact rendering and collision
detection calls for each frame of the animation, based on nothing but its
total frame counter.
Each of the (up to) 5 columns is also unblitted and blitted individually
before moving to the next column, starting at the center and then
symmetrically moving out to the left and right edges. This wouldn't be a
problem if ZUN's EGC-powered unblitting function didn't word-align its X
coordinates to a 16×1 grid. If the ripple sprites happen to start at an
odd VRAM byte position, their unblitting coordinates get rounded both down
and up to the nearest 16 pixels, thus touching the adjacent 8 pixels of the
previously blitted columns and leaving the well-known black vertical bars in
their place.
OK, so where's the hitbox issue here? If you just look at the raw
calculation, it's a slightly confusingly expressed, but perfectly logical 17
pixels. But this is where byte-aligned blitting has a direct effect on
gameplay: These ripples can be spawned at any arbitrary, non-byte-aligned
VRAM position, and collisions are calculated relative to this internal
position. Therefore, the actual hitbox is shifted up to 7 pixels to the
right, compared to where you would expect it from a ripple sprite's
on-screen position:
Due to the deterministic nature of this part of the fight, it's
always 5 pixels for this first set of ripples. These visualizations are
obviously not pixel-perfect due to the different potential shapes of
Reimu's sprite, so they instead relate to her 32×32 bounding box, which
needs to be entirely inside the red
area.
We've previously seen the same issue with the
📝 shot hitbox of Elis' bat form, where
pixel-perfect collision detection against a byte-aligned sprite was merely a
sidenote compared to the more serious X=Y coordinate bug. So why do I
elevate it to bug status here? Because it directly affects dodging: Reimu's
regular movement speed is 4 pixels per frame, and with the internal position
of an on-screen ripple sprite varying by up to 7 pixels, any micrododging
(or "grazing") attempt turns into a coin flip. It's sort of mitigated
by the fact that Reimu is also only ever rendered at byte-aligned
VRAM positions, but I wouldn't say that these two bugs cancel out each
other.
Oh well, another set of rendering issues to be fixed in the hypothetical
Anniversary Edition – obviously, the hitboxes should remain unchanged. Until
then, you can always memorize the exact internal positions. The sequence of
teardrop spawn points is completely deterministic and only controlled by the
fixed per-difficulty spawn interval.
Aside from more minor coordinate inaccuracies, there's not much of interest
in the rest of the pattern code. In another parallel to Elis though, the
first soul pattern in phase 4 is aimed on every difficulty except
Lunatic, where the pellets are once again statically fired downwards. This
time, however, the pattern's difficulty is much more appropriately
distributed across the four levels, with the simultaneous spinning circle
pellets adding a constant aimed component to every difficulty level.
Kikuri's phase 4 patterns, on every difficulty.
That brings us to 5 fully decompiled PC-98 Touhou bosses, with 26 remaining…
and another ½ of a push going to the cutscene code in
FUUIN.EXE.
You wouldn't expect something as mundane as the boss slideshow code to
contain anything interesting, but there is in fact a slight bit of
speculation fuel there. The text typing functions take explicit string
lengths, which precisely match the corresponding strings… for the most part.
For the "Gatekeeper 'SinGyoku'" string though, ZUN passed 23
characters, not 22. Could that have been the "h" from the Hepburn
romanization of 神玉?!
Also, come on, if this text is already blitted to VRAM for no reason,
you could have gone for perfect centering at unaligned byte positions; the
rendering function would have perfectly supported it. Instead, the X
coordinates are still rounded up to the nearest byte.
The hardcoded ending cutscene functions should be even less interesting –
don't they just show a bunch of images followed by frame delays? Until they
don't, and we reach the 地獄/Jigoku Bad Ending with
its special shake/"boom" effect, and this picture:
Picture #2 from ED2A.GRP.
Which is rendered by the following code:
for(int i = 0; i <= boom_duration; i++) { // (yes, off-by-one)
if((i & 3) == 0) {
graph_scrollup(8);
} else {
graph_scrollup(0);
}
end_pic_show(1); // ← different picture is rendered
frame_delay(2); // ← blocks until 2 VSync interrupts have occurred
if(i & 1) {
end_pic_show(2); // ← picture above is rendered
} else {
end_pic_show(1);
}
}
Notice something? You should never see this picture because it's
immediately overwritten before the frame is supposed to end. And yet
it's clearly flickering up for about one frame with common emulation
settings as well as on my real PC-9821 Nw133, clocked at 133 MHz.
master.lib's graph_scrollup() doesn't block until VSync either,
and removing these calls doesn't change anything about the blitted images.
end_pic_show() uses the EGC to blit the given 320×200 quarter
of VRAM from page 1 to the visible page 0, so the bottleneck shouldn't be
there either…
…or should it? After setting it up via a few I/O port writes, the common
method of EGC-powered blitting works like this:
Read 16 bits from the source VRAM position on any single
bitplane. This fills the EGC's 4 16-bit tile registers with the VRAM
contents at that specific position on every bitplane. You do not care
about the value the CPU returns from the read – in optimized code, you would
make sure to just read into a register to avoid useless additional stores
into local variables.
Write any 16 bits
to the target VRAM position on any single bitplane. This copies the
contents of the EGC's tile registers to that specific position on
every bitplane.
To transfer pixels from one VRAM page to another, you insert an additional
write to I/O port 0xA6 before 1) and 2) to set your source and
destination page… and that's where we find the bottleneck. Taking a look at
the i486 CPU and its cycle
counts, a single one of these page switches costs 17 cycles – 1 for
MOVing the page number into AL, and 16 for the
OUT instruction itself. Therefore, the 8,000 page switches
required for EGC-copying a 320×200-pixel image require 136,000 cycles in
total.
And that's the optimal case of using only those two
instructions. 📝 As I implied last time, TH01
uses a function call for VRAM page switches, complete with creating
and destroying a useless stack frame and unnecessarily updating a global
variable in main memory. I tried optimizing ZUN's code by throwing out
unnecessary code and using 📝 pseudo-registers
to generate probably optimal assembly code, and that did speed up the
blitting to almost exactly 50% of the original version's run time. However,
it did little about the flickering itself. Here's a comparison of the first
loop with boom_duration = 16, recorded in DOSBox-X with
cputype=auto and cycles=max, and with
i overlaid using the text chip. Caution, flashing lights:
The original animation, completing in 50 frames instead of the expected
34, thanks to slow blitting. Combined with the lack of
double-buffering, this results in noticeable tearing as the screen
refreshes while blitting is still in progress.
(Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
This optimized version completes in the expected 34 frames. No tearing
happens to be visible in this recording, but the ドカーン image is still visible on every
second loop iteration. (Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
I pushed the optimized code to the th01_end_pic_optimize
branch, to also serve as an example of how to get close to optimal code out
of Turbo C++ 4.0J without writing a single ASM instruction.
And if you really want to use the EGC for this, that's the best you can do.
It really sucks that it merely expanded the GRCG's 4×8-bit tile register to
4×16 bits. With 32 bits, ≥386 CPUs could have taken advantage of their wider
registers and instructions to double the blitting performance. Instead, we
now know the reason why
📝 Promisence Soft's EGC-powered sprite driver that ZUN later stole for TH03
is called SPRITE16 and not SPRITE32. What a massive disappointment.
But what's perhaps a bigger surprise: Blitting planar
images from main memory is much faster than EGC-powered inter-page
VRAM copies, despite the required manual access to all 4 bitplanes. In
fact, the blitting functions for the .CDG/.CD2 format, used from TH03
onwards, would later demonstrate the optimal method of using REP
MOVSD for blitting every line in 32-pixel chunks. If that was also
used for these ending images, the core blitting operation would have taken
((12 + (3 × (320 / 32))) × 200 × 4) =
33,600 cycles, with not much more overhead for the surrounding row
and bitplane loops. Sure, this doesn't factor in the whole infamous issue of
VRAM being slow on PC-98, but the aforementioned 136,000 cycles don't even
include any actual blitting either. And as you move up to later PC-98
models with Pentium CPUs, the gap between OUT and REP
MOVSD only becomes larger. (Note that the page I linked above has a
typo in the cycle count of REP MOVSD on Pentium CPUs: According
to the original Intel Architecture and Programming Manual, it's
13+𝑛, not 3+𝑛.)
This difference explains why later games rarely use EGC-"accelerated"
inter-page VRAM copies, and keep all of their larger images in main memory.
It especially explains why TH04 and TH05 can get away with naively redrawing
boss backdrop images on every frame.
In the end, the whole fact that ZUN did not define how long this image
should be visible is enough for me to increment the game's overall bug
counter. Who would have thought that looking at endings of all things
would teach us a PC-98 performance lesson… Sure, optimizing TH01 already
seemed promising just by looking at its bloated code, but I had no idea that
its performance issues extended so far past that level.
That only leaves the common beginning part of all endings and a short
main() function before we're done with FUUIN.EXE,
and 98 functions until all of TH01 is decompiled! Next up: SinGyoku, who not
only is the quickest boss to defeat in-game, but also comes with the least
amount of code. See you very soon!
With Elis, we've not only reached the midway point in TH01's boss code, but
also a bunch of other milestones: Both REIIDEN.EXE and TH01 as
a whole have crossed the 75% RE mark, and overall position independence has
also finally cracked 80%!
And it got done in 4 pushes again? Yup, we're back to
📝 Konngara levels of redundancy and
copy-pasta. This time, it didn't even stop at the big copy-pasted code
blocks for the rift sprite and 256-pixel circle animations, with the words
"redundant" and "unnecessary" ending up a total of 18 times in my source
code comments.
But damn is this fight broken. As usual with TH01 bosses, let's start with a
high-level overview:
The Elis fight consists of 5 phases (excluding the entrance animation),
which must be completed in order.
In all odd-numbered phases, Elis uses a random one-shot danmaku pattern
from an exclusive per-phase pool before teleporting to a random
position.
There are 3 exclusive girl-form patterns per phase, plus 4
additional bat-form patterns in phase 5, for a total of 13.
Due to a quirk in the selection algorithm in phases 1 and 3, there
is a 25% chance of Elis skipping an attack cycle and just teleporting
again.
In contrast to Konngara, Elis can freely select the same pattern
multiple times in a row. There's nothing in the code to prevent that
from happening.
This pattern+teleport cycle is repeated until Elis' HP reach a certain
threshold value. The odd-numbered phases correspond to the white (phase 1),
red-white (phase 3), and red (phase 5) sections of the health bar. However,
the next phase can only start at the end of each cycle, after a
teleport.
Phase 2 simply teleports Elis back to her starting screen position of
(320, 144) and then advances to phase 3.
Phase 4 does the same as phase 2, but adds the initial bat form
transformation before advancing to phase 5.
Phase 5 replaces the teleport with a transformation to the bat form.
Rather than teleporting instantly to the target position, the bat gradually
flies there, firing a randomly selected looping pattern from the 4-pattern
bat pool on the way, before transforming back to the girl form.
This puts the earliest possible end of the fight at the first frame of phase
5. However, nothing prevents Elis' HP from reaching 0 before that point. You
can nicely see this in 📝 debug mode: Wait
until the HP bar has filled up to avoid heap corruption, hold ↵ Return
to reduce her HP to 0, and watch how Elis still goes through a total of
two patterns* and four
teleport animations before accepting defeat.
But wait, heap corruption? Yup, there's a bug in the HP bar that already
affected Konngara as well, and it isn't even just about the graphical
glitches generated by negative HP:
The initial fill-up animation is drawn to both VRAM pages at a rate of 1
HP per frame… by passing the current frame number as the
current_hp number.
The target_hp is indicated by simply passing the current
HP…
… which, however, can be reduced in debug mode at an equal rate of up to
1 HP per frame.
The completion condition only checks if
((target_hp - 1) == current_hp). With the
right timing, both numbers can therefore run past each other.
In that case, the function is repeatedly called on every frame, backing
up the original VRAM contents for the current HP point before blitting
it…
… until frame ((96 / 2) + 1), where the
.PTN slot pointer overflows the heap buffer and overwrites whatever comes
after. 📝 Sounds familiar, right?
Since Elis starts with 14 HP, which is an even number, this corruption is
trivial to cause: Simply hold ↵ Return from the beginning of the
fight, and the completion condition will never be true, as the
HP and frame numbers run past the off-by-one meeting point.
Edit (2023-07-21): Pressing ↵ Return to reduce HP
also works in test mode (game t). There, the game doesn't
even check the heap, and consequently won't report any corruption,
allowing the HP bar to be glitched even further.
Regular gameplay, however, entirely prevents this due to the fixed start
positions of Reimu and the Orb, the Orb's fixed initial trajectory, and the
50 frames of delay until a bomb deals damage to a boss. These aspects make
it impossible to hit Elis within the first 14 frames of phase 1, and ensure
that her HP bar is always filled up completely. So ultimately, this bug ends
up comparable in seriousness to the
📝 recursion / stack overflow bug in the memory info screen.
These wavy teleport animations point to a quite frustrating architectural
issue in this fight. It's not even the fact that unblitting the yellow star
sprites rips temporary holes into Elis' sprite; that's almost expected from
TH01 at this point. Instead, it's all because of this unused frame of the
animation:
With this sprite still being part of BOSS5.BOS, Girl-Elis has a
total of 9 animation frames, 1 more than the
📝 8 per-entity sprites allowed by ZUN's architecture.
The quick and easy solution would have been to simply bump the sprite array
size by 1, but… nah, this would have added another 20 bytes to all 6 of the
.BOS image slots. Instead, ZUN wrote the manual
position synchronization code I mentioned in that 2020 blog post.
Ironically, he then copy-pasted this snippet of code often enough that it
ended up taking up more than 120 bytes in the Elis fight alone – with, you
guessed it, some of those copies being redundant. Not to mention that just
going from 8 to 9 sprites would have allowed ZUN to go down from 6 .BOS
image slots to 3. That would have actually saved 420 bytes in
addition to the manual synchronization trouble. Looking forward to SinGyoku,
that's going to be fun again…
As for the fight itself, it doesn't take long until we reach its most janky
danmaku pattern, right in phase 1:
The "pellets along circle" pattern on Lunatic, in its original version
and with fanfiction fixes for everything that can potentially be
interpreted as a bug.
For whatever reason, the lower-right quarter of the circle isn't
animated? This animation works by only drawing the new dots added with every
subsequent animation frame, expressed as a tiny arc of a dotted circle. This
arc starts at the animation's current 8-bit angle and ends on the sum of
that angle and a hardcoded constant. In every other (copy-pasted, and
correct) instance of this animation, ZUN uses 0x02 as the
constant, but this one uses… 0.05 for the lower-right quarter?
As in, a 64-bit double constant that truncates to 0 when added
to an 8-bit integer, thus leading to the start and end angles being
identical and the game not drawing anything.
On Easy and Normal, the pattern then spawns 32 bullets along the outline
of the circle, no problem there. On Lunatic though, every one of these
bullets is instead turned into a narrow-angled 5-spread, resulting in 160
pellets… in a game with a pellet cap of 100.
Now, if Elis teleported herself to a position near the top of the playfield,
most of the capped pellets would have been clipped at that top edge anyway,
since the bullets are spawned in clockwise order starting at Elis' right
side with an angle of 0x00. On lower positions though, you can
definitely see a difference if the cap were high enough to allow all coded
pellets to actually be spawned.
The Hard version gets dangerously close to the cap by spawning a total of 96
pellets. Since this is the only pattern in phase 1 that fires pellets
though, you are guaranteed to see all of the unclipped ones.
The pellets also aren't spawned exactly on the telegraphed circle, but 4 pixels to the left.
Then again, it might very well be that all of this was intended, or, most
likely, just left in the game as a happy accident. The latter interpretation
would explain why ZUN didn't just delete the rendering calls for the
lower-right quarter of the circle, because seriously, how would you not spot
that? The phase 3 patterns continue with more minor graphical glitches that
aren't even worth talking about anymore.
And then Elis transforms into her bat form at the beginning of Phase 5,
which displays some rather unique hitboxes. The one against the Orb is fine,
but the one against player shots…
… uses the bat's X coordinate for both X and Y dimensions.
In regular gameplay, it's not too bad as most
of the bat patterns fire aimed pellets which typically don't allow you to
move below her sprite to begin with. But if you ever tried destroying these
pellets while standing near the middle of the playfield, now you know why
that didn't work. This video also nicely points out how the bat, like any
boss sprite, is only ever blitted at positions on the 8×1-pixel VRAM byte
grid, while collision detection uses the actual pixel position.
The bat form patterns are all relatively simple, with little variation
depending on the difficulty level, except for the "slow pellet spreads"
pattern. This one is almost easiest to dodge on Lunatic, where the 5-spreads
are not only always fired downwards, but also at the hardcoded narrow delta
angle, leaving plenty of room for the player to move out of the way:
The "slow pellet spreads" pattern of Elis' bat form, on every
difficulty. Which version do you think is the easiest one?
Finally, we've got another potential timesave in the girl form's "safety
circle" pattern:
After the circle spawned completely, you lose a life by moving outside it,
but doing that immediately advances the pattern past the circle part. This
part takes 200 frames, but the defeat animation only takes 82 frames, so
you can save up to 118 frames there.
Final funny tidbit: As with all dynamic entities, this circle is only
blitted to VRAM page 0 to allow easy unblitting. However, it's also kind of
static, and there needs to be some way to keep the Orb, the player shots,
and the pellets from ripping holes into it. So, ZUN just re-blits the circle
every… 4 frames?! 🤪 The same is true for the Star of David and its
surrounding circle, but there you at least get a flash animation to justify
it. All the overlap is actually quite a good reason for not even attempting
to 📝 mess with the hardware color palette instead.
Reproducing the crash was the whole challenge here. Even after moving Elis
and Reimu to the exact positions seen in Pearl's video and setting Elis' HP
to 0 on the exact same frame, everything ran fine for me. It's definitely no
division by 0 this time, the function perfectly guards against that
possibility. The line specified in the function's parameters is always
clipped to the VRAM region as well, so we can also rule out illegal memory
accesses here…
… or can we? Stepping through it all reminded me of how this function brings
unblitting sloppiness to the next level: For each VRAM byte touched, ZUN
actually unblits the 4 surrounding bytes, adding one byte to the left
and two bytes to the right, and using a single 32-bit read and write per
bitplane. So what happens if the function tries to unblit the topmost byte
of VRAM, covering the pixel positions from (0, 0) to (7, 0)
inclusive? The VRAM offset of 0x0000 is decremented to
0xFFFF to cover the one byte to the left, 4 bytes are written
to this address, the CPU's internal offset overflows… and as it turns out,
that is illegal even in Real Mode as of the 80286, and will raise a General Protection
Fault. Which is… ignored by DOSBox-X,
every Neko Project II version in common use, the CSCP
emulators, SL9821, and T98-Next. Only Anex86 accurately emulates the
behavior of real hardware here.
OK, but no laser fired by Elis ever reaches the top-left corner of the
screen. How can such a fault even happen in practice? That's where the
broken laser reset+unblit function comes in: Not only does it just flat out pass the wrong
parameters to the line unblitting function – describing the line
already traveled by the laser and stopping where the laser begins –
but it also passes them
wrongly, in the form of raw 32-bit fixed-point Q24.8 values, with no
conversion other than a truncation to the signed 16-bit pixels expected by
the function. What then follows is an attempt at interpolation and clipping
to find a line segment between those garbage coordinates that actually falls
within the boundaries of VRAM:
right/bottom correspond to a laser's origin position, and
left/top to the leftmost pixel of its moved-out top line. The
bug therefore only occurs with lasers that stopped growing and have started
moving.
Moreover, it will only happen if either (left % 256) or
(right % 256) is ≤ 127 and the other one of the two is ≥ 128.
The typecast to signed 16-bit integers then turns the former into a large
positive value and the latter into a large negative value, triggering the
function's clipping code.
The function then follows Bresenham's
algorithm: left is ensured to be smaller than right
by swapping the two values if necessary. If that happened, top
and bottom are also swapped, regardless of their value – the
algorithm does not care about their order.
The slope in the X dimension is calculated using an integer division of
((bottom - top) /
(right - left)). Both subtractions are done on signed
16-bit integers, and overflow accordingly.
(-left × slope_x) is added to top,
and left is set to 0.
If both top and bottom are < 0 or
≥ 640, there's nothing to be unblitted. Otherwise, the final
coordinates are clipped to the VRAM range of [(0, 0),
(639, 399)].
If the function got this far, the line to be unblitted is now very
likely to reach from
the top-left to the bottom-right corner, starting out at
(0, 0) right away, or
from the bottom-left corner to the top-right corner. In this case,
you'd expect unblitting to end at (639, 0), but thanks to an
off-by-one error,
it actually ends at (640, -1), which is equivalent to
(0, 0). Why add clipping to VRAM offset calculations when
everything else is clipped already, right?
Possible laser states that will cause the fault, with some debug
output to help understand the cause, and any pellets removed for better
readability. This can happen for all bosses that can potentially have
shootout lasers on screen when being defeated, so it also applies to Mima.
Fixing this is easier than understanding why it happens, but since y'all
love reading this stuff…
tl;dr: TH01 has a high chance of freezing at a boss defeat sequence if there
are diagonally moving lasers on screen, and if your PC-98 system
raises a General Protection Fault on a 4-byte write to offset
0xFFFF, and if you don't run a TSR with an INT
0Dh handler that might handle this fault differently.
