⮜ Blog

⮜ List of tags

Showing all posts tagged th03-

📝 Posted:
🚚 Summary of:
P0139
Commits:
864e864...d985811
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ kaja+ jank+ bug+ contribution-ideas+

Technical debt, part 10… in which two of the PMD-related functions came with such complex ramifications that they required one full push after all, leaving no room for the additional decompilations I wanted to do. At least, this did end up being the final one, completing all SHARED segments for the time being.


The first one of these functions determines the BGM and sound effect modes, combining the resident type of the PMD driver with the Option menu setting. The TH04 and TH05 version is apparently coded quite smartly, as PC-98 Touhou only needs to distinguish "OPN- / PC-9801-26K-compatible sound sources handled by PMD.COM" from "everything else", since all other PMD varieties are OPNA- / PC-9801-86-compatible.
Therefore, I only documented those two results returned from PMD's AH=09h function. I'll leave a comprehensive, fully documented enum to interested contributors, since that would involve research into basically the entire history of the PC-9800 series, and even the clearly out-of-scope PC-88VA. After all, distinguishing between more versions of the PMD driver in the Option menu (and adding new sprites for them!) is strictly mod territory.


The honor of being the final decompiled function in any SHARED segment went to TH04's snd_load(). TH04 contains by far the sanest version of this function: Readable C code, no new ZUN bugs (and still missing file I/O error handling, of course)… but wait, what about that actual file read syscall, using the INT 21h, AH=3Fh DOS file read API? Reading up to a hardcoded number of bytes into PMD's or MMD's song or sound effect buffer, 20 KiB in TH02-TH04, 64 KiB in TH05… that's kind of weird. About time we looked closer into this. :thonk:

Turns out that no, KAJA's driver doesn't give you the full 64 KiB of one memory segment for these, as especially TH05's code might suggest to anyone unfamiliar with these drivers. :zunpet: Instead, you can customize the size of these buffers on its command line. In GAME.BAT, ZUN allocates 8 KiB for FM songs, 2 KiB for sound effects, and 12 KiB for MMD files in TH02… which means that the hardcoded sizes in snd_load() are completely wrong, no matter how you look at them. :onricdennat: Consequently, this read syscall will overflow PMD's or MMD's song or sound effect buffer if the given file is larger than the respective buffer size.
Now, ZUN could have simply hardcoded the sizes from GAME.BAT instead, and it would have been fine. As it also turns out though, PMD has an API function (AH=22h) to retrieve the actual buffer sizes, provided for exactly that purpose. There is little excuse not to use it, as it also gives you PMD's default sizes if you don't specify any yourself.
(Unless your build process enumerates all PMD files that are part of the game, and bakes the largest size into both snd_load() and GAME.BAT. That would even work with MMD, which doesn't have an equivalent for AH=22h.)

What'd be the consequence of loading a larger file then? Well, since we don't get a full segment, let's look at the theoretical limit first.
PMD prefers to keep both its driver code and the data buffers in a single memory segment. As a result, the limit for the combined size of the song, instrument, and sound effect buffer is determined by the amount of code in the driver itself. In PMD86 version 4.8o (bundled with TH04 and TH05) for example, the remaining size for these buffers is exactly 45,555 bytes. Being an actually good programmer who doesn't blindly trust user input, KAJA thankfully validates the sizes given via the /M, /V, and /E command-line options before letting the driver reside in memory, and shuts down with an error message if they exceed 40 KiB. Would have been even better if he calculated the exact size – even in the current PMD version 4.8s from January 2020, it's still a hardcoded value (see line 8581).
Either way: If the file is larger than this maximum, the concrete effect is down to the INT 21h, AH=3Fh implementation in the underlying DOS version. DOS 3.3 treats the destination address as linear and reads past the end of the segment, DOS 5.0 and DOSBox-X truncate the number of bytes to not exceed the remaining space in the segment, and maybe there's even a DOS that wraps around and ends up overwriting the PMD driver code. In any case: You will overwrite what's after the driver in memory – typically, the game .EXE and its master.lib functions.

