⮜ Blog

⮜ List of tags

Showing all posts tagged card-flipping-

📝 Posted:
🚚 Summary of:
P0158, P0159
Commits:
bf7bb7e...c0c0ebc, c0c0ebc...e491cd7
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ gameplay+ card-flipping- rng+ score+ bomb+ animation+ jank+ waste+

Of course, Sariel's potentially bloated and copy-pasted code is blocked by even more definitely bloated and copy-pasted code. It's TH01, what did you expect? :tannedcirno:

But even then, TH01's item code is on a new level of software architecture ridiculousness. First, ZUN uses distinct arrays for both types of items, with their own caps of 4 for bomb items, and 10 for point items. Since that obviously makes any type-related switch statement redundant, he also used distinct functions for both types, with copy-pasted boilerplate code. The main per-item update and render function is shared though… and takes every single accessed member of the item structure as its own reference parameter. Like, why, you have a structure, right there?! That's one way to really practice the C++ language concept of passing arbitrary structure fields by mutable reference… :zunpet:
To complete the unwarranted grand generic design of this function, it calls back into per-type collision detection, drop, and collect functions with another three reference parameters. Yeah, why use C++ virtual methods when you can also implement the effectively same polymorphism functionality by hand? Oh, and the coordinate clamping code in one of these callbacks could only possibly have come from nested min() and max() preprocessor macros. And that's how you extend such dead-simple functionality to 1¼ pushes…

Amidst all this jank, we've at least got a sensible item↔player hitbox this time, with 24 pixels around Reimu's center point to the left and right, and extending from 24 pixels above Reimu down to the bottom of the playfield. It absolutely didn't look like that from the initial naive decompilation though. Changing entity coordinates from left/top to center was one of the better lessons from TH01 that ZUN implemented in later games, it really makes collision detection code much more intuitive to grasp.


The card flip code is where we find out some slightly more interesting aspects about item drops in this game, and how they're controlled by a hidden cycle variable:

Then again, score players largely ignore point items anyway, as card combos simply have a much bigger effect on the score. With this, I should have RE'd all information necessary to construct a tool-assisted score run, though?
Edit: Turns out that 1) point items are becoming increasingly important in score runs, and 2) Pearl already did a TAS some months ago. Thanks to spaztron64 for the info!

The Orb↔card hitbox also makes perfect sense, with 24 pixels around the center point of a card in every direction.

The rest of the code confirms the card flip score formula documented on Touhou Wiki, as well as the way cards are flipped by bombs: During every of the 90 "damaging" frames of the 140-frame bomb animation, there is a 75% chance to flip the card at the [bomb_frame % total_card_count_in_stage] array index. Since stages can only have up to 50 cards 📝 thanks to a bug, even a 75% chance is high enough to typically flip most cards during a bomb. Each of these flips still only removes a single card HP, just like after a regular collision with the Orb.
Also, why are the card score popups rendered before the cards themselves? That's two needless frames of flicker during that 25-frame animation. Not all too noticeable, but still.


And that's over 50% of REIIDEN.EXE decompiled as well! Next up: More HUD update and rendering code… with a direct dependency on rank pellet speed modifications?

📝 Posted:
🚚 Summary of:
P0128, P0129
Commits:
dc65b59...dde36f7, dde36f7...f4c2e45
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ file-format+ gameplay+ card-flipping- waste+ hidden-content+ bug+

So, only one card-flipping function missing, and then we can start decompiling TH01's two final bosses? Unfortunately, that had to be the one big function that initializes and renders all gameplay objects. #17 on the list of longest functions in all of PC-98 Touhou, requiring two pushes to fully understand what's going on there… and then it immediately returns for all "boss" stages whose number is divisible by 5, yet is still called during Sariel's and Konngara's initialization 🤦

Oh well. This also involved the final file format we hadn't looked at yet – the STAGE?.DAT files that describe the layout for all stages within a single 5-stage scene. Which, for a change is a very well-designed form– no, of course it's completely weird, what did you expect? Development must have looked somewhat like this:

With all that, it's almost not worth mentioning how there are 12 turret types, which only differ in which hardcoded pellet group they fire at a hardcoded interval of either 100 or 200 frames, and that they're all explicitly spelled out in every single switch statement. Or how the layout of the internal card and obstacle SoA classes is quite disjointed. So here's the new ZUN bugs you've probably already been expecting!


Cards and obstacles are blitted to both VRAM pages. This way, any other entities moving on top of them can simply be unblitted by restoring pixels from VRAM page 1, without requiring the stationary objects to be redrawn from main memory. Obviously, the backgrounds behind the cards have to be stored somewhere, since the player can remove them. For faster transitions between stages of a scene, ZUN chose to store the backgrounds behind obstacles as well. This way, the background image really only needs to be blitted for the first stage in a scene.

All that memory for the object backgrounds adds up quite a bit though. ZUN actually made the correct choice here and picked a memory allocation function that can return more than the 64 KiB of a single x86 Real Mode segment. He then accesses the individual backgrounds via regular array subscripts… and that's where the bug lies, because he stores the returned address in a regular far pointer rather than a huge one. This way, the game still can only display a total of 102 objects (i. e., cards and obstacles combined) per stage, without any unblitting glitches.
What a shame, that limit could have been 127 if ZUN didn't needlessly allocate memory for alpha planes when backing up VRAM content. :onricdennat:

And since array subscripts on far pointers wrap around after 64 KiB, trying to save the background of the 103rd object is guaranteed to corrupt the memory block header at the beginning of the returned segment. :zunpet:. When TH01 runs in test mode, it correctly reports a corrupted heap in this case.


Finally, some unused content! Upon discovering TH01's debug mode, probably everyone tried to access Stage 21, just to see what happens, and indeed landed in an actual stage, with a black background and a weird color palette. Turns out that ZUN did ship an unused scene in SCENE7.DAT, which is exactly was loaded there.
Unfortunately, it's easy to believe that this is just garbage data (as I initially did): At the beginning of "Stage 22", the game seems to enter an infinite loop somewhere during the flip-in animation.

Well, we've had a heap overflow above, and the cause here is nothing but a stack buffer overflow – a perhaps more modern kind of classic C bug, given its prevalence in the Windows Touhou games. Explained in a few lines of code:

void stageobjs_init_and_render()
{
	int card_animation_frames[50]; // even though there can be up to 200?!
	int total_frames = 0;

	(code that would end up resetting total_frames if it ever tried to reset
	card_animation_frames[50]…)
}

The number of cards in "Stage 22"? 76. There you have it.

But of course, it's trivial to disable this animation and fix these stage transitions. So here they are, Stages 21 to 24, as shipped with the game in STAGE7.DAT:


Wow, what a mess. All that was just a bit too much to be covered in two pushes… Next up, assuming the current subscriptions: Taking a vacation with one smaller TH01 push, covering some smaller functions here and there to ensure some uninterrupted Konngara progress later on.