The easiest fix option would be to just remove the attempted laser
unblitting entirely, but that would also have an impact on this game's…
distinctive visual glitches, in addition to touching a whole lot of
code bytes. If I ever get funded to work on a hypothetical TH01 Anniversary
Edition that completely rearchitects the game to fix all these glitches, it
would be appropriate there, but not for something that purports to be the
original game.
(Sidenote to further hype up this Anniversary Edition idea for PC-98
hardware owners: With the amount of performance left on the table at every
corner of this game, I'm pretty confident that we can get it to work
decently on PC-98 models with just an 80286 CPU.)
Since we're in critical infrastructure territory once again, I went for the
most conservative fix with the least impact on the binary: Simply changing
any VRAM offsets >= 0xFFFD to 0x0000 to avoid
the GPF, and leaving all other bugs in place. Sure, it's rather lazy and
"incorrect"; the function still unblits a 32-pixel block there, but adding a
special case for blitting 24 pixels would add way too much code. And
seriously, it's not like anything happens in the 8 pixels between
(24, 0) and (31, 0) inclusive during gameplay to begin with.
To balance out the additional per-row if() branch, I inlined
the VRAM page change I/O, saving two function calls and one memory write per
unblitted row.
That means it's time for a new community_choice_fixes
build, containing the new definitive bugfixed versions of these games:
2022-05-31-community-choice-fixes.zip
Check the th01_critical_fixes
branch for the modified TH01 code. It also contains a fix for the HP bar
heap corruption in test or debug mode – simply changing the ==
comparison to <= is enough to avoid it, and negative HP will
still create aesthetic glitch art.
Once again, I then was left with ½ of a push, which I finally filled with
some FUUIN.EXE code, specifically the verdict screen. The most
interesting part here is the player title calculation, which is quite
sneaky: There are only 6 skill levels, but three groups of
titles for each level, and the title you'll see is picked from a random
group. It looks like this is the first time anyone has documented the
calculation?
As for the levels, ZUN definitely didn't expect players to do particularly
well. With a 1cc being the standard goal for completing a Touhou game, it's
especially funny how TH01 expects you to continue a lot: The code has
branches for up to 21 continues, and the on-screen table explicitly leaves
room for 3 digits worth of continues per 5-stage scene. Heck, these
counts are even stored in 32-bit long variables.
Next up: 📝 Finally finishing the long
overdue Touhou Patch Center MediaWiki update work, while continuing with
Kikuri in the meantime. Originally I wasn't sure about what to do between
Elis and Seihou,
but with Ember2528's surprise
contribution last week, y'all have
demonstrated more than enough interest in the idea of getting TH01 done
sooner rather than later. And I agree – after all, we've got the 25th
anniversary of its first public release coming up on August 15, and I might
still manage to completely decompile this game by that point…
TH05 has passed the 50% RE mark, with both MAIN.EXE and the
game as a whole! With that, we've also reached what -Tom-
wanted out of the project, so he's suspending his discount offer for a
bit.
Curve bullets are now officially called cheetos! 76.7% of
fans prefer this term, and it fits into the 8.3 DOS filename scheme much
better than homing lasers (as they're called in
OMAKE.TXT) or Taito
lasers (which would indeed have made sense as well).
…oh, and I managed to decompile Shinki within 2 pushes after all. That
left enough budget to also add the Stage 1 midboss on top.
So, Shinki! As far as final boss code is concerned, she's surprisingly
economical, with 📝 her background animations
making up more than ⅓ of her entire code. Going straight from TH01's
📝 final📝 bosses
to TH05's final boss definitely showed how much ZUN had streamlined
danmaku pattern code by the end of PC-98 Touhou. Don't get me wrong, there
is still room for improvement: TH05 not only
📝 reuses the same 16 bytes of generic boss state we saw in TH04 last month,
but also uses them 4× as often, and even for midbosses. Most importantly
though, defining danmaku patterns using a single global instance of the
group template structure is just bad no matter how you look at it:
The script code ends up rather bloated, with a single MOV
instruction for setting one of the fields taking up 5 bytes. By comparison,
the entire structure for regular bullets is 14 bytes large, while the
template structure for Shinki's 32×32 ball bullets could have easily been
reduced to 8 bytes.
Since it's also one piece of global state, you can easily forget to set
one of the required fields for a group type. The resulting danmaku group
then reuses these values from the last time they were set… which might have
been as far back as another boss fight from a previous stage.
And of course, I wouldn't point this out if it
didn't actually happen in Shinki's pattern code. Twice.
Declaring a separate structure instance with the static data for every
pattern would be both safer and more space-efficient, and there's
more than enough space left for that in the game's data segment.
But all in all, the pattern functions are short, sweet, and easy to follow.
The "devil"
patternis significantly more complex than the others, but still
far from TH01's final bosses at their worst. I especially like the clear
architectural separation between "one-shot pattern" functions that return
true once they're done, and "looping pattern" functions that
run as long as they're being called from a boss's main function. Not many
all too interesting things in these pattern functions for the most part,
except for two pieces of evidence that Shinki was coded after Yumeko:
The gather animation function in the first two phases contains a bullet
group configuration that looks like it's part of an unused danmaku
pattern. It quickly turns out to just be copy-pasted from a similar function
in Yumeko's fight though, where it is turned into actual
bullets.
As one of the two places where ZUN forgot to set a template field, the
lasers at the end of the white wing preparation pattern reuse the 6-pixel
width of Yumeko's final laser pattern. This actually has an effect on
gameplay: Since these lasers are active for the first 8 frames after
Shinki's wings appear on screen, the player can get hit by them in the last
2 frames after they grew to their final width.
Of course, there are more than enough safespots between the lasers.
Speaking about that wing sprite: If you look at ST05.BB2 (or
any other file with a large sprite, for that matter), you notice a rather
weird file layout:
A large sprite split into multiple smaller ones with a width of
64 pixels each? What's this, hardware sprite limitations? On my
PC-98?!
And it's not a limitation of the sprite width field in the BFNT+ header
either. Instead, it's master.lib's BFNT functions which are limited to
sprite widths up to 64 pixels… or at least that's what
MASTER.MAN claims. Whatever the restriction was, it seems to be
completely nonexistent as of master.lib version 0.23, and none of the
master.lib functions used by the games have any issues with larger
sprites.
Since ZUN stuck to the supposed 64-pixel width limit though, it's now the
game that expects Shinki's winged form to consist of 4 physical
sprites, not just 1. Any conversion from another, more logical sprite sheet
layout back into BFNT+ must therefore replicate the original number of
sprites. Otherwise, the sequential IDs ("patnums") assigned to every newly
loaded sprite no longer match ZUN's hardcoded IDs, causing the game to
crash. This is exactly what used to happen with -Tom-'s
MysticTK automation scripts,
which combined these exact sprites into a single large one. This issue has
now been fixed – just in case there are some underground modders out there
who used these scripts and wonder why their game crashed as soon as the
Shinki fight started.
And then the code quality takes a nosedive with Shinki's main function.
Even in TH05, these boss and midboss update
functions are still very imperative:
The origin point of all bullet types used by a boss must be manually set
to the current boss/midboss position; there is no concept of a bullet type
tracking a certain entity.
The same is true for the target point of a player's homing shots…
… and updating the HP bar. At least the initial fill animation is
abstracted away rather decently.
Incrementing the phase frame variable also must be done manually. TH05
even "innovates" here by giving the boss update function exclusive ownership
of that variable, in contrast to TH04 where that ownership is given out to
the player shot collision detection (?!) and boss defeat helper
functions.
Speaking about collision detection: That is done by calling different
functions depending on whether the boss is supposed to be invincible or
not.
Timeout conditions? No standard way either, and all done with manual
if statements. In combination with the regular phase end
condition of lowering (mid)boss HP to a certain value, this leads to quite a
convoluted control flow.
The manual calls to the score bonus functions for cleared phases at least provide some sense of orientation.
One potentially nice aspect of all this imperative freedom is that
phases can end outside of HP boundaries… by manually incrementing the
phase variable and resetting the phase frame variable to 0.
The biggest WTF in there, however, goes to using one of the 16 state bytes
as a "relative phase" variable for differentiating between boss phases that
share the same branch within the switch(boss.phase)
statement. While it's commendable that ZUN tried to reduce code duplication
for once, he could have just branched depending on the actual
boss.phase variable? The same state byte is then reused in the
"devil" pattern to track the activity state of the big jerky lasers in the
second half of the pattern. If you somehow managed to end the phase after
the first few bullets of the pattern, but before these lasers are up,
Shinki's update function would think that you're still in the phase
before the "devil" pattern. The main function then sequence-breaks
right to the defeat phase, skipping the final pattern with the burning Makai
background. Luckily, the HP boundaries are far away enough to make this
impossible in practice.
The takeaway here: If you want to use the state bytes for your custom
boss script mods, alias them to your own 16-byte structure, and limit each
of the bytes to a clearly defined meaning across your entire boss script.
One final discovery that doesn't seem to be documented anywhere yet: Shinki
actually has a hidden bomb shield during her two purple-wing phases.
uth05win got this part slightly wrong though: It's not a complete
shield, and hitting Shinki will still deal 1 point of chip damage per
frame. For comparison, the first phase lasts for 3,000 HP, and the "devil"
pattern phase lasts for 5,800 HP.
And there we go, 3rd PC-98 Touhou boss
script* decompiled, 28 to go! 🎉 In case you were expecting a fix for
the Shinki death glitch: That one
is more appropriately fixed as part of the Mai & Yuki script. It also
requires new code, should ideally look a bit prettier than just removing
cheetos between one frame and the next, and I'd still like it to fit within
the original position-dependent code layout… Let's do that some other
time.
Not much to say about the Stage 1 midboss, or midbosses in general even,
except that their update functions have to imperatively handle even more
subsystems, due to the relative lack of helper functions.
The remaining ¾ of the third push went to a bunch of smaller RE and
finalization work that would have hardly got any attention otherwise, to
help secure that 50% RE mark. The nicest piece of code in there shows off
what looks like the optimal way of setting up the
📝 GRCG tile register for monochrome blitting
in a variable color:
mov ah, palette_index ; Any other non-AL 8-bit register works too.
; (x86 only supports AL as the source operand for OUTs.)
rept 4 ; For all 4 bitplanes…
shr ah, 1 ; Shift the next color bit into the x86 carry flag
sbb al, al ; Extend the carry flag to a full byte
; (CF=0 → 0x00, CF=1 → 0xFF)
out 7Eh, al ; Write AL to the GRCG tile register
endm
Thanks to Turbo C++'s inlining capabilities, the loop body even decompiles
into a surprisingly nice one-liner. What a beautiful micro-optimization, at
a place where micro-optimization doesn't hurt and is almost expected.
Unfortunately, the micro-optimizations went all downhill from there,
becoming increasingly dumb and undecompilable. Was it really necessary to
save 4 x86 instructions in the highly unlikely case of a new spark sprite
being spawned outside the playfield? That one 2D polar→Cartesian
conversion function then pointed out Turbo C++ 4.0J's woefully limited
support for 32-bit micro-optimizations. The code generation for 32-bit
📝 pseudo-registers is so bad that they almost
aren't worth using for arithmetic operations, and the inline assembler just
flat out doesn't support anything 32-bit. No use in decompiling a function
that you'd have to entirely spell out in machine code, especially if the
same function already exists in multiple other, more idiomatic C++
variations.
Rounding out the third push, we got the TH04/TH05 DEMO?.REC
replay file reading code, which should finally prove that nothing about the
game's original replay system could serve as even just the foundation for
community-usable replays. Just in case anyone was still thinking that.
Next up: Back to TH01, with the Elis fight! Got a bit of room left in the
cap again, and there are a lot of things that would make a lot of
sense now:
TH04 would really enjoy a large number of dedicated pushes to catch up
with TH05. This would greatly support the finalization of both games.
Continuing with TH05's bosses and midbosses has shown to be good value
for your money. Shinki would have taken even less than 2 pushes if she
hadn't been the first boss I looked at.
Oh, and I also added Seihou as a selectable goal, for the two people out
there who genuinely like it. If I ever want to quit my day job, I need to
branch out into safer territory that isn't threatened by takedowns, after
all.
Slight change of plans, because we got instructions for
reliably reproducing the TH04 Kurumi Divide Error crash! Major thanks to
Colin Douglas Howell. With those, it also made sense to immediately look at
the crash in the Stage 4 Marisa fight as well. This way, I could release
both of the obligatory bugfix mods at the same time.
Especially since it turned out that I was wrong: Both crashes are entirely
unrelated to the custom entity structure that would have required PI-centric
progress. They are completely specific to Kurumi's and Marisa's
danmaku-pattern code, and really are two separate bugs
with no connection to each other. All of the necessary research nicely fit
into Arandui's 0.5 pushes, with no further deep understanding
required here.
But why were there still three weeks between Colin's message and this blog
post? DMCA distractions aside: There are no easy fixes this time, unlike
📝 back when I looked at the Stage 5 Yuuka crash.
Just like how division by zero is undefined in mathematics, it's also,
literally, undefined what should happen instead of these two
Divide error crashes. This means that any possible "fix" can
only ever be a fanfiction interpretation of the intentions behind ZUN's
code. The gameplay community should be aware of this, and
might decide to handle these cases differently. And if we
have to go into fanfiction territory to work around crashes in the
canon games, we'd better document what exactly we're fixing here and how, as
comprehensible as possible.
With that out of the way, let's look at Kurumi's crash first, since it's way
easier to grasp. This one is known to primarily happen to new players, and
it's easy to see why:
In one of the patterns in her third phase, Kurumi fires a series of 3
aimed rings from both edges of the playfield. By default (that is, on Normal
and with regular rank), these are 6-way rings.
6 happens to be quite a peculiar number here, due to how rings are
(manually) tuned based on the current "rank" value (playperf)
before being fired. The code, abbreviated for clarity:
Let's look at the range of possible playperf values per
difficulty level:
Easy
Normal
Hard
Lunatic
Extra
playperf_min
4
11
20
22
16
playperf_max
16
24
32
34
20
Edit (2022-05-24): This blog post initially had
26 instead of 16 for playperf_min for the Extra Stage. Thanks
to Popfan for pointing out that typo!
Reducing rank to its minimum on Easy mode will therefore result in a
0-ring after tuning.
To calculate the individual angles of each bullet in a ring, ZUN divides
360° (or, more correctly,
📝 0x100) by the total number of
bullets…
Boom, division by zero.
The pattern that causes the crash in Kurumi's fight. Also
demonstrates how the number of bullets in a ring is always halved on
Easy Mode after the rank-based tuning, leading to just a 3-ring on
playperf = 16.
So, what should the workaround look like? Obviously, we want to modify
neither the default number of ring bullets nor the tuning algorithm – that
would change all other non-crashing variations of this pattern on other
difficulties and ranks, creating a fork of the original gameplay. Instead, I
came up with four possible workarounds that all seemed somewhat logical to
me:
Firing no bullet, i.e., interpreting 0-ring literally. This would
create the only constellation in which a call to the bullet group spawn
functions would not spawn at least one new bullet.
Firing a "1-ring", i.e., a single bullet. This would be consistent with
how the bullet spawn functions behave for "0-way" stack and spread
groups.
Firing a "∞-ring", i.e., 200 bullets, which is as much as the game's cap
on 16×16 bullets would allow. This would poke fun at the whole "division by
zero" idea… but given that we're still talking about Easy Mode (and
especially new players) here, it might be a tad too cruel. Certainly the
most trollish interpretation.
Triggering an immediate Game Over, exchanging the hard crash for a
softer and more controlled shutdown. Certainly the option that would be
closest to the behavior of the original games, and perhaps the only one to
be accepted in Serious, High-Level Play™.
As I was writing this post, it felt increasingly wrong for me to make this
decision. So I once again went to Twitter, where 56.3%
voted in favor of the 1-bullet option. Good that I asked! I myself was
more leaning towards the 0-bullet interpretation, which only got 28.7% of
the vote. Also interesting are the 2.3% in favor of the Game Over option but
I get it, low-rank Easy Mode isn't exactly the most competitive mode of
playing TH04.
There are reports of Kurumi crashing on higher difficulties as well, but I
could verify none of them. If they aren't fixed by this workaround, they're
caused by an entirely different bug that we have yet to discover.
Onto the Stage 4 Marisa crash then, which does in fact apply to all
difficulty levels. I was also wrong on this one – it's a hell of a lot more
intricate than being just a division by the number of on-screen bits.
Without having decompiled the entire fight, I can't give a completely
accurate picture of what happens there yet, but here's the rough idea:
Marisa uses different patterns, depending on whether at least one of her
bits is still alive, or all of them have been destroyed.
Destroying the last bit will immediately switch to the bit-less
counterpart of the current pattern.
The bits won't respawn before the pattern ended, which ensures that the
bit-less version is always shown in its entirety after being started or
switched into.
In two of the bit-less patterns, Marisa gradually moves to the point
reflection of her position at the start of the pattern across the playfield
coordinate of (192, 112), or (224, 128) on screen.
Reference points for Marisa's point-reflected movement. Cyan:
Marisa's position, green: (192, 112), yellow: the intended end
point.
The velocity of this movement is determined by both her distance to that
point and the total amount of frames that this instance of the bit-less
pattern will last.
Since this frame amount is directly tied to the frame the player
destroyed the last bit on, it becomes a user-controlled variable. I think
you can see where this is going…
The last 12 frames of this duration, however, are always reserved for a
"braking phase", where Marisa's velocity is halved on each frame.
This part of the code only runs every 4 frames though. This expands the
time window for this crash to 4 frames, rather than just the two frames you
would expect from looking at the division itself.
Both of the broken patterns run for a maximum of 160 frames. Therefore,
the crash will occur when Marisa's last bit is destroyed between frame 152
and 155 inclusive. On these frames, the
last_frame_with_bits_alive variable is set to 148, which is the
crucial 12 duration frames away from the maximum of 160.
Interestingly enough, the calculated velocity is also only
applied every 4 frames, with Marisa actually staying still for the 3 frames
inbetween. As a result, she either moves
too slowly to ever actually reach the yellow point if the last bit
was destroyed early in the pattern (see destruction frames 68 or
112),
or way too quickly, and almost in a jerky, teleporting way (see
destruction frames 144 or 148).
Finally, as you may have already gathered from the formula: Destroying
the last bit between frame 156 and 160 inclusive results in
duration values of 8 or 4. These actually push Marisa
away from the intended point, as the divisor becomes negative.
One of the two patterns in TH04's Stage 4 Marisa boss fight that feature
frame number-dependent point-reflected movement. The bits were hacked to
self-destruct on the respective frame.
tl;dr: "Game crashes if last bit destroyed within 4-frame window near end of
two patterns". For an informed decision on a new movement behavior for these
last 8 frames, we definitely need to know all the details behind the crash
though. Here's what I would interpret into the code:
Not moving at all, i.e., interpreting 0 as the middle ground between
positive and negative movement. This would also make sense because a
12-frame duration implies 100% of the movement to consist of
the braking phase – and Marisa wasn't moving before, after all.
Move at maximum speed, i.e., dividing by 1 rather than 0. Since the
movement duration is still 12 in this case, Marisa will immediately start
braking. In total, she will move exactly ¾ of the way from her initial
position to (192, 112) within the 8 frames before the pattern
ends.
Directly warping to (192, 112) on frame 0, and to the
point-reflected target on 4, respectively. This "emulates" the division by
zero by moving Marisa at infinite speed to the exact two points indicated by
the velocity formula. It also fits nicely into the 8 frames we have to fill
here. Sure, Marisa can't reach these points at any other duration, but why
shouldn't she be able to, with infinite speed? Then again, if Marisa
is far away enough from (192, 112), this workaround would warp her
across the entire playfield. Can Marisa teleport according to lore? I
have no idea…
Triggering an immediate Game O– hell no, this is the Stage 4 boss,
people already hate losing runs to this bug!
Asking Twitter worked great for the Kurumi workaround, so let's do it again!
Gotta attach a screenshot of an earlier draft of this blog post though,
since this stuff is impossible to explain in tweets…
…and it went
through the roof, becoming the most successful ReC98 tweet so far?!
Apparently, y'all really like to just look at descriptions of overly complex
bugs that I'd consider way beyond the typical attention span that can be
expected from Twitter. Unfortunately, all those tweet impressions didn't
quite translate into poll turnout. The results
were pretty evenly split between 1) and 2), with option 1) just coming out
slightly ahead at 49.1%, compared to 41.5% of option 2).
(And yes, I only noticed after creating the poll that warping to both the
green and yellow points made more sense than warping to just one of the two.
Let's hope that this additional variant wouldn't have shifted the results
too much. Both warp options only got 9.4% of the vote after all, and no one
else came up with the idea either. In the end,
you can always merge together your preferred combination of workarounds from
the Git branches linked below.)
So here you go: The new definitive version of TH04, containing not only the
community-chosen Kurumi and Stage 4 Marisa workaround variant, but also the
📝 No-EMS bugfix from last year.
Edit (2022-05-31): This package is outdated, 📝 the current version is here!2022-04-18-community-choice-fixes.zip
Oh, and let's also add spaztron64's TH03 GDC clock fix
from 2019 because why not. This binary was built from the community_choice_fixes
branch, and you can find the code for all the individual workarounds on
these branches:
Again, because it can't be stated often enough: These fixes are
fanfiction. The gameplay community should be aware of
this, and might decide to handle these cases differently.
With all of that taking way more time to evaluate and document, this
research really had to become part of a proper push, instead of just being
covered in the quick non-push blog post I initially intended. With ½ of a
push left at the end, TH05's Stage 1-5 boss background rendering functions
fit in perfectly there. If you wonder how these static backdrop images even
need any boss-specific code to begin with, you're right – it's basically the
same function copy-pasted 4 times, differing only in the backdrop image
coordinates and some other inconsequential details.