It almost feels like a happy accident that this doesn't cause issues in the original games. The largest PMD file in any of the 4 games, the -86 version of 幽夢 ~ Inanimate Dream, takes up 8,099 bytes, just under the 8,192 byte limit for BGM. For modders, I'd really recommend implementing this properly, with PMD's AH=22h function and error handling, once position independence has been reached.

Whew, didn't think I'd be doing more research into KAJA's drivers during regular ReC98 development! That's probably been the final time though, as all involved functions are now decompiled, and I'm unlikely to iterate over them again.


And that's it! Repaid the biggest chunk of technical debt, time for some actual progress again. Next up: Reopening the store tomorrow, and waiting for new priorities. If we got nothing by Sunday, I'm going to put the pending [Anonymous] pushes towards some work on the website.

📝 Posted:
🚚 Summary of:
P0138
Commits:
8d953dc...864e864
💰 Funded by:
[Anonymous], Blue Bolt
🏷 Tags:
rec98+ th01+ th02+ th03- th04+ micro-optimization+ file-format+ waste+

Technical debt, part 9… and as it turns out, it's highly impractical to repay 100% of it at this point in development. 😕

The reason: graph_putsa_fx(), ZUN's function for rendering optionally boldfaced text to VRAM using the font ROM glyphs, in its ridiculously micro-optimized TH04 and TH05 version. This one sets the "callback function" for applying the boldface effect by self-modifying the target of two CALL rel16 instructions… because there really wasn't any free register left for an indirect CALL, eh? The necessary distance, from the call site to the function itself, has to be calculated at assembly time, by subtracting the target function label from the call site label.
This usually wouldn't be a problem… if ZUN didn't store the resulting lookup tables in the .DATA segment. With code segments, we can easily split them at pretty much any point between functions because there are multiple of them. But there's only a single .DATA segment, with all ZUN and master.lib data sandwiched between Borland C++'s crt0 at the top, and Borland C++'s library functions at the bottom of the segment. Adding another split point would require all data after that point to be moved to its own translation unit, which in turn requires EXTERN references in the big .ASM file to all that moved data… in short, it would turn the codebase into an even greater mess.
Declaring the labels as EXTERN wouldn't work either, since the linker can't do fancy arithmetic and is limited to simply replacing address placeholders with one single address. So, we're now stuck with this function at the bottom of the SHARED segment, for the foreseeable future.


We can still continue to separate functions off the top of that segment, though. Pretty much the only thing noteworthy there, so far: TH04's code for loading stage tile images from .MPN files, which we hadn't reverse-engineered so far, and which nicely fit into one of Blue Bolt's pending ⅓ RE contributions. Yup, we finally moved the RE% bars again! If only for a tiny bit. :tannedcirno:
Both TH02 and TH05 simply store one pointer to one dynamically allocated memory block for all tile images, as well as the number of images, in the data segment. TH04, on the other hand, reserves memory for 8 .MPN slots, complete with their color palettes, even though it only ever uses the first one of these. There goes another 458 bytes of conventional RAM… I should start summing up all the waste we've seen so far. Let's put the next website contribution towards a tagging system for these blog posts.

At 86% of technical debt in the SHARED segment repaid, we aren't quite done yet, but the rest is mostly just TH04 needing to catch up with functions we've already separated. Next up: Getting to that practical 98.5% point. Since this is very likely to not require a full push, I'll also decompile some more actual TH04 and TH05 game code I previously reverse-engineered – and after that, reopen the store!

📝 Posted:
🚚 Summary of:
P0137
Commits:
07bfcf2...8d953dc
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ build-process+ meta+ contribution-ideas+ mod+ tasm+ tcc+

Whoops, the build was broken again? Since P0127 from mid-November 2020, on TASM32 version 5.3, which also happens to be the one in the DevKit… That version changed the alignment for the default segments of certain memory models when requesting .386 support. And since redefining segment alignment apparently is highly illegal and absolutely has to be a build error, some of the stand-alone .ASM translation units didn't assemble anymore on this version. I've only spotted this on my own because I casually compiled ReC98 somewhere else – on my development system, I happened to have TASM32 version 5.0 in the PATH during all this time.
At least this was a good occasion to get rid of some weird segment alignment workarounds from 2015, and replace them with the superior convention of using the USE16 modifier for the .MODEL directive.