Only Sara receives a nice variation of the typical
📝 blocky entrance animation: The usually
opaque bitmap data from ST00.BB is instead used as a transition
mask from stage tiles to the backdrop image, by making clever use of the
tile invalidation system:
TH04 uses the same effect a bit more frequently, for its first three bosses.
Next up: Shinki, for real this time! I've already managed to decompile 10 of
her 11 danmaku patterns within a little more than one push – and yes,
that one is included in there. Looks like I've slightly
overestimated the amount of work required for TH04's and TH05's bosses…
Did you know that moving on top of a boss sprite doesn't kill the player in
TH04, only in TH05?
Yup, Reimu is not getting hit… yet.
That's the first of only three interesting discoveries in these 3 pushes,
all of which concern TH04. But yeah, 3 for something as seemingly simple as
these shared boss functions… that's still not quite the speed-up I had hoped
for. While most of this can be blamed, again, on TH04 and all of its
hardcoded complexities, there still was a lot of work to be done on the
maintenance front as well. These functions reference a bunch of code I RE'd
years ago and that still had to be brought up to current standards, with the
dependencies reaching from 📝 boss explosions
over 📝 text RAM overlay functionality up to
in-game dialog loading.
The latter provides a good opportunity to talk a bit about x86 memory
segmentation. Many aspiring PC-98 developers these days are very scared
of it, with some even going as far as to rather mess with Protected Mode and
DOS extenders just so that they don't have to deal with it. I wonder where
that fear comes from… Could it be because every modern programming language
I know of assumes memory to be flat, and lacks any standard language-level
features to even express something like segments and offsets? That's why
compilers have a hard time targeting 16-bit x86 these days: Doing anything
interesting on the architecture requires giving the programmer full
control over segmentation, which always comes down to adding the
typical non-standard language extensions of compilers from back in the day.
And as soon as DOS stopped being used, these extensions no longer made sense
and were subsequently removed from newer tools. A good example for this can
be found in an old version of the
NASM manual: The project started as an attempt to make x86 assemblers
simple again by throwing out most of the segmentation features from
MASM-style assemblers, which made complete sense in 1996 when 16-bit DOS and
Windows were already on their way out. But there was a point to all
those features, and that's why ReC98 still has to use the supposedly
inferior TASM.
Not that this fear of segmentation is completely unfounded: All the
segmentation-related keywords, directives, and #pragmas
provided by Borland C++ and TASM absolutely can be the cause of many
weird runtime bugs. Even if the compiler or linker catches them, you are
often left with confusing error messages that aged just as poorly as memory
segmentation itself.
However, embracing the concept does provide quite the opportunity for
optimizations. While it definitely was a very crazy idea, there is a small
bit of brilliance to be gained from making proper use of all these
segmentation features. Case in point: The buffer for the in-game dialog
scripts in TH04 and TH05.
// Thanks to the semantics of `far` pointers, we only need a single 32-bit
// pointer variable for the following code.
extern unsigned char far *dialog_p;
// This master.lib function returns a `void __seg *`, which is a 16-bit
// segment-only pointer. Converting to a `far *` yields a full segment:offset
// pointer to offset 0000h of that segment.
dialog_p = (unsigned char far *)hmem_allocbyte(/* … */);
// Running the dialog script involves pointer arithmetic. On a far pointer,
// this only affects the 16-bit offset part, complete with overflow at 64 KiB,
// from FFFFh back to 0000h.
dialog_p += /* … */;
dialog_p += /* … */;
dialog_p += /* … */;
// Since the segment part of the pointer is still identical to the one we
// allocated above, we can later correctly free the buffer by pulling the
// segment back out of the pointer.
hmem_free((void __seg *)dialog_p);
If dialog_p was a huge pointer, any pointer
arithmetic would have also adjusted the segment part, requiring a second
pointer to store the base address for the hmem_free call. Doing
that will also be necessary for any port to a flat memory model. Depending
on how you look at it, this compression of two logical pointers into a
single variable is either quite nice, or really, really dumb in its
reliance on the precise memory model of one single architecture.
Why look at dialog loading though, wasn't this supposed to be all about
shared boss functions? Well, TH04 unnecessarily puts certain stage-specific
code into the boss defeat function, such as loading the alternate Stage 5
Yuuka defeat dialog before a Bad Ending, or initializing Gengetsu after
Mugetsu's defeat in the Extra Stage.
That's TH04's second core function with an explicit conditional branch for
Gengetsu, after the
📝 dialog exit code we found last year during EMS research.
And I've heard people say that Shinki was the most hardcoded fight in PC-98
Touhou… Really, Shinki is a perfectly regular boss, who makes proper use of
all internal mechanics in the way they were intended, and doesn't blast
holes into the architecture of the game. Even within TH05, it's Mai and Yuki
who rely on hacks and duplicated code, not Shinki.
The worst part about this though? How the function distinguishes Mugetsu
from Gengetsu. Once again, it uses its own global variable to track whether
it is called the first or the second time within TH04's Extra Stage,
unrelated to the same variable used in the dialog exit function. But this
time, it's not just any newly created, single-use variable, oh no. In a
misguided attempt to micro-optimize away a few bytes of conventional memory,
TH04 reserves 16 bytes of "generic boss state", which can (and are) freely
used for anything a boss doesn't want to store in a more dedicated
variable.
It might have been worth it if the bosses actually used most of these
16 bytes, but the majority just use (the same) two, with only Stage 4 Reimu
using a whopping seven different ones. To reverse-engineer the various uses
of these variables, I pretty much had to map out which of the undecompiled
danmaku-pattern functions corresponds to which boss
fight. In the end, I assigned 29 different variable names for each of the
semantically different use cases, which made up another full push on its
own.
Now, 16 bytes of wildly shared state, isn't that the perfect recipe for
bugs? At least during this cursory look, I haven't found any obvious ones
yet. If they do exist, it's more likely that they involve reused state from
earlier bosses – just how the Shinki death glitch in
TH05 is caused by reusing cheeto data from way back in Stage 4 – and
hence require much more boss-specific progress.
And yes, it might have been way too early to look into all these tiny
details of specific boss scripts… but then, this happened:
Looks similar to another
screenshot of a crash in the same fight that was reported in December,
doesn't it? I was too much in a hurry to figure it out exactly, but notice
how both crashes happen right as the last of Marisa's four bits is destroyed.
KirbyComment has suspected
this to be the cause for a while, and now I can pretty much confirm it
to be an unguarded division by the number of on-screen bits in
Marisa-specific pattern code. But what's the cause for Kurumi then?
As for fixing it, I can go for either a fast or a slow option:
Superficially fixing only this crash will probably just take a fraction
of a push.
But I could also go for a deeper understanding by looking at TH04's
version of the 📝 custom entity structure. It
not only stores the data of Marisa's bits, but is also very likely to be
involved in Kurumi's crash, and would get TH04 a lot closer to 100%
PI. Taking that look will probably need at least 2 pushes, and might require
another 3-4 to completely decompile Marisa's fight, and 2-3 to decompile
Kurumi's.
OK, now that that's out of the way, time to finish the boss defeat function…
but not without stumbling over the third of TH04's quirks, relating to the
Clear Bonus for the main game or the Extra Stage:
To achieve the incremental addition effect for the in-game score display
in the HUD, all new points are first added to a score_delta
variable, which is then added to the actual score at a maximum rate of
61,110 points per frame.
There are a fixed 416 frames between showing the score tally and
launching into MAINE.EXE.
As a result, TH04's Clear Bonus is effectively limited to
(416 × 61,110) = 25,421,760 points.
Only TH05 makes sure to commit the entirety of the
score_delta to the actual score before switching binaries,
which fixes this issue.
And after another few collision-related functions, we're now truly,
finally ready to decompile bosses in both TH04 and TH05! Just as the
anything funds were running out… The
remaining ¼ of the third push then went to Shinki's 32×32 ball bullets,
rounding out this delivery with a small self-contained piece of the first
TH05 boss we're probably going to look at.
Next up, though: I'm not sure, actually. Both Shinki and Elis seem just a
little bit larger than the 2¼ or 4 pushes purchased so far, respectively.
Now that there's a bunch of room left in the cap again, I'll just let the
next contribution decide – with a preference for Shinki in case of a tie.
And if it will take longer than usual for the store to sell out again this
time (heh), there's still the
📝 PC-98 text RAM JIS trail word rendering research
waiting to be documented.
Two years after
📝 the first look at TH04's and TH05's bullets,
we finally get to finish their logic code by looking at the special motion
types. Bullets as a whole still aren't completely finished as the
rendering code is still waiting to be RE'd, but now we've got everything
about them that's required for decompiling the midboss and boss fights of
these games.
Just like the motion types of TH01's pellets, the ones we've got here really
are special enough to warrant an enum, despite all the
overlap in the "slow down and turn" and "bounce at certain edges of the
playfield" types. Sure, including them in the bitfield I proposed two years
ago would have allowed greater variety, but it wouldn't have saved any
memory. On the contrary: These types use a single global state variable for
the maximum turn count and delta speed, which a proper customizable
architecture would have to integrate into the bullet structure. Maybe it is
possible to stuff everything into the same amount of bytes, but not without
first completely rearchitecting the bullet structure and removing every
single piece of redundancy in there. Simply extending the system by adding a
new enum value for a new motion type would be way more
straightforward for modders.
Speaking about memory, TH05 already extends the bullet structure by 6 bytes
for the "exact linear movement" type exclusive to that game. This type is
particularly interesting for all the prospective PC-98 game developers out
there, as it nicely points out the precision limits of Q12.4 subpixels.
Regular bullet movement works by adding a Q12.4 velocity to a Q12.4 position
every frame, with the velocity typically being calculated only once on spawn
time from an 8-bit angle and a Q12.4 speed. Quantization errors from this
initial calculation can quickly compound over all the frames a bullet spends
moving across the playfield. If a bullet is only supposed to move on a
straight line though, there is a more precise way of calculating its
position: By storing the origin point, movement angle, and total distance
traveled, you can perform a full polar→Cartesian transformation every frame.
Out of the 10 danmaku patterns in TH05 that use this motion type, the
difference to regular bullet movement can be best seen in Louise's final
pattern:
Louise's final pattern in its original form, demonstrating
exact linear bullet movement. Note how each bullet spawns slightly
behind the delay cloud: ZUN simply forgot to shift the fixed origin
point along with it.The same pattern with standard bullet movement, corrupting
its intended appearance. No delay cloud-related oversights here though,
at least.
Not far away from the regular bullet code, we've also got the movement
function for the infamous curve / "cheeto" bullets. I would have almost
called them "cheetos" in the code as well, which surely fits more nicely
into 8.3 filenames than "curve bullets" does, but eh, trademarks…
As for hitboxes, we got a 16×16 one on the head node, and a 12×12 one on the
16 trail nodes. The latter simply store the position of the head node during
the last 16 frames, Snake style. But what you're all here for is probably
the turning and homing algorithm, right? Boiled down to its essence, it
works like this:
// [head] points to the controlled "head" part of a curve bullet entity.
// Angles are stored with 8 bits representing a full circle, providing free
// normalization on arithmetic overflow.
// The directions are ordered as you would expect:
// • 0x00: right (sin(0x00) = 0, cos(0x00) = +1)
// • 0x40: down (sin(0x40) = +1, cos(0x40) = 0)
// • 0x80: left (sin(0x80) = 0, cos(0x80) = -1)
// • 0xC0: up (sin(0xC0) = -1, cos(0xC0) = 0)
uint8_t angle_delta = (head->angle - player_angle_from(
head->pos.cur.x, head->pos.cur.y
));
// Stop turning if the player is 1/128ths of a circle away from this bullet
const uint8_t SNAP = 0x02;
// Else, turn either clockwise or counterclockwise by 1/256th of a circle,
// depending on what would reach the player the fastest.
if((angle_delta > SNAP) && (angle_delta < static_cast<uint8_t>(-SNAP))) {
angle_delta = (angle_delta >= 0x80) ? -0x01 : +0x01;
}
head_p->angle -= angle_delta;
5 lines of code, and not all too difficult to follow once you are familiar
with 8-bit angles… unlike what ZUN actually wrote. Which is 26 lines,
and includes an unused "friction" variable that is never set to any value
that makes a difference in the formula. uth05win
correctly saw through that all and simplified this code to something
equivalent to my explanation. Redoing that work certainly wasted a bit of my
time, and means that I now definitely need to spend another push on RE'ing
all the shared boss functions before I can start with Shinki.
So while a curve bullet's speed does get faster over time, its
angular velocity is always limited to 1/256th of a
circle per frame. This reveals the optimal strategy for dodging them:
Maximize this delta angle by staying as close to 180° away from their
current direction as possible, and let their acceleration do the rest.
At least that's the theory for dodging a single one. As a danmaku
designer, you can now of course place other bullets at these technically
optimal places to prevent a curve bullet pattern from being cheesed like
that. I certainly didn't record the video above in a single take either…
After another bunch of boring entity spawn and update functions, the
playfield shaking feature turned out as the most notable (and tricky) one to
round out these two pushes. It's actually implemented quite well in how it
simply "un-shakes" the screen by just marking every stage tile to be
redrawn. In the context of all the other tile invalidation that can take
place during a frame, that's definitely more performant than
📝 doing another EGC-accelerated memmove().
Due to these two games being double-buffered via page flipping, this
invalidation only really needs to happen for the frame after the next
one though. The immediately next frame will show the regular, un-shaken
playfield on the other VRAM page first, except during the multi-frame
shake animation when defeating a midboss, where it will also appear shifted
in a different direction… 😵 Yeah, no wonder why ZUN just always invalidates
all stage tiles for the next two frames after every shaking animation, which
is guaranteed to handle both sporadic single-frame shakes and continuous
ones. So close to good-code here.
Finally, this delivery was delayed a bit because -Tom-
requested his round-up amount to be limited to the cap in the future. Since
that makes it kind of hard to explain on a static page how much money he
will exactly provide, I now properly modeled these discounts in the website
code. The exact round-up amount is now included in both the pre-purchase
breakdown, as well as the cap bar on the main page.
With that in place, the system is now also set up for round-up offers from
other patrons. If you'd also like to support certain goals in this way, with
any amount of money, now's the time for getting in touch with me about that.
Known contributors only, though! 😛
Next up: The final bunch of shared boring boss functions. Which certainly
will give me a break from all the maintenance and research work, and speed
up delivery progress again… right?
Been 📝 a while since we last looked at any of
TH03's game code! But before that, we need to talk about Y coordinates.
During TH03's MAIN.EXE, the PC-98 graphics GDC runs in its
line-doubled 640×200 resolution, which gives the in-game portion its
distinctive stretched low-res look. This lower resolution is a consequence
of using 📝 Promisence Soft's SPRITE16 driver:
Its performance simply stems from the fact that it expects sprites to be
stored in the bottom half of VRAM, which allows them to be blitted using the
same EGC-accelerated VRAM-to-VRAM copies we've seen again and again in all
other games. Reducing the visible resolution also means that the sprites can
be stored on both VRAM pages, allowing the game to still be double-buffered.
If you force the graphics chip to run at 640×400, you can see them:
The full VRAM contents during TH03's in-game portion, as seen when forcing the system into a 640×400 resolution.
•
Note that the text chip still displays its overlaid contents at 640×400,
which means that TH03's in-game portion technically runs at two
resolutions at the same time.
But that means that any mention of a Y coordinate is ambiguous: Does it
refer to undoubled VRAM pixels, or on-screen stretched pixels? Especially
people who have known about the line doubling for years might almost expect
technical blog posts on this game to use undoubled VRAM coordinates. So,
let's introduce a new formatting convention for both on-screen
640×400 and undoubled 640×200 coordinates,
and always write out both to minimize the confusion.
Alright, now what's the thing gonna be? The enemy structure is highly
overloaded, being used for enemies, fireballs, and explosions with seemingly
different semantics for each. Maybe a bit too much to be figured out in what
should ideally be a single push, especially with all the functions that
would need to be decompiled? Bullet code would be easier, but not exactly
single-push material either. As it turns out though, there's something more
fundamental left to be done first, which both of these subsystems depend on:
collision detection!
And it's implemented exactly how I always naively imagined collision
detection to be implemented in a fixed-resolution 2D bullet hell game with
small hitboxes: By keeping a separate 1bpp bitmap of both playfields in
memory, drawing in the collidable regions of all entities on every frame,
and then checking whether any pixels at the current location of the player's
hitbox are set to 1. It's probably not done in the other games because their
single data segment was already too packed for the necessary 17,664 bytes to
store such a bitmap at pixel resolution, and 282,624 bytes for a bitmap at
Q12.4 subpixel resolution would have been prohibitively expensive in 16-bit
Real Mode DOS anyway. In TH03, on the other hand, this bitmap is doubly
useful, as the AI also uses it to elegantly learn what's on the playfield.
By halving the resolution and only tracking tiles of 2×2 / 2×1 pixels, TH03 only requires an adequate total
of 6,624 bytes of memory for the collision bitmaps of both playfields.
So how did the implementation not earn the good-code tag this time? Because the code for drawing into these bitmaps is undecompilable hand-written x86 assembly. And not just your usual ASM that was basically compiled from C and then edited to maybe optimize register allocation and maybe replace a bunch of local variables with self-modifying code, oh no. This code is full of overly clever bit twiddling, abusing the fact that the 16-bit AX,
BX, CX, and DX registers can also be
accessed as two 8-bit registers, calculations that change the semantic
meaning behind the value of a register, or just straight-up reassignments of
different values to the same small set of registers. Sure, in some way it is
impressive, and it all does work and correctly covers every edge
case, but come on. This could have all been a lot more readable in
exchange for just a few CPU cycles.
What's most interesting though are the actual shapes that these functions
draw into the collision bitmap. On the surface, we have:
vertical slopes at any angle across the whole playfield; exclusively
used for Chiyuri's diagonal laser EX attack
straight vertical lines, with a width of 1 tile; exclusively used for
the 2×2 / 2×1 hitboxes of bullets
rectangles at arbitrary sizes
But only 2) actually draws a full solid line. 1) and 3) are only ever drawn
as horizontal stripes, with a hardcoded distance of 2 vertical tiles
between every stripe of a slope, and 4 vertical tiles between every stripe
of a rectangle. That's 66-75% of each rectangular entity's intended hitbox
not actually taking part in collision detection. Now, if player hitboxes
were ≤ 6 / 3 pixels, we'd have one
possible explanation of how the AI can "cheat", because it could just
precisely move through those blank regions at TAS speeds. So, let's make
this two pushes after all and tell the complete story, since this is one of
the more interesting aspects to still be documented in this game.
And the code only gets worse. While the player
collision detection function is decompilable, it might as well not
have been, because it's just more of the same "optimized", hard-to-follow
assembly. With the four splittable 16-bit registers having a total of 20
different meanings in this function, I would have almost preferred
self-modifying code…
In fact, it was so bad that it prompted some maintenance work on my inline
assembly coding standards as a whole. Turns out that the _asm
keyword is not only still supported in modern Visual Studio compilers, but
also in Clang with the -fms-extensions flag, and compiles fine
there even for 64-bit targets. While that might sound like amazing news at
first ("awesome, no need to rewrite this stuff for my x86_64 Linux
port!"), you quickly realize that almost all inline assembly in this
codebase assumes either PC-98 hardware, segmented 16-bit memory addressing,
or is a temporary hack that will be removed with further RE progress.
That's mainly because most of the raw arithmetic code uses Turbo C++'s
register pseudovariables where possible. While they certainly have their
drawbacks, being a non-standard extension that's not supported in other
x86-targeting C compilers, their advantages are quite significant: They
allow this code to stay in the same language, and provide slightly more
immediate portability to any other architecture, together with
📝 readability and maintainability improvements that can get quite significant when combined with inlining:
// This one line compiles to five ASM instructions, which would need to be
// spelled out in any C compiler that doesn't support register pseudovariables.
// By adding typed aliases for these registers via `#define`, this code can be
// both made even more readable, and be prepared for an easier transformation
// into more portable local variables.
_ES = (((_AX * 4) + _BX) + SEG_PLANE_B);
However, register pseudovariables might cause potential portability issues
as soon as they are mixed with inline assembly instructions that rely on
their state. The lazy way of "supporting pseudo-registers" in other
compilers would involve declaring the full set as global variables, which
would immediately break every one of those instances:
_DI = 0;
_AX = 0xFFFF;
// Special x86 instruction doing the equivalent of
//
// *reinterpret_cast(MK_FP(_ES, _DI)) = _AX;
// _DI += sizeof(uint16_t);
//
// Only generated by Turbo C++ in very specific cases, and therefore only
// reliably available through inline assembly.
asm { movsw; }
What's also not all too standardized, though, are certain variants of
the asm keyword. That's why I've now introduced a distinction
between the _asm keyword for "decently sane" inline assembly,
and the slightly less standard asm keyword for inline assembly
that relies on the contents of pseudo-registers, and should break on
compilers that don't support them. So yeah, have some minor
portability work in exchange for these two pushes not having all that much
in RE'd content.
With that out of the way and the function deciphered, we can confirm the
player hitboxes to be a constant 8×8 /
8×4 pixels, and prove that the hit stripes are nothing but
an adequate optimization that doesn't affect gameplay in any way.