ReC98 would highly benefit from a build server – both in order to immediately spot issues like this one, and as a service for modders. Even more so than the usual open-source project of its size, I would say. But that might be exactly because it doesn't seem like something you can trivially outsource to one of the big CI providers for open-source projects, and quickly set it up with a few lines of YAML.
That might still work in the beginning, and we might get by with a regular 64-bit Windows 10 and DOSBox running the exact build tools from the DevKit. Ideally, though, such a server should really run the optimal configuration of a 32-bit Windows 10, allowing both the 32-bit and the 16-bit build step to run natively, which already is something that no popular CI service out there offers. Then, we'd optimally expand to Linux, every other Windows version down to 95, emulated PC-98 systems, other TASM versions… yeah, it'd be a lot. An experimental project all on its own, with additional hosting costs and probably diminishing returns, the more it expands…
I've added it as a category to the order form, let's see how much interest there is once the store reopens (which will be at the beginning of May, at the latest). That aside, it would 📝 also be a great project for outside contributors!


So, technical debt, part 8… and right away, we're faced with TH03's low-level input function, which 📝 once 📝 again 📝 insists on being word-aligned in a way we can't fake without duplicating translation units. Being undecompilable isn't exactly the best property for a function that has been interesting to modders in the past: In 2018, spaztron64 created an ASM-level mod that hardcoded more ergonomic key bindings for human-vs-human multiplayer mode: 2021-04-04-TH03-WASD-2player.zip However, this remapping attempt remained quite limited, since we hadn't (and still haven't) reached full position independence for TH03 yet. There's quite some potential for size optimizations in this function, which would allow more BIOS key groups to already be used right now, but it's not all that obvious to modders who aren't intimately familiar with x86 ASM. Therefore, I really wouldn't want to keep such a long and important function in ASM if we don't absolutely have to…

… and apparently, that's all the motivation I needed? So I took the risk, and spent the first half of this push on reverse-engineering TCC.EXE, to hopefully find a way to get word-aligned code segments out of Turbo C++ after all.

And there is! The -WX option, used for creating DPMI applications, messes up all sorts of code generation aspects in weird ways, but does in fact mark the code segment as word-aligned. We can consider ourselves quite lucky that we get to use Turbo C++ 4.0, because this feature isn't available in any previous version of Borland's C++ compilers.
That allowed us to restore all the decompilations I previously threw away… well, two of the three, that lookup table generator was too much of a mess in C. :tannedcirno: But what an abuse this is. The subtly different code generation has basically required one creative workaround per usage of -WX. For example, enabling that option causes the regular PUSH BP and POP BP prolog and epilog instructions to be wrapped with INC BP and DEC BP, for some reason:

a_function_compiled_with_wx proc
	inc 	bp    	; ???
	push	bp
	mov 	bp, sp
	    	      	; [… function code …]
	pop 	bp
	dec 	bp    	; ???
	ret
a_function_compiled_with_wx endp

Luckily again, all the functions that currently require -WX don't set up a stack frame and don't take any parameters.
While this hasn't directly been an issue so far, it's been pretty close: snd_se_reset(void) is one of the functions that require word alignment. Previously, it shared a translation unit with the immediately following snd_se_play(int new_se), which does take a parameter, and therefore would have had its prolog and epilog code messed up by -WX. Since the latter function has a consistent (and thus, fakeable) alignment, I simply split that code segment into two, with a new -WX translation unit for just snd_se_reset(void). Problem solved – after all, two C++ translation units are still better than one ASM translation unit. :onricdennat: Especially with all the previous #include improvements.