And what's the obvious thing to immediately do if you have both the
collision bitmap and the player hitbox? Writing a "real hitbox" mod, of
course:
Reorder the calls to rendering functions so that player and shot sprites
are rendered after bullets
Blank out all player sprite pixels outside an
8×8 / 8×4 box around the center
point
After the bullet rendering function, turn on the GRCG in RMW mode and
set the tile register set to the background color
Stretch the negated contents of collision bitmap onto each playfield,
leaving only collidable pixels untouched
Do the same with the actual, non-negated contents and a white color, for
extra contrast against the background. This also makes sure to show any
collidable areas whose sprite pixels are transparent, such as with the moon
enemy. (Yeah, how unfair.) Doing that also loses a lot of information about
the playfield, such as enemy HP indicated by their color, but what can you
do:
A decently busy TH03 in-game frame and its underlying collision bitmap,
showing off all three different collision shapes together with the
player hitboxes.
2022-02-18-TH03-real-hitbox.zip
The secret for writing such mods before having reached a sufficient level of
position independence? Put your new code segment into DGROUP,
past the end of the uninitialized data section. That's why this modded
MAIN.EXE is a lot larger than you would expect from the raw amount of new code: The file now actually needs to store all these
uninitialized 0 bytes between the end of the data segment and the first
instruction of the mod code – normally, this number is simply a part of the
MZ EXE header, and doesn't need to be redundantly stored on disk. Check the
th03_real_hitbox
branch for the code.
And now we know why so many "real hitbox" mods for the Windows Touhou games
are inaccurate: The games would simply be unplayable otherwise – or can
you dodge rapidly moving 2×2 /
2×1 blocks as an 8×8 /
8×4 rectangle that is smaller than your shot sprites,
especially without focused movement? I can't.
Maybe it will feel more playable after making explosions visible, but that
would need more RE groundwork first.
It's also interesting how adding two full GRCG-accelerated redraws of both
playfields per frame doesn't significantly drop the game's frame rate – so
why did the drawing functions have to be micro-optimized again? It
would be possible in one pass by using the GRCG's TDW mode, which
should theoretically be 8× faster, but I have to stop somewhere.
Next up: The final missing piece of TH04's and TH05's
bullet-moving code, which will include a certain other
type of projectile as well.
Here we go, TH01 Sariel! This is the single biggest boss fight in all of
PC-98 Touhou: If we include all custom effect code we previously decompiled,
it amounts to a total of 10.31% of all code in TH01 (and 3.14%
overall). These 8 pushes cover the final 8.10% (or 2.47% overall),
and are likely to be the single biggest delivery this project will ever see.
Considering that I only managed to decompile 6.00% across all games in 2021,
2022 is already off to a much better start!
So, how can Sariel's code be that large? Well, we've got:
16 danmaku patterns; including the one snowflake detonating into a giant
94×32 hitbox
Gratuitous usage of floating-point variables, bloating the binary thanks
to Turbo C++ 4.0J's particularly horrid code generation
The hatching birds that shoot pellets
3 separate particle systems, sharing the general idea, overall code
structure, and blitting algorithm, but differing in every little detail
The "gust of wind" background transition animation
5 sets of custom monochrome sprite animations, loaded from
BOSS6GR?.GRC
A further 3 hardcoded monochrome 8×8 sprites for the "swaying leaves"
pattern during the second form
In total, it's just under 3,000 lines of C++ code, containing a total of 8
definite ZUN bugs, 3 of them being subpixel/pixel confusions. That might not
look all too bad if you compare it to the
📝 player control function's 8 bugs in 900 lines of code,
but given that Konngara had 0… (Edit (2022-07-17):
Konngara contains two bugs after all: A
📝 possible heap corruption in test or debug mode,
and the infamous
📝 temporary green discoloration.)
And no, the code doesn't make it obvious whether ZUN coded Konngara or
Sariel first; there's just as much evidence for either.
Some terminology before we start: Sariel's first form is separated
into four phases, indicated by different background images, that
cycle until Sariel's HP reach 0 and the second, single-phase form
starts. The danmaku patterns within each phase are also on a cycle,
and the game picks a random but limited number of patterns per phase before
transitioning to the next one. The fight always starts at pattern 1 of phase
1 (the random purple lasers), and each new phase also starts at its
respective first pattern.
Sariel's bugs already start at the graphics asset level, before any code
gets to run. Some of the patterns include a wand raise animation, which is
stored in BOSS6_2.BOS:
Umm… OK? The same sprite twice, just with slightly different
colors? So how is the wand lowered again?
The "lowered wand" sprite is missing in this file simply because it's
captured from the regular background image in VRAM, at the beginning of the
fight and after every background transition. What I previously thought to be
📝 background storage code has therefore a
different meaning in Sariel's case. Since this captured sprite is fully
opaque, it will reset the entire 128×128 wand area… wait, 128×128, rather
than 96×96? Yup, this lowered sprite is larger than necessary, wasting 1,967
bytes of conventional memory. That still doesn't quite explain the
second sprite in BOSS6_2.BOS though. Turns out that the black
part is indeed meant to unblit the purple reflection (?) in the first
sprite. But… that's not how you would correctly unblit that?
The first sprite already eats up part of the red HUD line, and the second
one additionally fails to recover the seal pixels underneath, leaving a nice
little black hole and some stray purple pixels until the next background
transition. Quite ironic given that both
sprites do include the right part of the seal, which isn't even part of the
animation.
Just like Konngara, Sariel continues the approach of using a single function
per danmaku pattern or custom entity. While I appreciate that this allows
all pattern- and entity-specific state to be scoped locally to that one
function, it quickly gets ugly as soon as such a function has to do more than one thing.
The "bird function" is particularly awful here: It's just one if(…)
{…} else if(…) {…} else if(…) {…} chain with different
branches for the subfunction parameter, with zero shared code between any of
these branches. It also uses 64-bit floating-point double as
its subpixel type… and since it also takes four of those as parameters
(y'know, just in case the "spawn new bird" subfunction is called), every
call site has to also push four double values onto the stack.
Thanks to Turbo C++ even using the FPU for pushing a 0.0 constant, we
have already reached maximum floating-point decadence before even having
seen a single danmaku pattern. Why decadence? Every possible spawn position
and velocity in both bird patterns just uses pixel resolution, with no
fractional component in sight. And there goes another 720 bytes of
conventional memory.
Speaking about bird patterns, the red-bird one is where we find the first
code-level ZUN bug: The spawn cross circle sprite suddenly disappears after
it finished spawning all the bird eggs. How can we tell it's a bug? Because
there is code to smoothly fly this sprite off the playfield, that
code just suddenly forgets that the sprite's position is stored in Q12.4
subpixels, and treats it as raw screen pixels instead.
As a result, the well-intentioned 640×400
screen-space clipping rectangle effectively shrinks to 38×23 pixels in the
top-left corner of the screen. Which the sprite is always outside of, and
thus never rendered again.
The intended animation is easily restored though:
Sariel's third pattern, and the first to spawn birds, in its original
and fixed versions. Note that I somewhat fixed the bird hatch animation
as well: ZUN's code never unblits any frame of animation there, and
simply blits every new one on top of the previous one.
Also, did you know that birds actually have a quite unfair 14×38-pixel
hitbox? Not that you'd ever collide with them in any of the patterns…
Another 3 of the 8 bugs can be found in the symmetric, interlaced spawn rays
used in three of the patterns, and the 32×32 debris "sprites" shown at their endpoint, at
the edge of the screen. You kinda have to commend ZUN's attention to detail
here, and how he wrote a lot of code for those few rapidly animated pixels
that you most likely don't
even notice, especially with all the other wrong pixels
resulting from rendering glitches. One of the bugs in the very final pattern
of phase 4 even turns them into the vortex sprites from the second pattern
in phase 1 during the first 5 frames of
the first time the pattern is active, and I had to single-step the blitting
calls to verify it.
It certainly was annoying how much time I spent making sense of these bugs,
and all weird blitting offsets, for just a few pixels… Let's look at
something more wholesome, shall we?
So far, we've only seen the PC-98 GRCG being used in RMW (read-modify-write)
mode, which I previously
📝 explained in the context of TH01's red-white HP pattern.
The second of its three modes, TCR (Tile Compare Read), affects VRAM reads
rather than writes, and performs "color extraction" across all 4 bitplanes:
Instead of returning raw 1bpp data from one plane, a VRAM read will instead
return a bitmask, with a 1 bit at every pixel whose full 4-bit color exactly
matches the color at that offset in the GRCG's tile register, and 0
everywhere else. Sariel uses this mode to make sure that the 2×2 particles
and the wind effect are only blitted on top of "air color" pixels, with
other parts of the background behaving like a mask. The algorithm:
Set the GRCG to TCR mode, and all 8 tile register dots to the air
color
Read N bits from the target VRAM position to obtain an N-bit mask where
all 1 bits indicate air color pixels at the respective position
AND that mask with the alpha plane of the sprite to be drawn, shifted to
the correct start bit within the 8-pixel VRAM byte
Set the GRCG to RMW mode, and all 8 tile register dots to the color that
should be drawn
Write the previously obtained bitmask to the same position in VRAM
Quite clever how the extracted colors double as a secondary alpha plane,
making for another well-earned good-code tag. The wind effect really doesn't deserve it, though:
ZUN calculates every intermediate result inside this function
over and over and over again… Together with some ugly
pointer arithmetic, this function turned into one of the most tedious
decompilations in a long while.
This gradual effect is blitted exclusively to the front page of VRAM,
since parts of it need to be unblitted to create the illusion of a gust of
wind. Then again, anything that moves on top of air-colored background –
most likely the Orb – will also unblit whatever it covered of the effect…
As far as I can tell, ZUN didn't use TCR mode anywhere else in PC-98 Touhou.
Tune in again later during a TH04 or TH05 push to learn about TDW, the final
GRCG mode!
Speaking about the 2×2 particle systems, why do we need three of them? Their
only observable difference lies in the way they move their particles:
Up or down in a straight line (used in phases 4 and 2,
respectively)
Left or right in a straight line (used in the second form)
Left and right in a sinusoidal motion (used in phase 3, the "dark
orange" one)
Out of all possible formats ZUN could have used for storing the positions
and velocities of individual particles, he chose a) 64-bit /
double-precision floating-point, and b) raw screen pixels. Want to take a
guess at which data type is used for which particle system?
If you picked double for 1) and 2), and raw screen pixels for
3), you are of course correct! Not that I'm implying
that it should have been the other way round – screen pixels would have
perfectly fit all three systems use cases, as all 16-bit coordinates
are extended to 32 bits for trigonometric calculations anyway. That's what,
another 1.080 bytes of wasted conventional memory? And that's even
calculated while keeping the current architecture, which allocates
space for 3×30 particles as part of the game's global data, although only
one of the three particle systems is active at any given time.
That's it for the first form, time to put on "Civilization
of Magic"! Or "死なばもろとも"? Or "Theme of 地獄めくり"? Or whatever SYUGEN is
supposed to mean…
… and the code of these final patterns comes out roughly as exciting as
their in-game impact. With the big exception of the very final "swaying
leaves" pattern: After 📝 Q4.4,
📝 Q28.4,
📝 Q24.8, and double variables,
this pattern uses… decimal subpixels? Like, multiplying the number by
10, and using the decimal one's digit to represent the fractional part?
Well, sure, if you really insist on moving the leaves in cleanly
represented integer multiples of ⅒, which is infamously impossible in IEEE
754. Aside from aesthetic reasons, it only really combines less precision
(10 possible fractions rather than the usual 16) with the inferior
performance of having to use integer divisions and multiplications rather
than simple bit shifts. And it's surely not because the leaf sprites needed
an extended integer value range of [-3276, +3276], compared to
Q12.4's [-2047, +2048]: They are clipped to 640×400 screen space
anyway, and are removed as soon as they leave this area.
This pattern also contains the second bug in the "subpixel/pixel confusion
hiding an entire animation" category, causing all of
BOSS6GR4.GRC to effectively become unused:
The "swaying leaves" pattern. ZUN intended a splash animation to be
shown once each leaf "spark" reaches the top of the playfield, which is
never displayed in the original game.
At least their hitboxes are what you would expect, exactly covering the
30×30 pixels of Reimu's sprite. Both animation fixes are available on the th01_sariel_fixes
branch.
After all that, Sariel's main function turned out fairly unspectacular, just
putting everything together and adding some shake, transition, and color
pulse effects with a bunch of unnecessary hardware palette changes. There is
one reference to a missing BOSS6.GRP file during the
first→second form transition, suggesting that Sariel originally had a
separate "first form defeat" graphic, before it was replaced with just the
shaking effect in the final game.
Speaking about the transition code, it is kind of funny how the… um,
imperative and concrete nature of TH01 leads to these 2×24
lines of straight-line code. They kind of look like ZUN rattling off a
laundry list of subsystems and raw variables to be reinitialized, making
damn sure to not forget anything.
Whew! Second PC-98 Touhou boss completely decompiled, 29 to go, and they'll
only get easier from here! 🎉 The next one in line, Elis, is somewhere
between Konngara and Sariel as far as x86 instruction count is concerned, so
that'll need to wait for some additional funding. Next up, therefore:
Looking at a thing in TH03's main game code – really, I have little
idea what it will be!
Now that the store is open again, also check out the
📝 updated RE progress overview I've posted
together with this one. In addition to more RE, you can now also directly
order a variety of mods; all of these are further explained in the order
form itself.
OK, TH01 missile bullets. Can we maybe have a well-behaved entity type,
without any weirdness? Just once?
Ehh, kinda. Apart from another 150 bytes wasted on unused structure members,
this code is indeed more on the low end in terms of overall jank. It does
become very obvious why dodging these missiles in the YuugenMagan, Mima, and
Elis fights feels so awful though: An unfair 46×46 pixel hitbox around
Reimu's center pixel, combined with the comeback of
📝 interlaced rendering, this time in every
stage. ZUN probably did this because missiles are the only 16×16 sprite in
TH01 that is blitted to unaligned X positions, which effectively ends up
touching a 32×16 area of VRAM per sprite.
But even if we assume VRAM writes to be the bottleneck here, it would
have been totally possible to render every missile in every frame at roughly
the same amount of CPU time that the original game uses for interlaced
rendering:
Note that all missile sprites only use two colors, white and green.
Instead of naively going with the usual four bitplanes, extract the
pixels drawn in each of the two used colors into their own bitplanes.
master.lib calls this the "tiny format".
Use the GRCG to draw these two bitplanes in the intended white and green
colors, halving the amount of VRAM writes compared to the original
function.
(Not using the .PTN format would have also avoided the inconsistency of
storing the missile sprites in boss-specific sprite slots.)
That's an optimization that would have significantly benefitted the game, in
contrast to all of the fake ones
introduced in later games. Then again, this optimization is
actually something that the later games do, and it might have in fact been
necessary to achieve their higher bullet counts without significant
slowdown.
After some effectively unused Mima sprite effect code that is so broken that
it's impossible to make sense out of it, we get to the final feature I
wanted to cover for all bosses in parallel before returning to Sariel: The
separate sprite background storage for moving or animated boss sprites in
the Mima, Elis, and Sariel fights. But, uh… why is this necessary to begin
with? Doesn't TH01 already reserve the other VRAM page for backgrounds?
Well, these sprites are quite big, and ZUN didn't want to blit them from
main memory on every frame. After all, TH01 and TH02 had a minimum required
clock speed of 33 MHz, half of the speed required for the later three games.
So, he simply blitted these boss sprites to both VRAM pages, leading
the usual unblitting calls to only remove the other sprites on top of the
boss. However, these bosses themselves want to move across the screen…
and this makes it necessary to save the stage background behind them
in some other way.
Enter .PTN, and its functions to capture a 16×16 or 32×32 square from VRAM
into a sprite slot. No problem with that approach in theory, as the size of
all these bigger sprites is a multiple of 32×32; splitting a larger sprite
into these smaller 32×32 chunks makes the code look just a little bit clumsy
(and, of course, slower).
But somewhere during the development of Mima's fight, ZUN apparently forgot
that those sprite backgrounds existed. And once Mima's 🚫 casting sprite is
blitted on top of her regular sprite, using just regular sprite
transparency, she ends up with her infamous third arm:
Ironically, there's an unused code path in Mima's unblit function where ZUN
assumes a height of 48 pixels for Mima's animation sprites rather than the
actual 64. This leads to even clumsier .PTN function calls for the bottom
128×16 pixels… Failing to unblit the bottom 16 pixels would have also
yielded that third arm, although it wouldn't have looked as natural. Still
wouldn't say that it was intentional; maybe this casting sprite was just
added pretty late in the game's development?
So, mission accomplished, Sariel unblocked… at 2¼ pushes. That's quite some time left for some smaller stage initialization
code, which bundles a bunch of random function calls in places where they
logically really don't belong. The stage opening animation then adds a bunch
of VRAM inter-page copies that are not only redundant but can't even be
understood without knowing the hidden internal state of the last VRAM page
accessed by previous ZUN code…
In better news though: Turbo C++ 4.0 really doesn't seem to have any
complexity limit on inlining arithmetic expressions, as long as they only
operate on compile-time constants. That's how we get macro-free,
compile-time Shift-JIS to JIS X 0208 conversion of the individual code
points in the 東方★靈異伝 string, in a compiler from 1994. As long as you
don't store any intermediate results in variables, that is…
But wait, there's more! With still ¼ of a push left, I also went for the
boss defeat animation, which includes the route selection after the SinGyoku
fight.
As in all other instances, the 2× scaled font is accomplished by first
rendering the text at regular 1× resolution to the other, invisible VRAM
page, and then scaled from there to the visible one. However, the route
selection is unique in that its scaled text is both drawn transparently on
top of the stage background (not onto a black one), and can also change
colors depending on the selection. It would have been no problem to unblit
and reblit the text by rendering the 1× version to a position on the
invisible VRAM page that isn't covered by the 2× version on the visible one,
but ZUN (needlessly) clears the invisible page before rendering any text.
Instead, he assigned a separate VRAM color for both
the 魔界 and 地獄 options, and only changed the palette value for
these colors to white or gray, depending on the correct selection. This is
another one of the
📝 rare cases where TH01 demonstrates good use of PC-98 hardware,
as the 魔界へ and 地獄へ strings don't need to be reblitted during the selection process, only the Orb "cursor" does.
Then, why does this still not count as good-code? When
changing palette colors, you kinda need to be aware of everything
else that can possibly be on screen, which colors are used there, and which
aren't and can therefore be used for such an effect without affecting other
sprites. In this case, well… hover over the image below, and notice how
Reimu's hair and the bomb sprites in the HUD light up when Makai is
selected:
This push did end on a high note though, with the generic, non-SinGyoku
version of the defeat animation being an easily parametrizable copy. And
that's how you decompile another 2.58% of TH01 in just slightly over three
pushes.
Now, we're not only ready to decompile Sariel, but also Kikuri, Elis, and
SinGyoku without needing any more detours into non-boss code. Thanks to the
current TH01 funding subscriptions, I can plan to cover most, if not all, of
Sariel in a single push series, but the currently 3 pending pushes probably
won't suffice for Sariel's 8.10% of all remaining code in TH01. We've got
quite a lot of not specifically TH01-related funds in the backlog to pass
the time though.
Due to recent developments, it actually makes quite a lot of sense to take a
break from TH01: spaztron64 has
managed what every Touhou download site so far has failed to do: Bundling
all 5 game onto a single .HDI together with pre-configured PC-98
emulators and a nice boot menu, and hosting the resulting package on a
proper website. While this first release is already quite good (and much
better than my attempt from 2014), there is still a bit of room for
improvement to be gained from specific ReC98 research. Next up,
therefore:
Researching how TH04 and TH05 use EMS memory, together with the cause
behind TH04's crash in Stage 5 when playing as Reimu without an EMS driver
loaded, and
reverse-engineering TH03's score data file format
(YUME.NEM), which hopefully also comes with a way of building a
file that unlocks all characters without any high scores.
No technical obstacles for once! Just pure overcomplicated ZUN code. Unlike
📝 Konngara's main function, the main TH01
player function was every bit as difficult to decompile as you would expect
from its size.
With TH01 using both separate left- and right-facing sprites for all of
Reimu's moves and separate classes for Reimu's 32×32 and 48×*
sprites, we're already off to a bad start. Sure, sprite mirroring is
minimally more involved on PC-98, as the planar
nature of VRAM requires the bits within an 8-pixel byte to also be
mirrored, in addition to writing the sprite bytes from right to left. TH03
uses a 256-byte lookup table for this, generated at runtime by an infamous
micro-optimized and undecompilable ASM algorithm. With TH01's existing
architecture, ZUN would have then needed to write 3 additional blitting
functions. But instead, he chose to waste a total of 26,112 bytes of memory
on pre-mirrored sprites…
Alright, but surely selecting those sprites from code is no big deal? Just
store the direction Reimu is facing in, and then add some branches to the
rendering code. And there is in fact a variable for Reimu's direction…
during regular arrow-key movement, and another one while shooting and
sliding, and a third as part of the special attack types,
launched out of a slide.
Well, OK, technically, the last two are the same variable. But that's even
worse, because it means that ZUN stores two distinct enums at
the same place in memory: Shooting and sliding uses 1 for left,
2 for right, and 3 for the "invalid" direction of
holding both, while the special attack types indicate the direction in their
lowest bit, with 0 for right and 1 for left. I
decompiled the latter as bitflags, but in ZUN's code, each of the 8
permutations is handled as a distinct type, with copy-pasted and adapted
code… The interpretation of this
two-enum "sub-mode" union variable is controlled
by yet another "mode" variable… and unsurprisingly, two of the bugs in this
function relate to the sub-mode variable being interpreted incorrectly.
Also, "rendering code"? This one big function basically consists of separate
unblit→update→render code snippets for every state and direction Reimu can
be in (moving, shooting, swinging, sliding, special-attacking, and bombing),
pasted together into a tangled mess of nested if(…) statements.
While a lot of the code is copy-pasted, there are still a number of
inconsistencies that defeat the point of my usual refactoring treatment.
After all, with a total of 85 conditional branches, anything more than I did
would have just obscured the control flow too badly, making it even harder
to understand what's going on.
In the end, I spotted a total of 8 bugs in this function, all of which leave
Reimu invisible for one or more frames:
2 frames after all special attacks
2 frames after swing attacks, and
4 frames before swing attacks
Thanks to the last one, Reimu's first swing animation frame is never
actually rendered. So whenever someone complains about TH01 sprite
flickering on an emulator: That emulator is accurate, it's the game that's
poorly written.
And guess what, this function doesn't even contain everything you'd
associate with per-frame player behavior. While it does
handle Yin-Yang Orb repulsion as part of slides and special attacks, it does
not handle the actual player/Orb collision that results in lives being lost.
The funny thing about this: These two things are done in the same function…
Therefore, the life loss animation is also part of another function. This is
where we find the final glitch in this 3-push series: Before the 16-frame
shake, this function only unblits a 32×32 area around Reimu's center point,
even though it's possible to lose a life during the non-deflecting part of a
48×48-pixel animation. In that case, the extra pixels will just stay on
screen during the shake. They are unblitted afterwards though, which
suggests that ZUN was at least somewhat aware of the issue?
Finally, the chance to see the alternate life loss sprite is exactly ⅛.
As for any new insights into game mechanics… you know what? I'm just not
going to write anything, and leave you with this flowchart instead. Here's
the definitive guide on how to control Reimu in TH01 we've been waiting for
24 years:
Pellets are deflected during all gray
states. Not shown is the obvious "double-tap Z and X" transition from
all non-(#1) states to the Bomb state, but that would have made this
diagram even more unwieldy than it turned out. And yes, you can shoot
twice as fast while moving left or right.
While I'm at it, here are two more animations from MIKO.PTN
which aren't referenced by any code:
With that monster of a function taken care of, we've only got boss sprite animation as the final blocker of uninterrupted Sariel progress. Due to some unfavorable code layout in the Mima segment though, I'll need to spend a bit more time with some of the features used there. Next up: The missile bullets used in the Mima and YuugenMagan fights.
Nothing really noteworthy in TH01's stage timer code, just yet another HUD
element that is needlessly drawn into VRAM. Sure, ZUN applies his custom
boldfacing effect on top of the glyphs retrieved from font ROM, but he could
have easily installed those modified glyphs as gaiji.
Well, OK, halfwidth gaiji aren't exactly well documented, and sometimes not
even correctly emulated
📝 due to the same PC-98 hardware oddity I was researching last month.
I've reserved two of the pending anonymous "anything" pushes for the
conclusion of this research, just in case you were wondering why the
outstanding workload is now lower after the two delivered here.
And since it doesn't seem to be clearly documented elsewhere: Every 2 ticks
on the stage timer correspond to 4 frames.
So, TH01 rank pellet speed. The resident pellet speed value is a
factor ranging from a minimum of -0.375 up to a maximum of 0.5 (pixels per
frame), multiplied with the difficulty-adjusted base speed for each pellet
and added on top of that same speed. This multiplier is modified
every time the stage timer reaches 0 and
HARRY UP is shown (+0.05)
for every score-based extra life granted below the maximum number of
lives (+0.025)
every time a bomb is used (+0.025)
on every frame in which the rand value (shown in debug
mode) is evenly divisible by
(1800 - (lives × 200) - (bombs × 50)) (+0.025)
every time Reimu got hit (set to 0 if higher, then -0.05)
when using a continue (set to -0.05 if higher, then -0.125)
Apparently, ZUN noted that these deltas couldn't be losslessly stored in an
IEEE 754 floating-point variable, and therefore didn't store the pellet
speed factor exactly in a way that would correspond to its gameplay effect.
Instead, it's stored similar to Q12.4 subpixels: as a simple integer,
pre-multiplied by 40. This results in a raw range of -15 to 20, which is
what the undecompiled ASM calls still use. When spawning a new pellet, its
base speed is first multiplied by that factor, and then divided by 40 again.
This is actually quite smart: The calculation doesn't need to be aware of
either Q12.4 or the 40× format, as
((Q12.4 * factor×40) / factor×40) still comes out as a
Q12.4 subpixel even if all numbers are integers. The only limiting issue
here would be the potential overflow of the 16-bit multiplication at
unadjusted base speeds of more than 50 pixels per frame, but that'd be
seriously unplayable.
So yeah, pellet speed modifications are indeed gradual, and don't just fall
into the coarse three "high, normal, and low" categories.
That's ⅝ of P0160 done, and the continue and pause menus would make good
candidates to fill up the remaining ⅜… except that it seemed impossible to
figure out the correct compiler options for this code?
The issues centered around the two effects of Turbo C++ 4.0J's
-O switch:
Optimizing jump instructions: merging duplicate successive jumps into a
single one, and merging duplicated instructions at the end of conditional
branches into a single place under a single branch, which the other branches
then jump to
Compressing ADD SP and POP CX
stack-clearing instructions after multiple successive CALLs to
__cdecl functions into a single ADD SP with the
combined parameter stack size of all function calls
But how can the ASM for these functions exhibit #1 but not #2? How
can it be seemingly optimized and unoptimized at the same time? The
only option that gets somewhat close would be -O- -y, which
emits line number information into the .OBJ files for debugging. This
combination provides its own kind of #1, but these functions clearly need
the real deal.
The research into this issue ended up consuming a full push on its own.
In the end, this solution turned out to be completely unrelated to compiler
options, and instead came from the effects of a compiler bug in a totally
different place. Initializing a local structure instance or array like
const uint4_t flash_colors[3] = { 3, 4, 5 };
always emits the { 3, 4, 5 } array into the program's data
segment, and then generates a call to the internal SCOPY@
function which copies this data array to the local variable on the stack.
And as soon as this SCOPY@ call is emitted, the -O
optimization #1 is disabled for the entire rest of the translation
unit?!
So, any code segment with an SCOPY@ call followed by
__cdecl functions must strictly be decompiled from top to
bottom, mirroring the original layout of translation units. That means no
TH01 continue and pause menus before we haven't decompiled the bomb
animation, which contains such an SCOPY@ call. 😕
Luckily, TH01 is the only game where this bug leads to significant
restrictions in decompilation order, as later games predominantly use the
pascal calling convention, in which each function itself clears
its stack as part of its RET instruction.
What now, then? With 51% of REIIDEN.EXE decompiled, we're
slowly running out of small features that can be decompiled within ⅜ of a
push. Good that I haven't been looking a lot into OP.EXE and
FUUIN.EXE, which pretty much only got easy pieces of
code left to do. Maybe I'll end up finishing their decompilations entirely
within these smaller gaps? I still ended up finding one more small
piece in REIIDEN.EXE though: The particle system, seen in the
Mima fight.
I like how everything about this animation is contained within a single
function that is called once per frame, but ZUN could have really
consolidated the spawning code for new particles a bit. In Mima's fight,
particles are only spawned from the top and right edges of the screen, but
the function in fact contains unused code for all other 7 possible
directions, written in quite a bloated manner. This wouldn't feel quite as
unused if ZUN had used an angle parameter instead…
Also, why unnecessarily waste another 40 bytes of
the BSS segment?
But wait, what's going on with the very first spawned particle that just
stops near the bottom edge of the screen in the video above? Well, even in
such a simple and self-contained function, ZUN managed to include an
off-by-one error. This one then results in an out-of-bounds array access on
the 80th frame, where the code attempts to spawn a 41st
particle. If the first particle was unlucky to be both slow enough and
spawned away far enough from the bottom and right edges, the spawning code
will then kill it off before its unblitting code gets to run, leaving its
pixel on the screen until something else overlaps it and causes it to be
unblitted.
Which, during regular gameplay, will quickly happen with the Orb, all the
pellets flying around, and your own player movement. Also, the RNG can
easily spawn this particle at a position and velocity that causes it to
leave the screen more quickly. Kind of impressive how ZUN laid out the
structure
of arrays in a way that ensured practically no effect of this bug on the
game; this glitch could have easily happened every 80 frames instead.
He almost got close to all bugs canceling out each other here!
Next up: The player control functions, including the second-biggest function
in all of PC-98 Touhou.
Of course, Sariel's potentially bloated and copy-pasted code is blocked by
even more definitely bloated and copy-pasted code. It's TH01, what did you
expect?
But even then, TH01's item code is on a new level of software architecture
ridiculousness. First, ZUN uses distinct arrays for both types of items,
with their own caps of 4 for bomb items, and 10 for point items. Since that
obviously makes any type-related switch statement redundant,
he also used distinct functions for both types, with copy-pasted
boilerplate code. The main per-item update and render function is
shared though… and takes every single accessed member of the item
structure as its own reference parameter. Like, why, you have a
structure, right there?! That's one way to really practice the C++ language
concept of passing arbitrary structure fields by mutable reference…
To complete the unwarranted grand generic design of this function, it calls
back into per-type collision detection, drop, and collect functions with
another three reference parameters. Yeah, why use C++ virtual methods when
you can also implement the effectively same polymorphism functionality by
hand? Oh, and the coordinate clamping code in one of these callbacks could
only possibly have come from nested min() and
max() preprocessor macros. And that's how you extend such
dead-simple functionality to 1¼ pushes…
Amidst all this jank, we've at least got a sensible item↔player hitbox this
time, with 24 pixels around Reimu's center point to the left and right, and
extending from 24 pixels above Reimu down to the bottom of the playfield.
It absolutely didn't look like that from the initial naive decompilation
though. Changing entity coordinates from left/top to center was one of the
better lessons from TH01 that ZUN implemented in later games, it really
makes collision detection code much more intuitive to grasp.
The card flip code is where we find out some slightly more interesting
aspects about item drops in this game, and how they're controlled by a
hidden cycle variable:
At the beginning of every 5-stage scene, this variable is set to a
random value in the [0..59] range
Point items are dropped at every multiple of 10
Every card flip adds 1 to its value after this mod 10
check
At a value of 140, the point item is replaced with a bomb item, but only
if no damaging bomb is active. In any case, its value is then reset to
1.
Then again, score players largely ignore point items anyway, as card
combos simply have a much bigger effect on the score. With this, I should
have RE'd all information necessary to construct a tool-assisted score run,
though? Edit: Turns out that 1) point items are becoming
increasingly important in score runs, and 2) Pearl already did a TAS some
months ago. Thanks to
spaztron64 for the info!
The Orb↔card hitbox also makes perfect sense, with 24 pixels around
the center point of a card in every direction.
The rest of the code confirms the
card
flip score formula documented on Touhou Wiki, as well as the way cards
are flipped by bombs: During every of the 90 "damaging" frames of the
140-frame bomb animation, there is a 75% chance to flip the card at the
[bomb_frame % total_card_count_in_stage] array index. Since
stages can only have up to 50 cards
📝 thanks to a bug, even a 75% chance is high
enough to typically flip most cards during a bomb. Each of these flips
still only removes a single card HP, just like after a regular collision
with the Orb.
Also, why are the card score popups rendered before the cards
themselves? That's two needless frames of flicker during that 25-frame
animation. Not all too noticeable, but still.
And that's over 50% of REIIDEN.EXE decompiled as well! Next
up: More HUD update and rendering code… with a direct dependency on
rank pellet speed modifications?
📝 7 pushes to get Konngara done, according to my previous estimate?
Well, how about being twice as fast, and getting the entire boss fight done
in 3.5 pushes instead? So much copy-pasted code in there… without any
flashy unused content, apart from four calculations with an unclear purpose. And the three strings "ANGEL", "OF",
"DEATH", which were probably meant to be rendered using those giant
upscaled font ROM glyphs that also display the
STAGE # and
HARRY UP strings? Those three strings
are also part of Sariel's code, though.
On to the remaining 11 patterns then! Konngara's homing snakes, shown in
the video above, are one of the more notorious parts of this battle. They
occur in two patterns – one with two snakes and one with four – with
all of the spawn, aim, update, and render code copy-pasted between
the two. Three gameplay-related discoveries
here:
The homing target is locked once the Y position of a snake's white head
diamond is below 300 pixels.
That diamond is also the only one with collision detection…
…but comes with a gigantic 30×30 pixel hitbox, reduced to 30×20 while
Reimu is sliding. For comparison: Reimu's regular sprite is 32×32 pixels,
including transparent areas. This time, there is a clearly defined
hitbox around Reimu's center pixel that the single top-left pixel can
collide with. No imagination necessary, which people apparently
📝 still prefer over actually understanding an
algorithm… Then again, this hitbox is still not intuitive at all,
because…
… the exact collision pixel, marked in
red, is part of the diamond sprite's
transparent background
This was followed by really weird aiming code for the "sprayed
pellets from cup" pattern… which can only possibly have been done on
purpose, but is sort of mitigated by the spraying motion anyway.
After a bunch of long if(…) {…} else if(…) {…} else if(…)
{…} chains, which remain quite popular in certain corners of
the game dev scene to this day, we've got the three sword slash
patterns as the final notable ones. At first, it seemed as if ZUN just
improvised those raw number constants involved in the pellet spawner's
movement calculations to describe some sort of path that vaguely
resembles the sword slash. But once I tried to express these numbers in
terms of the slash animation's keyframes, it all worked out perfectly, and
resulted in this:
Yup, the spawner always takes an exact path along this triangle. Sometimes,
I wonder whether I should just rush this project and don't bother about
naming these repeated number literals. Then I gain insights like these, and
it's all worth it.
Finally, we've got Konngara's main function, which coordinates the entire
fight. Third-longest function in both TH01 and all of PC-98 Touhou, only
behind some player-related stuff and YuugenMagan's gigantic main function…
and it's even more of a copy-pasta, making it feel not nearly as long as it
is. Key insights there:
The fight consists of 7 phases, with the entire defeat sequence being
part of the if(boss_phase == 7) {…}
branch.
The three even-numbered phases, however, only light up the Siddhaṃ seed
syllables and then progress to the next phase.
Odd-numbered phases are completed after passing an HP threshold or after
seeing a predetermined number of patterns, whatever happens first. No
possibility of skipping anything there.
Patterns are chosen randomly, but the available pool of patterns
is limited to 3 specific "easier" patterns in phases 1 and 5, and 4 patterns
in phase 3. Once Phase 7 is reached at 9 HP remaining, all 12 patterns can
potentially appear. Fittingly, that's also the point where the red section
of the HP bar starts.
Every time a pattern is chosen, the code only makes a maximum of two
attempts at picking a pattern that's different from the one that
Konngara just completed. Therefore, it seems entirely possible to see
the same pattern twice. Calculating an actual seed to prove that is out
of the scope of this project, though.
Due to what looks like a copy-paste mistake, the pool for the second
RNG attempt in phases 5 and 7 is reduced to only the first two patterns
of the respective phases? That's already quite some bias right there,
and we haven't even analyzed the RNG in detail yet…
(For anyone interested, it's a
LCG,
using the Borland C/C++ parameters as shown here.)
The difficulty level only affects the speed and firing intervals (and
thus, number) of pellets, as well as the number of lasers in the one pattern
that uses them.
After the 📝 kuji-in defeat sequence, the
fight ends in an attempted double-free of Konngara's image
data. Thankfully, the format-specific
_free() functions defend against such a thing.
And that's it for Konngara! First boss with not a single piece of ASM left,
30 more to go! 🎉 But wait, what about the cause behind the temporary green
discoloration after leaving the Pause menu? I expected to find something on
that as well, but nope, it's nothing in Konngara's code segment. We'll
probably only get to figure that out near the very end of TH01's
decompilation, once we get to the one function that directly calls all of
the boss-specific main functions in a switch statement. Edit (2022-07-17):📝 Only took until Mima.
So, Sariel next? With half of a push left, I did cover Sariel's first few
initialization functions, but all the sprite unblitting and HUD
manipulation will need some extra attention first. The first one of these
functions is related to the HUD, the stage timer, and the
HARRY UP mode, whose pellet pattern I've
also decompiled now.
All of this brings us past 75% PI in all games, and TH01 to under 30,000
remaining ASM instructions, leaving TH03 as the now most expensive game to
be completely decompiled. Looking forward to how much more TH01's code will
fall apart if you just tap it lightly… Next up: The aforementioned helper
functions related to HARRY UP, drawing the
HUD, and unblitting the other bosses whose sprites are a bit more animated.
…or maybe not that soon, as it would have only wasted time to
untangle the bullet update commits from the rest of the progress. So,
here's all the bullet spawning code in TH04 and TH05 instead. I hope
you're ready for this, there's a lot to talk about!
(For the sake of readability, "bullets" in this blog post refers to the
white 8×8 pellets
and all 16×16 bullets loaded from MIKO16.BFT, nothing else.)
But first, what was going on📝 in 2020? Spent 4 pushes on the basic types
and constants back then, still ended up confusing a couple of things, and
even getting some wrong. Like how TH05's "bullet slowdown" flag actually
always prevents slowdown and fires bullets at a constant speed
instead. Or how "random spread" is not the
best term to describe that unused bullet group type in TH04.
Or that there are two distinct ways of clearing all bullets on screen,
which deserve different names:
Mechanic #1: Clearing bullets for a custom amount of
time, awarding 1000 points for all bullets alive on the first frame,
and 100 points for all bullets spawned during the clear time.
Mechanic #2: Zapping bullets for a fixed 16 frames,
awarding a semi-exponential and loudly announced Bonus!! for all
bullets alive on the first frame, and preventing new bullets from being
spawned during those 16 frames. In TH04 at least; thanks to a ZUN bug,
zapping got reduced to 1 frame and no animation in TH05…
Bullets are zapped at the end of most midboss and boss phases, and
cleared everywhere else – most notably, during bombs, when losing a
life, or as rewards for extends or a maximized Dream bonus. The
Bonus!! points awarded for zapping bullets are calculated iteratively,
so it's not trivial to give an exact formula for these. For a small number
𝑛 of bullets, it would exactly be 5𝑛³ - 10𝑛² + 15𝑛
points – or, using uth05win's (correct) recursive definition,
Bonus(𝑛) = Bonus(𝑛-1) + 15𝑛² - 5𝑛 + 10.
However, one of the internal step variables is capped at a different number
of points for each difficulty (and game), after which the points only
increase linearly. Hence, "semi-exponential".
On to TH04's bullet spawn code then, because that one can at least be
decompiled. And immediately, we have to deal with a pointless distinction
between regular bullets, with either a decelerating or constant
velocity, and special bullets, with preset velocity changes during
their lifetime. That preset has to be set somewhere, so why have
separate functions? In TH04, this separation continues even down to the
lowest level of functions, where values are written into the global bullet
array. TH05 merges those two functions into one, but then goes too far and
uses self-modifying code to save a grand total of two local variables…
Luckily, the rest of its actual code is identical to TH04.
Most of the complexity in bullet spawning comes from the (thankfully
shared) helper function that calculates the velocities of the individual
bullets within a group. Both games handle each group type via a large
switch statement, which is where TH04 shows off another Turbo
C++ 4.0 optimization: If the range of case values is too
sparse to be meaningfully expressed in a jump table, it usually generates a
linear search through a second value table. But with the -G
command-line option, it instead generates branching code for a binary
search through the set of cases. 𝑂(log 𝑛) as the worst case for a
switch statement in a C++ compiler from 1994… that's so cool.
But still, why are the values in TH04's group type enum all
over the place to begin with?
Unfortunately, this optimization is pretty rare in PC-98 Touhou. It only
shows up here and in a few places in TH02, compared to at least 50
switch value tables.
In all of its micro-optimized pointlessness, TH05's undecompilable version
at least fixes some of TH04's redundancy. While it's still not even
optimal, it's at least a decently written piece of ASM…
if you take the time to understand what's going on there, because it
certainly took quite a bit of that to verify that all of the things which
looked like bugs or quirks were in fact correct. And that's how the code
for this function ended up with 35% comments and blank lines before I could
confidently call it "reverse-engineered"…
Oh well, at least it finally fixes a correctness issue from TH01 and TH04,
where an invalid bullet group type would fill all remaining slots in the
bullet array with identical versions of the first bullet.
Something that both games also share in these functions is an over-reliance
on globals for return values or other local state. The most ridiculous
example here: Tuning the speed of a bullet based on rank actually mutates
the global bullet template… which ZUN then works around by adding a wrapper
function around both regular and special bullet spawning, which saves the
base speed before executing that function, and restores it afterward.
Add another set of wrappers to bypass that exact
tuning, and you've expanded your nice 1-function interface to 4 functions.
Oh, and did I mention that TH04 pointlessly duplicates the first set of
wrapper functions for 3 of the 4 difficulties, which can't even be
explained with "debugging reasons"? That's 10 functions then… and probably
explains why I've procrastinated this feature for so long.
At this point, I also finally stopped decompiling ZUN's original ASM just
for the sake of it. All these small TH05 functions would look horribly
unidiomatic, are identical to their decompiled TH04 counterparts anyway,
except for some unique constant… and, in the case of TH05's rank-based
speed tuning function, actually become undecompilable as soon as we
want to return a C++ class to preserve the semantic meaning of the return
value. Mainly, this is because Turbo C++ does not allow register
pseudo-variables like _AX or _AL to be cast into
class types, even if their size matches. Decompiling that function would
have therefore lowered the quality of the rest of the decompiled code, in
exchange for the additional maintenance and compile-time cost of another
translation unit. Not worth it – and for a TH05 port, you'd already have to
decompile all the rest of the bullet spawning code anyway!