The rest was more of the usual, getting us 74% done with repaying the technical debt in the SHARED segment. A lot of the remaining 26% is TH04 needing to catch up with TH03 and TH05, which takes comparatively little time. With some good luck, we might get this done within the next push… that is, if we aren't confronted with all too many more disgusting decompilations, like the two functions that ended this push. If we are, we might be needing 10 pushes to complete this after all, but that piece of research was definitely worth the delay. Next up: One more of these.

📝 Posted:
🚚 Summary of:
P0135, P0136
Commits:
a6eed55...252c13d, 252c13d...07bfcf2
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ kaja+ menu+ micro-optimization+ bug+ tcc+

Alright, no more big code maintenance tasks that absolutely need to be done right now. Time to really focus on parts 6 and 7 of repaying technical debt, right? Except that we don't get to speed up just yet, as TH05's barely decompilable PMD file loading function is rather… complicated.
Fun fact: Whenever I see an unusual sequence of x86 instructions in PC-98 Touhou, I first consult the disassembly of Wolfenstein 3D. That game was originally compiled with the quite similar Borland C++ 3.0, so it's quite helpful to compare its ASM to the officially released source code. If I find the instructions in question, they mostly come from that game's ASM code, leading to the amusing realization that "even John Carmack was unable to get these instructions out of this compiler" :onricdennat: This time though, Wolfenstein 3D did point me to Borland's intrinsics for common C functions like memcpy() and strchr(), available via #pragma intrinsic. Bu~t those unfortunately still generate worse code than what ZUN micro-optimized here. Commenting how these sequences of instructions should look in C is unfortunately all I could do here.
The conditional branches in this function did compile quite nicely though, clarifying the control flow, and clearly exposing a ZUN bug: TH05's snd_load() will hang in an infinite loop when trying to load a non-existing -86 BGM file (with a .M2 extension) if the corresponding -26 BGM file (with a .M extension) doesn't exist either.

Unsurprisingly, the PMD channel monitoring code in TH05's Music Room remains undecompilable outside the two most "high-level" initialization and rendering functions. And it's not because there's data in the middle of the code segment – that would have actually been possible with some #pragmas to ensure that the data and code segments have the same name. As soon as the SI and DI registers are referenced anywhere, Turbo C++ insists on emitting prolog code to save these on the stack at the beginning of the function, and epilog code to restore them from there before returning. Found that out in September 2019, and confirmed that there's no way around it. All the small helper functions here are quite simply too optimized, throwing away any concern for such safety measures. 🤷
Oh well, the two functions that were decompilable at least indicate that I do try.


Within that same 6th push though, we've finally reached the one function in TH05 that was blocking further progress in TH04, allowing that game to finally catch up with the others in terms of separated translation units. Feels good to finally delete more of those .ASM files we've decompiled a while ago… finally!

But since that was just getting started, the most satisfying development in both of these pushes actually came from some more experiments with macros and inline functions for near-ASM code. By adding "unused" dummy parameters for all relevant registers, the exact input registers are made more explicit, which might help future port authors who then maybe wouldn't have to look them up in an x86 instruction reference quite as often. At its best, this even allows us to declare certain functions with the __fastcall convention and express their parameter lists as regular C, with no additional pseudo-registers or macros required.
As for output registers, Turbo C++'s code generation turns out to be even more amazing than previously thought when it comes to returning pseudo-registers from inline functions. A nice example for how this can improve readability can be found in this piece of TH02 code for polling the PC-98 keyboard state using a BIOS interrupt:

inline uint8_t keygroup_sense(uint8_t group) {
	_AL = group;
	_AH = 0x04;
	geninterrupt(0x18);
	// This turns the output register of this BIOS call into the return value
	// of this function. Surprisingly enough, this does *not* naively generate
	// the `MOV AL, AH` instruction you might expect here!
	return _AH;
}

void input_sense(void)
{
	// As a result, this assignment becomes `_AH = _AH`, which Turbo C++
	// never emits as such, giving us only the three instructions we need.
	_AH = keygroup_sense(8);

	// Whereas this one gives us the one additional `MOV BH, AH` instruction
	// we'd expect, and nothing more.
	_BH = keygroup_sense(7);

	// And now it's obvious what both of these registers contain, from just
	// the assignments above.
	if(_BH & K7_ARROW_UP || _AH & K8_NUM_8) {
		key_det |= INPUT_UP;
	}
	// […]
}

I love it. No inline assembly, as close to idiomatic C code as something like this is going to get, yet still compiling into the minimum possible number of x86 instructions on even a 1994 compiler. This is how I keep this project interesting for myself during chores like these. :tannedcirno: We might have even reached peak inline already?