The only thing in there that was still somewhat worth being
decompiled was the pre-spawn clipping and collision detection function. Due
to what's probably a micro-optimization mistake, the TH05 version continues
to spawn a bullet even if it was spawned on top of the player. This might
sound like it has a different effect on gameplay… until you realize that
the player got hit in this case and will either lose a life or deathbomb,
both of which will cause all on-screen bullets to be cleared anyway.
So it's at most a visual glitch.
But while we're at it, can we please stop talking about hitboxes? At least
in the context of TH04 and TH05 bullets. The actual collision detection is
described way better as a kill delta of 8×8 pixels between the
center points of the player and a bullet. You can distribute these pixels
to any combination of bullet and player "hitboxes" that make up 8×8. 4×4
around both the player and bullets? 1×1 for bullets, and 8×8 for the
player? All equally valid… or perhaps none of them, once you keep in mind
that other entity types might have different kill deltas. With that in
mind, the concept of a "hitbox" turns into just a confusing abstraction.
The same is true for the 36×44 graze box delta. For some reason,
this one is not exactly around the center of a bullet, but shifted to the
right by 2 pixels. So, a bullet can be grazed up to 20 pixels right of the
player, but only up to 16 pixels left of the player. uth05win also spotted
this… and rotated the deltas clockwise by 90°?!
Which brings us to the bullet updates… for which I still had to
research a decompilation workaround, because
📝 P0148 turned out to not help at all?
Instead, the solution was to lie to the compiler about the true segment
distance of the popup function and declare its signature far
rather than near. This allowed ZUN to save that ridiculous overhead of 1 additional far function
call/return per frame, and those precious 2 bytes in the BSS segment
that he didn't have to spend on a segment value.
📝 Another function that didn't have just a
single declaration in a common header file… really,
📝 how were these games even built???
The function itself is among the longer ones in both games. It especially
stands out in the indentation department, with 7 levels at its most
indented point – and that's the minimum of what's possible without
goto. Only two more notable discoveries there:
Bullets are the only entity affected by Slow Mode. If the number of
bullets on screen is ≥ (24 + (difficulty * 8) + rank) in TH04,
or (42 + (difficulty * 8)) in TH05, Slow Mode reduces the frame
rate by 33%, by waiting for one additional VSync event every two frames.
The code also reveals a second tier, with 50% slowdown for a slightly
higher number of bullets, but that conditional branch can never be executed
Bullets must have been grazed in a previous frame before they can
be collided with. (Note how this does not apply to bullets that spawned
on top of the player, as explained earlier!)
Whew… When did ReC98 turn into a full-on code review?! 😅 And after all
this, we're still not done with TH04 and TH05 bullets, with all the
special movement types still missing. That should be less than one push
though, once we get to it. Next up: Back to TH01 and Konngara! Now have fun
rewriting the Touhou Wiki Gameplay pages 😛
Alright, onto Konngara! Let's quickly move the escape sequences used later
in the battle to C land, and then we can immediately decompile the loading
and entrance animation function together with its filenames. Might as well
reverse-engineer those escape sequences while I'm at it, though – even if
they aren't implemented in DOSBox-X, they're well documented in all those
Japanese PDFs, so this should be no big deal…
…wait, ESC )3 switches to "graph mode"? As opposed to the
default "kanji mode", which can be re-entered via ESC )0?
Let's look up graph mode in the PC-9801 Programmers' Bible then…
> Kanji cannot be handled in this mode.
…and that's apparently all it has to say. Why have it then, on a platform
whose main selling point is a kanji ROM, and where Shift-JIS (and, well,
7-bit ASCII) are the only native encodings? No support for graph mode in
DOSBox-X either… yeah, let's take a deep dive into NEC's
IO.SYS, and get to the bottom of this.
And yes, graph mode pretty much just disables Shift-JIS decoding for
characters written via INT 29h, the lowest-level way of "just
printing a char" on DOS, which every printf()
will ultimately end up calling. Turns out there is a use for it though,
which we can spot by looking at the 8×16 half-width section of font ROM:
The half-width glyphs marked in red
correspond to the byte ranges from 0x80-0x9F and 0xE0-0xFF… which Shift-JIS
defines as lead bytes for two-byte, full-width characters. But if we turn
off Shift-JIS decoding…
(Yes, that g in the function row is how NEC DOS
indicates that graph mode is active. Try it yourself by pressing
Ctrl+F4!)
Jackpot, we get those half-width characters when printing their
corresponding bytes. I've
re-implemented all my findings into DOSBox-X, which will include graph
mode in the upcoming 0.83.14 release. If P0140 looks a bit empty as a
result, that's why – most of the immediate feature work went into
DOSBox-X, not into ReC98. That's the beauty of "anything" pushes.
So, after switching to graph mode, TH01 does… one of the slowest possible
memset()s over all of text RAM – one printf(" ")
call for every single one of its 80×25 half-width cells – before switching
back to kanji mode. What a waste of RE time…? Oh well, at least we've now
got plenty of proof that these weird escape sequences actually do
nothing of interest.
As for the Konngara code itself… well, it's script-like code, what can you
say. Maybe minimally sloppy in some places, but ultimately harmless.
One small thing that might not be widely known though: The large,
blue-green Siddhaṃ seed syllables are supposed to show up immediately, with
no delay between them? Good to know. Clocking your emulator too low tends
to roll them down from the top of the screen, and will certainly add a
noticeable delay between the four individual images.
… Wait, but this means that ZUN could have intended this "effect".
Why else would he not only put those syllables into four individual images
(and therefore add at least the latency of disk I/O between them), but also
show them on the foreground VRAM page, rather than on the "back buffer"?
Meanwhile, in 📝 another instance of "maybe
having gone too far in a few places":
Expressing distances on the playfield as fractions of its width
and height, just to avoid absolute numbers? Raw numbers are bad because
they're in screen space in this game. But we've already been throwing
PLAYFIELD_ constants into the mix as a way of explicitly
communicating screen space, and keeping raw number literals for the actual
playfield coordinates is looking increasingly sloppy… I don't know,
fractions really seemed like the most sensible thing to do with what we're
given here. 😐
So, 2 pushes in, and we've got the loading code, the entrance animation,
facial expression rendering, and the first one out of Konngara's 12
danmaku patterns. Might not sound like much, but since that first pattern
involves those
blue-green diamond sprites and therefore is one of the more complicated
ones, it all amounts to roughly 21.6% of Konngara's code. That's 7 more
pushes to get Konngara done, then? Next up though: Two pushes of website
improvements.
50% hype! 🎉 But as usual for TH01, even that final set of functions
shared between all bosses had to consume two pushes rather than one…
First up, in the ongoing series "Things that TH01 draws to the PC-98
graphics layer that really should have been drawn to the text layer
instead": The boss HP bar. Oh well, using the graphics layer at least made
it possible to have this half-red, half-white pattern
for the middle section.
This one pattern is drawn by making surprisingly good use of the GRCG. So
far, we've only seen it used for fast monochrome drawing:
// Setting up fast drawing using color #9 (1001 in binary)
grcg_setmode(GC_RMW);
outportb(0x7E, 0xFF); // Plane 0: (B): (********)
outportb(0x7E, 0x00); // Plane 1: (R): ( )
outportb(0x7E, 0x00); // Plane 2: (G): ( )
outportb(0x7E, 0xFF); // Plane 3: (E): (********)
// Write a checkerboard pattern (* * * * ) in color #9 to the top-left corner,
// with transparent blanks. Requires only 1 VRAM write to a single bitplane:
// The GRCG automatically writes to the correct bitplanes, as specified above
*(uint8_t *)(MK_FP(0xA800, 0)) = 0xAA;
But since this is actually an 8-pixel tile register, we can set any
8-pixel pattern for any bitplane. This way, we can get different colors
for every one of the 8 pixels, with still just a single VRAM write of the
alpha mask to a single bitplane:
And I thought TH01 only suffered the drawbacks of PC-98 hardware, making
so little use of its actual features that it's perhaps not fair to even
call it "a PC-98 game"… Still, I'd say that "bad PC-98 port of an idea"
describes it best.
However, after that tiny flash of brilliance, the surrounding HP rendering
code goes right back to being the typical sort of confusing TH01 jank.
There's only a single function for the three distinct jobs of
incrementing HP during the boss entrance animation,
decrementing HP if hit by the Orb, and
redrawing the entire bar, because it's still all in VRAM, and Sariel
wants different backgrounds,
with magic numbers to select between all of these.
VRAM of course also means that the backgrounds behind the individual hit
points have to be stored, so that they can be unblitted later as the boss
is losing HP. That's no big deal though, right? Just allocate some memory,
copy what's initially in VRAM, then blit it back later using your
foundational set of blitting funct– oh, wait, TH01 doesn't have this sort
of thing, right The closest thing,
📝 once again, are the .PTN functions. And
so, the game ends up handling these 8×16 background sprites with 16×16
wrappers around functions for 32×32 sprites.
That's quite the recipe for confusion, especially since ZUN
preferred copy-pasting the necessary ridiculous arithmetic expressions for
calculating positions, .PTN sprite IDs, and the ID of the 16×16 quarter
inside the 32×32 sprite, instead of just writing simple helper functions.
He did manage to make the result mostly bug-free this time
around, though! (Edit (2022-05-31): Nope, there's a
📝 potential heap corruption after all, which can be triggered in some fights in test mode (game t) or debug mode (game d).)
There's one minor hit point discoloration bug if the red-white or white
sections start at an odd number of hit points, but that's never the case for
any of the original 7 bosses.
The remaining sloppiness is ultimately inconsequential as well: The game
always backs up twice the number of hit point backgrounds, and thus
uses twice the amount of memory actually required. Also, this
self-restriction of only unblitting 16×16 pixels at a time requires any
remaining odd hit point at the last position to, of course, be rendered
again
After stumbling over the weakest imaginable random number
generator, we finally arrive at the shared boss↔orb collision
handling function, the final blocker among the final blockers. This
function takes a whopping 12 parameters, 3 of them being references to
int values, some of which are duplicated for every one of the
7 bosses, with no generic boss struct anywhere.
📝 Previously, I speculated that YuugenMagan might have been the first boss to be programmed for TH01.
With all these variables though, there is some new evidence that SinGyoku
might have been the first one after all: It's the only boss to use its own
HP and phase frame variables, with the other bosses sharing the same two
globals.
While this function only handles the response to a boss↔orb
collision, it still does way too much to describe it briefly. Took me
quite a while to frame it in terms of invincibility (which is the
main impact of all of this that can be observed in gameplay code). That
made at least some sort of sense, considering the other usages of
the variables passed as references to that function. Turns out that
YuugenMagan, Kikuri, and Elis abuse what's meant to be the "invincibility
frame" variable as a frame counter for some of their animations 🙄
Oh well, the game at least doesn't call the collision handling function
during those, so "invincibility frame" is technically still a
correct variable name there.
And that's it! We're finally ready to start with Konngara, in 2021. I've
been waiting quite a while for this, as all this high-level boss code is
very likely to speed up TH01 progress quite a bit. Next up though: Closing
out 2020 with more of the technical debt in the other games.
So, only one card-flipping function missing, and then we can start
decompiling TH01's two final bosses? Unfortunately, that had to be the one
big function that initializes and renders all gameplay objects. #17 on the
list of longest functions in all of PC-98 Touhou, requiring two pushes to
fully understand what's going on there… and then it immediately returns
for all "boss" stages whose number is divisible by 5, yet is still called
during Sariel's and Konngara's initialization 🤦
Oh well. This also involved the final file format we hadn't looked at
yet – the STAGE?.DAT files that describe the layout for all
stages within a single 5-stage scene. Which, for a change is a very
well-designed form– no, of course it's completely weird, what did you
expect? Development must have looked somewhat like this:
Weirdness #1: "Hm, the stage format should
include the file names for the background graphics and music… or should
it?" And so, the 22-byte header still references some music and
background files that aren't part of the final game. The game doesn't use
anything from there, and instead derives those file names from the
scene ID.
That's probably nothing new to anyone who has ever looked at TH01's data
files. In a slightly more interesting discovery though, seeing the
📝 .GRF extension, in some of the file names
that are short enough to not cut it off, confirms that .GRF was initially
used for background images. Probably before ZUN learned about .PI, and how
it achieves better compression than his own per-bitplane RLE approach?
Weirdness #2: "Hm, I might want to put
obstacles on top of cards?" You'd probably expect this format to
contain one single array for every stage, describing which object to place
on every 32×32 tile, if any. Well, the real format uses two arrays:
One for the cards, and a combined one for all "obstacles" – bumpers, bumper
bars, turrets, and portals. However, none of the card-flipping stages in
the final game come with any such overlaps. That's quite unfortunate, as it
would have made for some quite interesting level designs:
As you can see, the final version of the blitting code was not written
with such overlaps in mind either, blitting the cards on top of all
the obstacles, and not the other way round.
Weirdness #3: "In contrast to obstacles, of
which there are multiple types, cards only really need 1 bit. Time for some
bit twiddling!" Not the worst idea, given that the 640×336 playfield
can fit 20×10 cards, which would fit exactly into 25 bytes if you use a
single bit to indicate card or no card. But for whatever
reason, ZUN only stored 4 card bits per byte, leaving the other 4 bits
unused, and needlessly blowing up that array to 50 bytes. 🤷
Oh, and did I mention that the contents of the STAGE?.DAT files are
loaded into the main data segment, even though the game immediately parses
them into something more conveniently accessible? That's another 1250 bytes
of memory wasted for no reason…
Weirdness #4: "Hm, how about requiring the
player to flip some of the cards multiple times? But I've already written
all this bit twiddling code to store 4 cards in 1 byte. And if cards should
need anywhere from 1 to 4 flips, that would need at least 2 more bits,
which won't fit into the unused 4 bits either…" This feature
must have come later, because the final game uses 3 "obstacle" type
IDs to act as a flip count modifier for a card at the same relative array
position. Complete with lookup code to find the actual card index these
modifiers belong to, and ridiculous switch statements to not include
those non-obstacles in the game's internal obstacle array.
With all that, it's almost not worth mentioning how there are 12 turret
types, which only differ in which hardcoded pellet group they fire at a
hardcoded interval of either 100 or 200 frames, and that they're all
explicitly spelled out in every single switch statement. Or
how the layout of the internal card and obstacle SoA classes is quite
disjointed. So here's the new ZUN bugs you've probably already been
expecting!
Cards and obstacles are blitted to both VRAM pages. This way, any other
entities moving on top of them can simply be unblitted by restoring pixels
from VRAM page 1, without requiring the stationary objects to be redrawn
from main memory. Obviously, the backgrounds behind the cards have to be
stored somewhere, since the player can remove them. For faster transitions
between stages of a scene, ZUN chose to store the backgrounds behind
obstacles as well. This way, the background image really only needs to be
blitted for the first stage in a scene.
All that memory for the object backgrounds adds up quite a bit though. ZUN
actually made the correct choice here and picked a memory allocation
function that can return more than the 64 KiB of a single x86 Real Mode
segment. He then accesses the individual backgrounds via regular array
subscripts… and that's where the bug lies, because he stores the returned
address in a regular far pointer rather than a
huge one. This way, the game still can only display a
total of 102 objects (i. e., cards and obstacles combined) per stage,
without any unblitting glitches.
What a shame, that limit could have been 127 if ZUN didn't needlessly
allocate memory for alpha planes when backing up VRAM content.
And since array subscripts on far pointers wrap around after
64 KiB, trying to save the background of the 103rd object is guaranteed to
corrupt the memory block header at the beginning of the returned segment.
When TH01 runs in debug mode, it
correctly reports a corrupted heap in this case.
After detecting such a corruption, the game loudly reports it by playing the
"player hit" sound effect and locking up, freezing any further gameplay or
rendering. The locking loop can be left by pressing ↵ Return, but the
game will simply re-enter it if the corruption is still present during the
next heapcheck(), in the next frame. And since heap
corruptions don't tend to repair themselves, you'd have to constantly hold
↵ Return to resume gameplay. Doing that could actually get you
safely to the next boss, since the game doesn't allocate or free any further
heap memory during a 5-stage card-flipping scene, and
just throws away its C heap when restarting the process for a boss. But then
again, holding ↵ Return will also auto-flip all cards on the way there…
🤨
Finally, some unused content! Upon discovering TH01's stage selection debug
feature, probably everyone tried to access Stage 21,
just to see what happens, and indeed landed in an actual stage, with a
black background and a weird color palette. Turns out that ZUN did
ship an unused scene in SCENE7.DAT, which is exactly what's
loaded there.
However, it's easy to believe that this is just garbage data (as I
initially did): At the beginning of "Stage 22", the game seems to enter an
infinite loop somewhere during the flip-in animation.
Well, we've had a heap overflow above, and the cause here is nothing but a
stack buffer overflow – a perhaps more modern kind of classic C bug,
given its prevalence in the Windows Touhou games. Explained in a few lines
of code:
void stageobjs_init_and_render()
{
int card_animation_frames[50]; // even though there can be up to 200?!
int total_frames = 0;
(code that would end up resetting total_frames if it ever tried to reset
card_animation_frames[50]…)
}
The number of cards in "Stage 22"? 76. There you have it.
But of course, it's trivial to disable this animation and fix these stage
transitions. So here they are, Stages 21 to 24, as shipped with the game
in STAGE7.DAT:
Wow, what a mess. All that was just a bit too much to be covered in two
pushes… Next up, assuming the current subscriptions: Taking a vacation with
one smaller TH01 push, covering some smaller functions here and there to
ensure some uninterrupted Konngara progress later on.
This time around, laser is 📝 actually not
difficult, with TH01's shootout laser class being simple enough to nicely
fit into a single push. All other stationary lasers (as used by
YuugenMagan, for example) don't even use a class, and are simply treated
as regular lines with collision detection.
But of course, the shootout lasers also come with the typical share of
TH01 jank we've all come to expect by now. This time, it already starts
with the hardcoded sprite data:
A shootout laser can have a width from 1 to 8 pixels, so ZUN stored a
separate 16×1 sprite with a line for each possible width (left-to-right).
Then, he shifted all of these sprites 1 pixel to the right for all of the
8 possible start positions within a planar VRAM byte (top-to-bottom).
Because… doing that bit shift programmatically is way too
expensive, so let's pre-shift at compile time, and use 16× the memory per
sprite?
Since a bunch of other sprite sheets need to be pre-shifted as well (this
is the 5th one we've found so far), our sprite converter has a feature to
automatically generate those pre-shifted variations. This way, we can
abstract away that implementation detail and leave modders with .BMP files
that still only contain a single version of each sprite. But, uh…, wait,
in this sprite sheet, the second row for 1-pixel lasers is accidentally
shifted right by one more pixel that it should have been?! Which means
that
we can't use the auto-preshift feature here, and have to store this
weird-looking (and quite frankly, completely unnecessary) sprite sheet in
its entirety
ZUN did, at least during TH01's development, not have a sprite
converter, and directly hardcoded these dot patterns in the C++ code
The waste continues with the class itself. 69 bytes, with 22 bytes
outright unused, and 11 not really necessary. As for actual innovations
though, we've got
📝 another 32-bit fixed-point type, this
time actually using 8 bits for the fractional part. Therefore, the
ray position is tracked to the 1/256th of a pixel, using the full
precision of master.lib's 8-bit sin() and cos() lookup
tables.
Unblitting is also remarkably efficient: It's only done once the laser
stopped extending and started moving, and only for the exact pixels at the
start of the ray that the laser traveled by in a single frame. If only the
ray part was also rendered as efficiently – it's fully blitted every frame,
right next to the collision detection for each row of the ray.
With a public interface of two functions (spawn, and update / collide /
unblit / render), that's superficially all there is to lasers in this
game. There's another (apparently inlined) function though, to both reset
and, uh, "fully unblit" all lasers at the end of every boss fight… except
that it fails hilariously at doing the latter, and ends up effectively
unblitting random 32-pixel line segments, due to ZUN confusing both the
coordinates and the parameter types for the line unblitting function.
A while ago, I was asked about
this crash that tends to
happen when defeating Elis. And while you can clearly see the random
unblitted line segments that are missing from the sprites, I don't
quite think we've found the cause for the crash, since the
📝 line unblitting function used theredoes clip its coordinates to the VRAM range.
Next up: The final piece of image format code in TH01, covering Reimu's
sprites!
Only one newly ordered push since I've reopened the store? Great, that's
all the justification I needed for the extended maintenance delay that was
part of these two pushes 😛
Having to write comments to explain whether coordinates are relative to
the top-left corner of the screen or the top-left corner of the playfield
has finally become old. So, I introduced
distinct
types for all the coordinate systems we typically encounter, applying
them to all code decompiled so far. Note how the planar nature of PC-98
VRAM meant that X and Y coordinates also had to be different from each
other. On the X side, there's mainly the distinction between the
[0; 640] screen space and the corresponding [0; 80] VRAM byte
space. On the Y side, we also have the [0; 400] screen space, but
the visible area of VRAM might be limited to [0; 200] when running in
the PC-98's line-doubled 640×200 mode. A VRAM Y coordinate also always
implies an added offset for vertical scrolling.
During all of the code reconstruction, these types can only have a
documenting purpose. Turning them into anything more than just
typedefs to int, in order to define conversion
operators between them, simply won't recompile into identical binaries.
Modding and porting projects, however, now have a nice foundation for
doing just that, and can entirely lift coordinate system transformations
into the type system, without having to proofread all the meaningless
int declarations themselves.