And that's 65% of technical debt in the SHARED segment repaid so far. Next up: Two more of these, which might already complete that segment? Finally!

📝 Posted:
🚚 Summary of:
P0133
Commits:
045450c...1d5db71
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th01+ th02+ th03- th04+ th05+ micro-optimization+ master.lib+ tcc+

Wow, 31 commits in a single push? Well, what the last push had in progress, this one had in maintenance. The 📝 master.lib header transition absolutely had to be completed in this one, for my own sanity. And indeed, it reduced the build time for the entirety of ReC98 to about 27 seconds on my system, just as expected in the original announcement. Looking forward to even faster build times with the upcoming #include improvements I've got up my sleeve! The port authors of the future are going to appreciate those quite a bit.

As for the new translation units, the funniest one is probably TH05's function for blitting the 1-color .CDG images used for the main menu options. Which is so optimized that it becomes decompilable again, by ditching the self-modifying code of its TH04 counterpart in favor of simply making better use of CPU registers. The resulting C code is still a mess, but what can you do. :tannedcirno:
This was followed by even more TH05 functions that clearly weren't compiled from C, as evidenced by their padding bytes. It's about time I've documented my lack of ideas of how to get those out of Turbo C++. :onricdennat:

And just like in the previous push, I also had to 📝 throw away a decompiled TH02 function purely due to alignment issues. Couldn't have been a better one though, no one's going to miss a residency check for the MMD driver that is largely identical to the corresponding (and indeed decompilable) function for the PMD driver. Both of those should have been merged into a single function anyway, given how they also mutate the game's sound configuration flags…

In the end, I've slightly slowed down with this one, with only 37% of technical debt done after this 4th dedicated push. Next up: One more of these, centered around TH05's stupidly optimized .PI functions. Maybe also with some more reverse-engineering, after not having done any for 1½ months?

📝 Posted:
🚚 Summary of:
P0132
Commits:
dc9e3ee...045450c
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03- th04+ file-format+

Now that's the amount of translation unit separation progress I was looking for! Too bad that RL is keeping me more and more occupied these days, and ended up delaying this push until 2021. Now that Touhou Patch Center is also commissioning me to update their infrastructure, it's going to take a while for ReC98 to return to full speed, and for the store to be reopened. Should happen by April at the latest, though!

With everything related to this separation of translation units explained earlier, we've really got a push with nothing to talk about, this time. Except, maybe, for the realization that 📝 this current approach might not be the best fit for TH02 after all: Not only did it force us to 📝 throw away the previous decompilation of the sound effect playback functions, but OP.EXE also contains obviously copy-pasted code in addition to the common, shared set of library functions. How was that game even built, originally??? No way around compiling that one instance of the "delay until given BGM measure" function separately then, if it insists on using its own instance of the VSync delay function…
Oh well, this separated layout still works better for the later games, and consistency is good. Smooth sailing with all of the other functions, at least.

Next up: One more of these, which might even end up completing the 📝 transition to our own master.lib header file. In terms of the total number of ASM code left in the SHARED code segments, we're now 30% done after 3 dedicated pushes. It really shouldn't require 7 more pushes, though!

📝 Posted:
🚚 Summary of:
P0126, P0127
Commits:
6c22af7...8b01657, 8b01657...dc65b59
💰 Funded by:
Blue Bolt, [Anonymous]
🏷 Tags:
rec98+ th03- th04+ th05+ pc98+ micro-optimization+ tcc+ tasm+ meta+

Alright, back to continuing the master.hpp transition started in P0124, and repaying technical debt. The last blog post already announced some ridiculous decompilations… and in fact, not a single one of the functions in these two pushes was decompilable into idiomatic C/C++ code.