So, what was left in terms of memory references? EX-Alice's fire waves
were our final unknown entity that can collide with the player. Decently
implemented, with little to say about them.
That left the bomb animation structures as the one big remaining PI
blocker. They started out nice and simple in TH04, with a small 6-byte
star animation structure used for both Reimu and Marisa. TH05, however,
gave each character her own animation… and what the hell is going
on with Reimu's blue stars there? Nope, not going to figure this out on
ASM level.
A decompilation first required some more bomb-related variables to be
named though. Since this was part of a generic RE push, it made sense to
do this in all 5 games… which then led to nice PI gains in anything
but TH05. Most notably, we now got the
"pulling all items to player" flag in TH04 and TH05, which is
actually separate from bombing. The obvious cheat mod is left as an
exercise to the reader.
So, TH05 bomb animations. Just like the
📝 custom entity types of this game, all 4
characters share the same memory, with the superficially same 10-byte
structure.
But let's just look at the very first field. Seen from a low level, it's a
simple struct { int x, y; } pos, storing the current position
of the character-specific bomb animation entity. But all 4 characters use
this field differently:
For Reimu's blue stars, it's the top-left position of each star, in the
12.4 fixed-point format. But unlike the vast majority of these values in
TH04 and TH05, it's relative to the top-left corner of the
screen, not the playfield. Much better represented as
struct { Subpixel screen_x, screen_y; } topleft.
For Marisa's lasers, it's the center of each circle, as a regular 12.4
fixed-point coordinate, relative to the top-left corner of the playfield.
Much better represented as
struct { Subpixel x, y; } center.
For Mima's shrinking circles, it's the center of each circle in regular
pixel coordinates. Much better represented as
struct { screen_x_t x; screen_y_t y; } center.
For Yuuka's spinning heart, it's the top-left corner in regular pixel
coordinates. Much better represented as
struct { screen_x_t x; screen_y_t y; } topleft.
And yes, singular. The game is actually smart enough to only store a single
heart, and then create the rest of the circle on the fly. (If it were even
smarter, it wouldn't even use this structure member, but oh well.)
Therefore, I decompiled it as 4 separate structures once again, bundled
into an union of arrays.
As for Reimu… yup, that's some pointer arithmetic straight out of
Jigoku* for setting and updating the positions of the falling star
trails. While that certainly required several
comments to wrap my head around the current array positions, the one "bug"
in all this arithmetic luckily has no effect on the game.
There is a small glitch with the growing circles, though. They are
spawned at the end of the loop, with their position taken from the star
pointer… but after that pointer has already been incremented. On
the last loop iteration, this leads to an out-of-bounds structure access,
with the position taken from some unknown EX-Alice data, which is 0 during
most of the game. If you look at the animation, you can easily spot these
bugged circles, consistently growing from the top-left corner (0, 0)
of the playfield:
After all that, there was barely enough remaining time to filter out and
label the final few memory references. But now, TH05's
MAIN.EXE is technically position-independent! 🎉
-Tom- is going to work on a pretty extensive demo of this
unprecedented level of efficient Touhou game modding. For a more impactful
effect of both the 100% PI mark and that demo, I'll be delaying the push
covering the remaining false positives in that binary until that demo is
done. I've accumulated a pretty huge backlog of minor maintenance issues
by now…
Next up though: The first part of the long-awaited build system
improvements. I've finally come up with a way of sanely accelerating the
32-bit build part on most setups you could possibly want to build ReC98
on, without making the building experience worse for the other few setups.
Back to TH05! Thanks to the good funding situation, I can strike a nice
balance between getting TH05 position-independent as quickly as possible,
and properly reverse-engineering some missing important parts of the game.
Once 100% PI will get the attention of modders, the code will then be in
better shape, and a bit more usable than if I just rushed that goal.
By now, I'm apparently also pretty spoiled by TH01's immediate
decompilability, after having worked on that game for so long.
Reverse-engineering in ASM land is pretty annoying, after all,
since it basically boils down to meticulously editing a piece of ASM into
something I can confidently call "reverse-engineered". Most of the
time, simply decompiling that piece of code would take just a little bit
longer, but be massively more useful. So, I immediately tried decompiling
with TH05… and it just worked, at every place I tried!? Whatever the issue
was that made 📝 segment splitting so
annoying at my first attempt, I seem to have completely solved it in the
meantime. 🤷 So yeah, backers can now request pretty much any part of TH04
and TH05 to be decompiled immediately, with no additional segment
splitting cost.
(Protip for everyone interested in starting their own ReC project: Just
declare one segment per function, right from the start, then group them
together to restore the original code segmentation…)
Except that TH05 then just throws more of its infamous micro-optimized and
undecompilable ASM at you. 🙄 This push covered the function that adjusts
the bullet group template based on rank and the selected difficulty,
called every time such a group is configured. Which, just like pretty
much all of TH05's bullet spawning code, is one of those undecompilable
functions. If C allowed labels of other functions as goto
targets, it might have been decompilable into something useful to
modders… maybe. But like this, there's no point in even trying.
This is such a terrible idea from a software architecture point of view, I
can't even. Because now, you suddenly have to mirror your C++
declarations in ASM land, and keep them in sync with each other. I'm
always happy when I get to delete an ASM declaration from the codebase
once I've decompiled all the instances where it was referenced. But for
TH05, we now have to keep those declarations around forever. 😕 And all
that for a performance increase you probably couldn't even measure. Oh
well, pulling off Galaxy Brain-level ASM optimizations is kind of
fun if you don't have portability plans… I guess?
If I started a full fangame mod of a PC-98 Touhou game, I'd base it on
TH04 rather than TH05, and backport selected features from TH05 as
needed. Just because it was released later doesn't make it better, and
this is by far not the only one of ZUN's micro-optimizations that just
went way too far.
Dropping down to ASM also makes it easier to introduce weird quirks.
Decompiled, one of TH05's tuning conditions for
stack
groups on Easy Mode would look something like:
case BP_STACK:
// […]
if(spread_angle_delta >= 2) {
stack_bullet_count--;
}
The fields of the bullet group template aren't typically reset when
setting up a new group. So, spread_angle_delta in the context
of a stack group effectively refers to "the delta angle of the last
spread group that was fired before this stack – whenever that was".
uth05win also spotted this quirk, considered it a bug, and wrote
fanfiction by changing spread_angle_delta to
stack_bullet_count.
As usual for functions that occur in more than one game, I also decompiled
the TH04 bullet group tuning function, and it's perfectly sane, with no
such quirks.
In the more PI-focused parts of this push, we got the TH05-exclusive
smooth boss movement functions, for flying randomly or towards a given
point. Pretty unspectacular for the most part, but we've got yet another
uth05win inconsistency in the latter one. Once the Y coordinate gets close
enough to the target point, it actually speeds up twice as much as the
X coordinate would, whereas uth05win used the same speedup factors for
both. This might make uth05win a couple of frames slower in all boss
fights from Stage 3 on. Hard to measure though – and boss movement partly
depends on RNG anyway.
Next up: Shinki's background animations – which are actually the single
biggest source of position dependence left in TH05.
Well, make that three days. Trying to figure out all the details behind
the sprite flickering was absolutely dreadful…
It started out easy enough, though. Unsurprisingly, TH01 had a quite
limited pellet system compared to TH04 and TH05:
The cap is 100, rather than 240 in TH04 or 180 in TH05.
Only 6 special motion functions (with one of them broken and unused)
instead of 10. This is where you find the code that generates SinGyoku's
chase pellets, Kikuri's small spinning multi-pellet circles, and
Konngara's rain pellets that bounce down from the top of the playfield.
A tiny selection of preconfigured multi-pellet groups. Rather than
TH04's and TH05's freely configurable n-way spreads, stacks, and rings,
TH01 only provides abstractions for 2-, 3-, 4-, and 5- way spreads (yup,
no 6-way or beyond), with a fixed narrow or wide angle between the
individual pellets. The resulting pellets are also hardcoded to linear
motion, and can't use the special motion functions. Maybe not the best
code, but still kind of cute, since the generated groups do follow a
clear logic.
As expected from TH01, the code comes with its fair share of smaller,
insignificant ZUN bugs and oversights. As you would also expect
though, the sprite flickering points to the biggest and most consequential
flaw in all of this.
Apparently, it started with ZUN getting the impression that it's only
possible to use the PC-98 EGC for fast blitting of all 4 bitplanes in one
CPU instruction if you blit 16 horizontal pixels (= 2 bytes) at a time.
Consequently, he only wrote one function for EGC-accelerated sprite
unblitting, which can only operate on a "grid" of 16×1 tiles in VRAM. But
wait, pellets are not only just 8×8, but can also be placed at any
unaligned X position…
… yet the game still insists on using this 16-dot-aligned function to
unblit pellets, forcing itself into using a super sloppy 16×8 rectangle
for the job. 🤦 ZUN then tried to mitigate the resulting flickering in two
hilarious ways that just make it worse:
An… "interlaced rendering" mode? This one's activated for all Stage 15
and 20 fights, and separates pellets into two halves that are rendered on
alternating frames. Collision detection with the Yin-Yang Orb and the
player is only done for the visible half, but collision detection with
player shots is still done for all pellets every frame, as are
motion updates – so that pellets don't end up moving half as fast as they
should.
So yeah, your eyes weren't deceiving you. The game does effectively
drop its perceived frame rate in the Elis, Kikuri, Sariel, and Konngara
fights, and it does so deliberately.
📝 Just like player shots, pellets
are also unblitted, moved, and rendered in a single function.
Thanks to the 16×8 rectangle, there's now the (completely unnecessary)
possibility of accidentally unblitting parts of a sprite that was
previously drawn into the 8 pixels right of a pellet. And this
is where ZUN went full and went "oh, I
know, let's test the entire 16 pixels, and in case we got an entity
there, we simply make the pellet invisible for this frame! Then
we don't even have to unblit it later!"
Except that this is only done for the first 3 elements of the player
shot array…?! Which don't even necessarily have to contain the 3 shots
fired last. It's not done for the player sprite, the Orb, or, heck,
other pellets that come earlier in the pellet array. (At least
we avoided going 𝑂(𝑛²) there?)
Actually, and I'm only realizing this now as I type this blog post:
This test is done even if the shots at those array elements aren't
active. So, pellets tend to be made invisible based on comparisons
with garbage data.
And then you notice that the player shot
unblit/move/render function is actually only ever called from the
pellet unblit/move/render function on the one global instance
of the player shot manager class, after pellets were unblitted. So, we
end up with a sequence of
which means that we can't ever unblit a previously rendered shot
with a pellet. Sure, as terrible as this one function call is from
a software architecture perspective, it was enough to fix this issue.
Yet we don't even get the intended positive effect, and walk away with
pellets that are made temporarily invisible for no reason at all. So,
uh, maybe it all just was an attempt at increasing the
ramerate on lower spec PC-98 models?
Yup, that's it, we've found the most stupid piece of code in this game,
period. It'll be hard to top this.
I'm confident that it's possible to turn TH01 into a well-written, fluid
PC-98 game, with no flickering, and no perceived lag, once it's
position-independent. With some more in-depth knowledge and documentation
on the EGC (remember, there's still
📝 this one TH03 push waiting to be funded),
you might even be able to continue using that piece of blitter hardware.
And no, you certainly won't need ASM micro-optimizations – just a bit of
knowledge about which optimizations Turbo C++ does on its own, and what
you'd have to improve in your own code. It'd be very hard to write
worse code than what you find in TH01 itself.
(Godbolt for Turbo C++ 4.0J when?
Seriously though, that would 📝 also be a
great project for outside contributors!)
Oh well. In contrast to TH04 and TH05, where 4 pushes only covered all the
involved data types, they were enough to completely cover all of
the pellet code in TH01. Everything's already decompiled, and we never
have to look at it again. 😌 And with that, TH01 has also gone from by far
the least RE'd to the most RE'd game within ReC98, in just half a year! 🎉
Still, that was enough TH01 game logic for a while.
Next up: Making up for the delay with some
more relaxing and easy pieces of TH01 code, that hopefully make just a
bit more sense than all this garbage. More image formats, mainly.
So, let's finally look at some TH01 gameplay structures! The obvious
choices here are player shots and pellets, which are conveniently located
in the last code segment. Covering these would therefore also help in
transferring some first bits of data in REIIDEN.EXE from ASM
land to C land. (Splitting the data segment would still be quite
annoying.) Player shots are immediately at the beginning…
…but wait, these are drawn as transparent sprites loaded from .PTN files.
Guess we first have to spend a push on
📝 Part 2 of this format.
Hm, 4 functions for alpha-masked blitting and unblitting of both 16×16 and
32×32 .PTN sprites that align the X coordinate to a multiple of 8
(remember, the PC-98 uses a
planar
VRAM memory layout, where 8 pixels correspond to a byte), but only one
function that supports unaligned blitting to any X coordinate, and only
for 16×16 sprites? Which is only called twice? And doesn't come with a
corresponding unblitting function?
Yeah, "unblitting". TH01 isn't
double-buffered,
and uses the PC-98's second VRAM page exclusively to store a stage's
background and static sprites. Since the PC-98 has no hardware sprites,
all you can do is write pixels into VRAM, and any animated sprite needs to
be manually removed from VRAM at the beginning of each frame. Not using
double-buffering theoretically allows TH01 to simply copy back all 128 KB
of VRAM once per frame to do this. But that
would be pretty wasteful, so TH01 just looks at all animated sprites, and
selectively copies only their occupied pixels from the second to the first
VRAM page.
Alright, player shot class methods… oh, wait, the collision functions
directly act on the Yin-Yang Orb, so we first have to spend a push on
that one. And that's where the impression we got from the .PTN
functions is confirmed: The orb is, in fact, only ever displayed at
byte-aligned X coordinates, divisible by 8. It's only thanks to the
constant spinning that its movement appears at least somewhat
smooth.
This is purely a rendering issue; internally, its position is
tracked at pixel precision. Sadly, smooth orb rendering at any unaligned X
coordinate wouldn't be that trivial of a mod, because well, the
necessary functions for unaligned blitting and unblitting of 32×32 sprites
don't exist in TH01's code. Then again, there's so much potential for
optimization in this code, so it might be very possible to squeeze those
additional two functions into the same C++ translation unit, even without
position independence…
More importantly though, this was the right time to decompile the core
functions controlling the orb physics – probably the highlight in these
three pushes for most people.
Well, "physics". The X velocity is restricted to the 5 discrete states of
-8, -4, 0, 4, and 8, and gravity is applied by simply adding 1 to the Y
velocity every 5 frames No wonder that this can
easily lead to situations in which the orb infinitely bounces from the
ground.
At least fangame authors now have
a
reference of how ZUN did it originally, because really, this bad
approximation of physics had to have been written that way on purpose. But
hey, it uses 64-bit floating-point variables!
…sometimes at least, and quite randomly. This was also where I had to
learn about Turbo C++'s floating-point code generation, and how rigorously
it defines the order of instructions when mixing double and
float variables in arithmetic or conditional expressions.
This meant that I could only get ZUN's original instruction order by using
literal constants instead of variables, which is impossible right now
without somehow splitting the data segment. In the end, I had to resort to
spelling out ⅔ of one function, and one conditional branch of another, in
inline ASM. 😕 If ZUN had just written 16.0 instead of
16.0f there, I would have saved quite some hours of my life
trying to decompile this correctly…
To sort of make up for the slowdown in progress, here's the TH01 orb
physics debug mod I made to properly understand them. Edit
(2022-07-12): This mod is outdated,
📝 the current version is here!2020-06-13-TH01OrbPhysicsDebug.zip
To use it, simply replace REIIDEN.EXE, and run the game
in debug mode, via game d on the DOS prompt.
Its code might also serve as an example of how to achieve this sort of
thing without position independence.
Alright, now it's time for player shots though. Yeah, sure, they
don't move horizontally, so it's not too bad that those are also
always rendered at byte-aligned positions. But, uh… why does this code
only use the 16×16 alpha-masked unblitting function for decaying shots,
and just sloppily unblits an entire 16×16 square everywhere else?
The worst part though: Unblitting, moving, and rendering player shots
is done in a single function, in that order. And that's exactly where
TH01's sprite flickering comes from. Since different types of sprites are
free to overlap each other, you'd have to first unblit all types, then
move all types, and then render all types, as done in later
PC-98 Touhou games. If you do these three steps per-type instead, you
will unblit sprites of other types that have been rendered before… and
therefore end up with flicker.
Oh, and finally, ZUN also added an additional sloppy 16×16 square unblit
call if a shot collides with a pellet or a boss, for some
guaranteed flicker. Sigh.
And that's ⅓ of all ZUN code in TH01 decompiled! Next up: Pellets!
As expected, we've now got the TH04 and TH05 stage enemy structure,
finishing position independence for all big entity types. This one was
quite straightfoward, as the .STD scripting system is pretty simple.
Its most interesting aspect can be found in the way timing is handled. In
Windows Touhou, all .ECL script instructions come with a frame field that
defines when they are executed. In TH04's and TH05's .STD scripts, on the
other hand, it's up to each individual instruction to add a frame time
parameter, anywhere in its parameter list. This frame time defines for how
long this instruction should be repeatedly executed, before it manually
advances the instruction pointer to the next one. From what I've seen so
far, these instruction typically apply their effect on the first frame
they run on, and then do nothing for the remaining frames.
Oh, and you can't nest the LOOP instruction, since the enemy
structure only stores one single counter for the current loop iteration.
Just from the structure, the only innovation introduced by TH05 seems to
have been enemy subtypes. These can be used to parametrize scripts via
conditional jumps based on this value, as a first attempt at cutting down
the need to duplicate entire scripts for similar enemy behavior. And
thanks to TH05's favorable segment layout, this game's version of the
.STD enemy script interpreter is even immediately ready for decompilation,
in one single future push.
As far as I can tell, that now only leaves
.MPN file loading
player bomb animations
some structures specific to the Shinki and EX-Alice battles
plus some smaller things I've missed over the years
until TH05's MAIN.EXE is completely position-independent.
Which, however, won't be all it needs for that 100% PI rating on the front
page. And with that many false positives, it's quite easy to get lost with
immediately reverse-engineering everything around them. This time, the
rendering of the text dissolve circles, used for the stage and BGM title
popups, caught my eye… and since the high-level code to handle all of
that was near the end of a segment in both TH04 and TH05, I just decided
to immediately decompile it all. Like, how hard could it possibly be?
Sure, it needed another segment split, which was a bit harder due
to all the existing ASM referencing code in that segment, but certainly
not impossible…
Oh wait, this code depends on 9 other sets of identifiers that haven't
been declared in C land before, some of which require vast reorganizations
to bring them up to current consistency standards. Whoops! Good thing that
this is the part of the project I'm still offering for free…
Among the referenced functions was tiles_invalidate_around(),
which marks the stage background tiles within a rectangular area to be
redrawn this frame. And this one must have had the hardest function
signature to figure out in all of PC-98 Touhou, because it actually
seems impossible. Looking at all the ways the game passes the center
coordinate to this function, we have
X and Y as 16-bit integer literals, merged into a single
PUSH of a 32-bit immediate
X and Y calculated and pushed independently from each other
by-value copies of entire Point instances
Any single declaration would only lead to at most two of the three cases
generating the original instructions. No way around separately declaring
the function in every translation unit then, with the correct parameter
list for the respective calls. That's how ZUN must have also written it.
Oh well, we would have needed to do all of this some time. At least
there were quite a bit of insights to be gained from the actual
decompilation, where using const references actually made it
possible to turn quite a number of potentially ugly macros into wholesome
inline functions.
But still, TH04 and TH05 will come out of ReC98's decompilation as one big
mess. A lot of further manual decompilation and refactoring, beyond the
limits of the original binary, would be needed to make these games
portable to any non-PC-98, non-x86 architecture.
And yes, that includes IBM-compatible DOS – which, for some reason, a
number of people see as the obvious choice for a first system to port
PC-98 Touhou to. This will barely be easier. Sure, you'll save the effort
of decompiling all the remaining original ASM. But even with
master.lib's MASTER_DOSV setting, these games still very much
rely on PC-98 hardware, with corresponding assumptions all over ZUN's
code. You will need to provide abstractions for the PC-98's
superimposed text mode, the gaiji, and planar 4-bit color access in
general, exchanging the use of the PC-98's GRCG and EGC blitter chips with
something else. At that point, you might as well port the game to one
generic 640×400 framebuffer and away from the constraints of DOS,
resulting in that Doom source code-like situation which made that
game easily portable to every architecture to begin with. But ZUN just
wasn't a John Carmack, sorry.
Or what do I know. I've never programmed for IBM-compatible DOS, but maybe
ReC98's audience does include someone who is intimately familiar
with IBM-compatible DOS so that the constraints aren't much of an issue
for them? But even then, 16-bit Windows would make much more sense
as a first porting target if you don't want to bother with that
undecompilable ASM.
At least I won't have to look at TH04 and TH05 for quite a while now.
The delivery delays have made it obvious that
my life has become pretty busy again, probably until September. With a
total of 9 TH01 pushes from monthly subscriptions now waiting in the
backlog, the shop will stay closed until I've caught up with most of
these. Which I'm quite hyped for!
Alright, the score popup numbers shown when collecting items or defeating
(mid)bosses. The second-to-last remaining big entity type in TH05… with
quite some PI false positives in the memory range occupied by its data.
Good thing I still got some outstanding generic RE pushes that haven't
been claimed for anything more specific in over a month! These
conveniently allowed me to RE most of these functions right away, the
right way.
Most of the false positives were boss HP values, passed to a "boss phase
end" function which sets the HP value at which the next phase should end.
Stage 6 Yuuka, Mugetsu, and EX-Alice have their own copies of this
function, in which they also reset certain boss-specific global variables.
Since I always like to cover all varieties of such duplicated functions at
once, it made sense to reverse-engineer all the involved variables while I
was at it… and that's why this was exactly the right time to cover the
implementation details of Stage 6 Yuuka's parasol and vanishing animations
in TH04.
With still a bit of time left in that RE push afterwards, I could also
start looking into some of the smaller functions that didn't quite fit
into other pushes. The most notable one there was a simple function that
aims from any point to the current player position. Which actually only
became a separate function in TH05, probably since it's called 27 times in
total. That's 27 places no longer being blocked from further RE progress.
WindowsTiger already
did most of the work for the score popup numbers in January, which meant
that I only had to review it and bring it up to ReC98's current coding
styles and standards. This one turned out to be one of those rare features
whose TH05 implementation is significantly less insane than the
TH04 one. Both games lazily redraw only the tiles of the stage background
that were drawn over in the previous frame, and try their best to minimize
the amount of tiles to be redrawn in this way. For these popup numbers,
this involves calculating the on-screen width, based on the exact number
of digits in the point value. TH04 calculates this width every frame
during the rendering function, and even resorts to setting that field
through the digit iteration pointer via self-modifying code… yup. TH05, on
the other hand, simply calculates the width once when spawning a new popup
number, during the conversion of the point value to
binary-coded
decimal. The "×2" multiplier suffix being removed in TH05 certainly
also helped in simplifying that feature in this game.
And that's ⅓ of TH05 reverse-engineered! Next up, one more TH05 PI push,
in which the stage enemies hopefully finish all the big entity types.
Maybe it will also be accompanied by another RE push? In any case, that
will be the last piece of TH05 progress for quite some time. The next TH01
stretch will consist of 6 pushes at the very least, and I currently have
no idea of how much time I can spend on ReC98 a month from now…
To finish this TH05 stretch, we've got a feature that's exclusive to TH05
for once! As the final memory management innovation in PC-98 Touhou, TH05
provides a single static (64 * 26)-byte array for storing up to 64
entities of a custom type, specific to a stage or boss portion.
(Edit (2023-05-29): This system actually debuted in
📝 TH04, where it was used for much simpler
entities.)
TH05 uses this array for
the Stage 2 star particles,
Alice's puppets,
the tip of curve ("jello") bullets,
Mai's snowballs and Yuki's fireballs,
Yumeko's swords,
and Shinki's 32×32 bullets,
which makes sense, given that only one of those will be active at any
given time.
On the surface, they all appear to share the same 26-byte structure, with
consistently sized fields, merely using its 5 generic fields for different
purposes. Looking closer though, there actually are differences in
the signedness of certain fields across the six types. uth05win chose to
declare them as entirely separate structures, and given all the semantic
differences (pixels vs. subpixels, regular vs. tiny master.lib sprites,
…), it made sense to do the same in ReC98. It quickly turned out to be the
only solution to meet my own standards of code readability.
Which blew this one up to two pushes once again… But now, modders can
trivially resize any of those structures without affecting the other types
within the original (64 * 26)-byte boundary, even without full position
independence. While you'd still have to reduce the type-specific
number of distinct entities if you made any structure larger, you
could also have more entities with fewer structure members.
As for the types themselves, they're full of redundancy once again – as
you might have already expected from seeing #4, #5, and #6 listed as
unrelated to each other. Those could have indeed been merged into a single
32×32 bullet type, supporting all the unique properties of #4
(destructible, with optional revenge bullets), #5 (optional number of
twirl animation frames before they begin to move) and #6 (delay clouds).
The *_add(), *_update(), and *_render()
functions of #5 and #6 could even already be completely
reverse-engineered from just applying the structure onto the ASM, with the
ones of #3 and #4 only needing one more RE push.
But perhaps the most interesting discovery here is in the curve bullets:
TH05 only renders every second one of the 17 nodes in a curve
bullet, yet hit-tests every single one of them. In practice, this is an
acceptable optimization though – you only start to notice jagged edges and
gaps between the fragments once their speed exceeds roughly 11 pixels per
second:
And that brings us to the last 20% of TH05 position independence! But
first, we'll have more cheap and fast TH01 progress.
Long time no see! And this is exactly why I've been procrastinating
bullets while there was still meaningful progress to be had in other parts
of TH04 and TH05: There was bound to be quite some complexity in this most
central piece of game logic, and so I couldn't possibly get to a
satisfying understanding in just one push.
Or in two, because their rendering involves another bunch of
micro-optimized functions adapted from master.lib.
Or in three, because we'd like to actually name all the bullet sprites,
since there are a number of sprite ID-related conditional branches. And
so, I was refining things I supposedly RE'd in the the commits from the
first push until the very end of the fourth.
When we talk about "bullets" in TH04 and TH05, we mean just two things:
the white 8×8 pellets, with a cap of 240 in TH04 and 180 in TH05, and any
16×16 sprites from MIKO16.BFT, with a cap of 200 in TH04 and
220 in TH05. These are by far the most common types of… err, "things the
player can collide with", and so ZUN provides a whole bunch of pre-made
motion, animation, and
n-way spread / ring / stack group options for those, which can be
selected by simply setting a few fields in the bullet template. All the
other "non-bullets" have to be fired and controlled individually.
Which is nothing new, since uth05win covered this part pretty accurately –
I don't think anyone could just make up these structure member
overloads. The interesting insights here all come from applying this
research to TH04, and figuring out its differences compared to TH05. The
most notable one there is in the default groups: TH05 allows you to add
a stack
to any single bullet, n-way spread or ring, but TH04 only lets you create
stacks separately from n-way spreads and rings, and thus gets by with
fewer fields in its bullet template structure. On the other hand, TH04 has
a separate "n-way spread with random angles, yet still aimed at the
player" group? Which seems to be unused, at least as far as
midbosses and bosses are concerned; can't say anything about stage enemies
yet.
In fact, TH05's larger bullet template structure illustrates that these
distinct group types actually are a rather redundant piece of
over-engineering. You can perfectly indicate any permutation of the basic
groups through just the stack bullet count (1 = no stack), spread bullet
count (1 = no spread), and spread delta angle (0 = ring instead of
spread). Add a 4-flag bitfield to cover the rest (aim to player, randomize
angle, randomize speed, force single bullet regardless of difficulty or
rank), and the result would be less redundant and even slightly
more capable.
Even those 4 pushes didn't quite finish all of the bullet-related types,
stopping just shy of the most trivial and consistent enum that defines
special movement. This also left us in a
📝 TH03-like situation, in which we're still
a bit away from actually converting all this research into actual RE%. Oh
well, at least this got us way past 50% in overall position independence.
On to the second half! 🎉
For the next push though, we'll first have a quick detour to the remaining
C code of all the ZUN.COM binaries. Now that the
📝 TH04 and TH05 resident structures no
longer block those, -Tom- has requested TH05's
RES_KSO.COM to be covered in one of his outstanding pushes.
And since 32th System
recently RE'd TH03's resident structure, it makes sense to also review and
merge that, before decompiling all three remaining RES_*.COM
binaries in hopefully a single push. It might even get done faster than
that, in which case I'll then review and merge some more of
WindowsTiger's
research.
Turns out that covering TH03's 128-byte player structure was way
more insightful than expected! And while it doesn't include every
bit of per-player data, we still got to know quite a bit about the game
from just trying to name its members:
50 frames of invincibility when starting a new round
110 frames of invincibility when getting hit
64 frames of knockback when getting hit
128 frames before a charged up gauge/boss attack is fired
automatically
The damage a player will take from the next hit starts out at ½ heart
at the beginning of each round, and increases by another ½ heart every
1024 frames, capped at a maximum of 3 hearts. This guarantees that a
player will always survive at least two hits.
In Story Mode, hit damage is biased in favor of the player for the
first 6 stages. The CPU will always take an additional 1½ hearts of damage
in stages 1 and 2, 1 heart in stages 3 and 4, and ½ heart in stages 5 and
6, plus the above frame-based and capped damage amount. So while it's
therefore possible to cause 4½ hearts of damage in Stages 1 and 2 if the
first hit is somehow delayed for at least 5120 frames, you'd still win
faster if the CPU gets hit as soon as possible.
CPU players will charge up a gauge/boss attack as soon as their gauge
has reached a certain level. These levels are now proved to be random; at
the start of every round, the game generates a sequence of 64 gauge level
positions (from 1 to 4), separately for each player. If a round were to
last long enough for a CPU player to fire all 64 of those predetermined
attacks, you'd observe that sequence repeating.
Yes, that means that in theory, these levels can be
RNG-manipulated. More details on that once we got this game's resident
structure, where the seed is stored.
CPU players follow two main strategies: trying to not get hit, and…
not quite doing that once they've survived for a certain safety threshold
of frames. For the first 2000 frames of a round, this safety frame counter
is reset to 0 every 64 frames, leading the CPU to switch quickly between
the two strategies in the first few Story Mode stages on lower
difficulties, where this safety threshold is less than 64. The calculation
of the actual value is a bit more complex; more on that also once we got
this game's resident structure.
Section 13 of 夢時空.TXT states that Boss Attacks are only counted
towards the Clear Bonus if they were caused by reaching a certain number
of spell points. This is incorrect; manually charged Level 4 Boss Attacks
are counted as well.
The next TH03 pushes can now cover all the functions that reference this
structure in one way or another, and actually commit all this research and
translate it into some RE%. Since the non-TH05 priorities have become a
bit unclear after the last 50 € RE contribution though (as of this
writing, it's still 10 € to decide on what game to cover in two RE
pushes!), I'll be returning to TH05 until that's decided.
As noted in 📝 P0061, TH03 gameplay RE is
indeed going to progress very slowly in the beginning. A lot of the
initial progress won't even be reflected in the RE% – there are just so
many features in this game that are intertwined into each other, and I
only consider functions to be "reverse-engineered" once we understand
every involved piece of code and data, and labeled every absolute
memory reference in it. (Yes, that means that the percentages on the front
page are actually underselling ReC98's progress quite a bit, and reflect a
pretty low bound of our actual understanding of the games.)
So, when I get asked to look directly at gameplay code right now,
it's quite the struggle to find a place that can be covered within a push
or two and that would immediately benefit
scoreplayers. The basics of score and combo handling themselves
managed to fit in pretty well, though:
Just like TH04 and TH05, TH03 stores the current score as 8
binary-coded
decimal digits. Since the last constant 0 is not included, the maximum
score displayable without glitches therefore is 999,999,990 points, but
the game will happily store up to 24,699,999,990 points before the score
wraps back to 0.
There are (surprisingly?) only 6 places where the game actually
adds points to the score. Not quite sure about all of them yet, but they
(of course) include ending a combo, killing enemies, and the bonus at the
end of a round.
Combos can be continued for 80 frames after a 2-hit. The hit counter
can only be increased in the first 48, and effectively resets to 0 for the
last 32, when the Spell Point value starts blinking.
TH03 can track a total of 16 independent "hit combo sources" per
player, simultaneously. These are not related to the number of
actual explosions; rather, each explosion is assigned to one of the 16
slots when it spawns, and all consecutive explosions spawned from that one
will then add to the hit combo in that slot. The hit number displayed in
the top left is simply the largest one among all these.
Oh well, at least we still got a bit of PI% out of this one. From this
point though, the next push (or two) should be enough to cover the big
128-byte player structure – which by itself might not be immediately
interesting to scoreplayers, but surely is quite a blocker for everything
else.
Big gains, as expected, but not much to say about this one. With TH05 Reimu
being way too easy to decompile after
📝 the shot control groundwork done in October,
there was enough time to give the comprehensive PI false-positive
treatment to two other sets of functions present in TH04's and TH05's
OP.EXE. One of them, master.lib's super_*()
functions, was used a lot in TH02, more than in any other game… I
wonder how much more that game will progress without even focusing on it
in particular.
Alright then! 100% PI for TH04's and TH05's OP.EXE upcoming…
(Edit: Already got funding to cover this!)
… nope, with a game whose MAIN.EXE is still just 5%
reverse-engineered and which naturally makes heavy use of
structures, there's still a lot more PI groundwork to be done before RE
progress can speed up to the levels that we've now reached with TH05. The
good news is that this game is (now) way easier to understand: In contrast
to TH04 and TH05, where we needed to work towards player shots over a
two-digit number of pushes, TH03 only needed two for SPRITE16, and a half
one for the playfield shaking mechanism. After that, I could even already
decompile the per-frame shot update and render functions, thanks to TH03's
high number of code segments. Now, even the big 128-byte player structure
doesn't seem all too far off.
Then again, as TH03 shares no code with any other game, this actually was
a completely average PI push. For the remaining three, we'll return to
TH04 and TH05 though, which should more than make up for the slight drop
in RE speed after this one.
In other news, we've now also reached peak C++, with the introduction of
templates! TH03 stores movement speeds in a 4.4 fixed-point
format, which is an 8-bit spin on the usual 16-bit, 12.4 fixed-point
format.
So, here we have the first two pushes with an explicit focus on position
independence… and they start out looking barely different from regular
reverse-engineering? They even already deduplicate a bunch of item-related
code, which was simple enough that it required little additional work?
Because the actual work, once again, was in comparing uth05win's
interpretations and naming choices with the original PC-98 code? So that
we only ended up removing a handful of memory references there?
(Oh well, you can mod item drops now!)
So, continuing to interpret PI as a mere by-product of reverse-engineering
might ultimately drive up the total PI cost quite a bit. But alright then,
let's systematically clear out some false positives by looking at
master.lib function calls instead… and suddenly we get the PI progress we
were looking for, nicely spread out over all games since TH02. That kinda
makes it sound like useless work, only done because it's dictated by some
counting algorithm on a website. But decompilation will want to convert
all of these values to decimal anyway. We're merely doing that right now,
across all games.
Then again, it doesn't actually make any game more
position-independent, and only proves how position-independent it already
was. So I'm really wondering right now whether I should just rush
actual position independence by simply identifying structures and
their sizes, and not bother with members or false positives until that's
done. That would certainly get the job done for TH04 and TH05 in just a
few more pushes, but then leave all the proving work (and the road
to 100% PI on the front page) to reverse-engineering.
I don't know. Would it be worth it to have a game that's "maybe
fully position-independent", only for there to maybe be rare edge
cases where it isn't?
Or maybe, continuing to strike a balance between identifying false
positives (fast) and reverse-engineering structures (slow) will continue
to work out like it did now, and make us end up close to the current
estimate, which was attractive enough to sell out the crowdfunding for the
first time… 🤔
Please give feedback! If possible, by Friday evening UTC+1, before I start
working on the next PI push, this time with a focus on TH04.
And just in time for zorg's last outstanding pushes, the
TH05 shot type control functions made the speedup happen!
TH05 as a whole is now 20% reverse-engineered, and 50% position
independent,
TH05's MAIN.EXE is now even below TH02's in terms of not
yet RE'd instructions,
and all price estimates have now fallen significantly.
It would have been really nice to also include Reimu's shot
control functions in this last push, but figuring out this entire system,
with its weird bitflags and switch statement
micro-optimizations, was once again taking way longer than it should
have. Especially with my new-found insistence on turning this obvious
copy-pasta into something somewhat readable and terse…
But with such a rather tabular visual structure, things should now be
moddable in hopefully easily consistent way. Of course, since we're
only at 54% position independence for MAIN.EXE,
this isn't possible yet without
crashing the game, but modifying damage would already work.
Deathbombs confirmed, in both TH04 and TH05! On the surface, it's the same
8-frame window as in
most Windows games, but due to the slightly lower PC-98 frame rate of
56.4 Hz, it's actually slightly more lenient in TH04 and TH05.
The last function in front of the TH05 shot type control functions marks
the player's previous position in VRAM to be redrawn. But as it turns out,
"player" not only means "the player's option satellites on shot levels ≥
2", but also "the explosion animation if you lose a life", which required
reverse-engineering both things, ultimately leading to the confirmation of
deathbombs.
It actually was kind of surprising that we then had reverse-engineered
everything related to rendering all three things mentioned above,
and could also cover the player rendering function right now. Luckily,
TH05 didn't decide to also micro-optimize that function into
un-decompilability; in fact, it wasn't changed at all from TH04. Unlike
the one invalidation function whose decompilation would have
actually been the goal here…
But now, we've finally gotten to where we wanted to… and only got 2
outstanding decompilation pushes left. Time to get the website ready for
hosting an actual crowdfunding campaign, I'd say – It'll make a better
impression if people can still see things being delivered after the big
announcement.
Here we go, new C code! …eh, it will still take a bit to really get
decompilation going at the speeds I was hoping for. Especially with the
sheer amount of stuff that is set in the first few significant
functions we actually can decompile, which now all has to be
correctly declared in the C world. Turns out I spent the last 2 years
screwing up the case of exported functions, and even some of their names,
so that it didn't actually reflect their calling convention… yup. That's
just the stuff you tend to forget while it doesn't matter.
To make up for that, I decided to research whether we can make use of some
C++ features to improve code readability after all. Previously, it seemed
that TH01 was the only game that included any C++ code, whereas TH02 and
later seemed to be 100% C and ASM. However, during the development of the
soon to be released new build system, I noticed that even this old
compiler from the mid-90's, infamous for prioritizing compile speeds over
all but the most trivial optimizations, was capable of quite surprising
levels of automatic inlining with class methods…
…leading the research to culminate in the mindblow that is
9d121c7 – yes, we can use C++ class methods
and operator overloading to make the code more readable, while still
generating the same code than if we had just used C and preprocessor
macros.
Looks like there's now the potential for a few pull requests from outside
devs that apply C++ features to improve the legibility of previously
decompiled and terribly macro-ridden code. So, if anyone wants to help
without spending money…
Back to actual development! Starting off this stretch with something
fairly mechanical, the few remaining generic boss and midboss state
variables. And once we start converting the constant numbers used for and
around those variables into decimal, the estimated position independence
probability immediately jumped by 5.31% for TH04's MAIN.EXE,
and 4.49% for TH05's – despite not having made the game any more position-
independent than it was before. Yup… lots of false positives in there, but
who can really know for sure without having put in the work.
But now, we've RE'd enough to finally decompile something again next,
4 years after the last decompilation of anything!
Sometimes, "strategically picking things to reverse-engineer" unfortunately also means "having to move seemingly random and utterly uninteresting stuff, which will only make sense later, out of the way". Really, this was so boring. Gonna get a lot more exciting in the next ones though.
So, let's continue with player shots! …eh, or maybe not directly, since they involve two other structure types in TH05, which we'd have to cover first. One of them is a different sort of sprite, and since I like me some context in my reverse-engineering, let's disable every other sprite type first to figure out what it is.
One of those other sprite types were the little sparks flying away from killed stage enemies, midbosses, and grazed bullets; easy enough to also RE right now. Turns out they use the same 8 hardcoded 8×8 sprites in TH02, TH04, and TH05. Except that it's actually 64 16×8 sprites, because ZUN wanted to pre-shift them for all 8 possible start pixels within a planar VRAM byte (rather than, like, just writing a few instructions to shift them programmatically), leading to them taking up 1,024 bytes rather than just 64.
Oh, and the thing I wanted to RE *actually* was the decay animation whenever a shot hits something. Not too complex either, especially since it's exclusive to TH05.
And since there was some time left and I actually have to pick some of the next RE places strategically to best prepare for the upcoming 17 decompilation pushes, here's two more function pointers for good measure.
Stumbled across one more drawing function in the way… which was only a duplicated and seemingly pointlessly micro-optimized copy of master.lib's super_roll_put_tiny() function, used for fast display of 4-color 16×16 sprites.
With this out of the way, we can tackle player shot sprite animation next. This will get rid of a lot of code, since every power level of every character's shot type is implemented in its own function. Which makes up thousands of instructions in both TH04 and TH05 that we can nicely decompile in the future without going through a dedicated reverse-engineering step.
Actually, I lied, and lasers ended up coming with everything that makes reverse-engineering ZUN code so difficult: weirdly reused variables, unexpected structures within structures, and those TH05-specific nasty, premature ASM micro-optimizations that will waste a lot of time during decompilation, since the majority of the code actually was C, except for where it wasn't.
Laser… is not difficult. In fact, out of the remaining entity types I checked, it's the easiest one to fully grasp from uth05win alone, as it's only drawn using master.lib's line, circle, and polygon functions. Everything else ends up calling… something sprite-related that needs to be RE'd separately, and which uth05win doesn't help with, at all.
Oh, and since the speed of shoot-out lasers (as used by TH05's Stage 2 boss, for example) always depends on rank, we also got this variable now.
This only covers the structure itself – uth05win's member names for the LASER structure were not only a bit too unclear, but also plain wrong and misleading in one instance. The actual implementation will follow in the next one.
So, after introducing instruction number statistics… let's go for over 2,000 lines that won't show up there immediately That being (mid-)boss HP, position, and sprite ID variables for TH04/TH05. Doesn't sound like much, but it kind of is if you insist on decimal numbers for easier comparison with uth05win's source code.
What do you do if the TH06 text image feature for thcrap should have been done 3 days™ ago, but keeps getting more and more complex, and you have a ton of other pushes to deliver anyway? Get some distraction with some light ReC98 reverse-engineering work. This is where it becomes very obvious how much uth05win helps us with all the games, not just TH05.
5a5c347 is the most important one in there, this was the missing substructure that now makes every other sprite-like structure trivial to figure out.