As usual, that didn't keep me from trying though. The TH04 and TH05 version of the infamous 16-pixel-aligned, EGC-accelerated rectangle blitting function from page 1 to page 0 was fairly average as far as unreasonable decompilations are concerned.
The big blocker in TH03's MAIN.EXE, however, turned out to be the .MRS functions, used to render the gauge attack portraits and bomb backgrounds. The blitting code there uses the additional FS and GS segment registers provided by the Intel 386… which

  1. are not supported by Turbo C++'s inline assembler, and
  2. can't be turned into pointers, due to a compiler bug in Turbo C++ that generates wrong segment prefix opcodes for the _FS and _GS pseudo-registers.

Apparently I'm the first one to even try doing that with this compiler? I haven't found any other mention of this bug…
Compiling via assembly (#pragma inline) would work around this bug and generate the correct instructions. But that would incur yet another dependency on a 16-bit TASM, for something honestly quite insignificant.

What we can always do, however, is using __emit__() to simply output x86 opcodes anywhere in a function. Unlike spelled-out inline assembly, that can even be used in helper functions that are supposed to inline… which does in fact allow us to fully abstract away this compiler bug. Regular if() comparisons with pseudo-registers wouldn't inline, but "converting" them into C++ template function specializations does. All that's left is some C preprocessor abuse to turn the pseudo-registers into types, and then we do retain a normal-looking poke() call in the blitting functions in the end. 🤯

Yeah… the result is batshit insane. I may have gone too far in a few places…


One might certainly argue that all these ridiculous decompilations actually hurt the preservation angle of this project. "Clearly, ZUN couldn't have possibly written such unreasonable C++ code. So why pretend he did, and not just keep it all in its more natural ASM form?" Well, there are several reasons:

  • Future port authors will merely have to translate all the pseudo-registers and inline assembly to C++. For the former, this is typically as easy as replacing them with newly declared local variables. No need to bother with function prolog and epilog code, calling conventions, or the build system.
  • No duplication of constants and structures in ASM land.
  • As a more expressive language, C++ can document the code much better. Meticulous documentation seems to have become the main attraction of ReC98 these days – I've seen it appreciated quite a number of times, and the continued financial support of all the backers speaks volumes. Mods, on the other hand, are still a rather rare sight.
  • Having as few .ASM files in the source tree as possible looks better to casual visitors who just look at GitHub's repo language breakdown. This way, ReC98 will also turn from an "Assembly project" to its rightful state of "C++ project" much sooner.
  • And finally, it's not like the ASM versions are gone – they're still part of the Git history.

Unfortunately, these pushes also demonstrated a second disadvantage in trying to decompile everything possible: Since Turbo C++ lacks TASM's fine-grained ability to enforce code alignment on certain multiples of bytes, it might actually be unfeasible to link in a C-compiled object file at its intended original position in some of the .EXE files it's used in. Which… you're only going to notice once you encounter such a case. Due to the slightly jumbled order of functions in the 📝 second, shared code segment, that might be long after you decompiled and successfully linked in the function everywhere else.

And then you'll have to throw away that decompilation after all 😕 Oh well. In this specific case (the lookup table generator for horizontally flipping images), that decompilation was a mess anyway, and probably helped nobody. I could have added a dummy .OBJ that does nothing but enforce the needed 2-byte alignment before the function if I really insisted on keeping the C version, but it really wasn't worth it.


Now that I've also described yet another meta-issue, maybe there'll really be nothing to say about the next technical debt pushes? :onricdennat: Next up though: Back to actual progress again, with TH01. Which maybe even ends up pushing that game over the 50% RE mark?

📝 Posted:
🚚 Summary of:
P0115, P0116
Commits:
967bb8b...e5328a3, e5328a3...03048c3
💰 Funded by:
Lmocinemod, Blue Bolt, [Anonymous]
🏷 Tags:
rec98+ th03- th04+ th05+ file-format+ cutscene+ blitting+ menu+

Finally, after a long while, we've got two pushes with barely anything to talk about! Continuing the road towards 100% PI for TH05, these were exactly the two pushes that TH05 MAINE.EXE PI was estimated to additionally cost, relative to TH04's. Consequently, they mostly went to TH05's unique data structures in the ending cutscenes, the score name registration menu, and the staff roll.

A unique feature in there is TH05's support for automatic text color changes in its ending scripts, based on the first full-width Shift-JIS codepoint in a line. The \c=codepoint,color commands at the top of the _ED??.TXT set up exactly this codepoint→color mapping. As far as I can tell, TH05 is the only Touhou game with a feature like this – even the Windows Touhou games went back to manually spelling out each color change.

The orb particles in TH05's staff roll also try to be a bit unique by using 32-bit X and Y subpixel variables for their current position. With still just 4 fractional bits, I can't really tell yet whether the extended range was actually necessary. Maybe due to how the "camera scrolling" through "space" was implemented? All other entities were pretty much the usual fare, though.
12.4, 4.4, and now a 28.4 fixed-point format… yup, 📝 C++ templates were definitely the right choice.

At the end of its staff roll, TH05 not only displays the usual performance verdict, but then scrolls in the scores at the end of each stage before switching to the high score menu. The simplest way to smoothly scroll between two full screens on a PC-98 involves a separate bitmap… which is exactly what TH05 does here, reserving 28,160 bytes of its global data segment for just one overly large monochrome 320×704 bitmap where both the screens are rendered to. That's… one benefit of splitting your game into multiple executables, I guess? :tannedcirno:
Not sure if it's common knowledge that you can actually scroll back and forth between the two screens with the Up and Down keys before moving to the score menu. I surely didn't know that before. But it makes sense – might as well get the most out of that memory.


The necessary groundwork for all of this may have actually made TH04's (yes, TH04's) MAINE.EXE technically position-independent. Didn't quite reach the same goal for TH05's – but what we did reach is ⅔ of all PC-98 Touhou code now being position-independent! Next up: Celebrating even more milestones, as -Tom- is about to finish development on his TH05 MAIN.EXE PI demo…

📝 Posted:
🚚 Summary of:
P0113, P0114
Commits:
150d2c6...6204fdd, 6204fdd...967bb8b
💰 Funded by:
Lmocinemod
🏷 Tags:
rec98+ th02+ th03- th04+ build-process+ pipeline+ tasm+ blitting+ file-format+ input+

Alright, tooling and technical debt. Shouldn't be really much to talk about… oh, wait, this is still ReC98 :tannedcirno:

For the tooling part, I finished up the remaining ergonomics and error handling for the 📝 sprite converter that Jonathan Campbell contributed two months ago. While I familiarized myself with the tool, I've actually ran into some unreported errors myself, so this was sort of important to me. Still got no command-line help in there, but the error messages can now do that job probably even better, since we would have had to write them anyway.

So, what's up with the technical debt then? Well, by now we've accumulated quite a number of 📝 ASM code slices that need to be either decompiled or clearly marked as undecompilable. Since we define those slices as "already reverse-engineered", that decision won't affect the numbers on the front page at all. But for a complete decompilation, we'd still have to do this someday. So, rather than incorporating this work into pushes that were purchased with the expectation of measurable progress in a certain area, let's take the "anything goes" pushes, and focus entirely on that during them.

The second code segment seemed like the best place to start with this, since it affects the largest number of games simultaneously. Starting with TH02, this segment contains a set of random "core" functions needed by the binary. Image formats, sounds, input, math, it's all there in some capacity. You could maybe call it all "libzun" or something like that? But for the time being, I simply went with the obvious name, seg2. Maybe I'll come up with something more convincing in the future.


Oh, but wait, why were we assembling all the previous undecompilable ASM translation units in the 16-bit build part? By moving those to the 32-bit part, we don't even need a 16-bit TASM in our list of dependencies, as long as our build process is not fully 16-bit.
And with that, ReC98 now also builds on Windows 95, and thus, every 32-bit Windows version. 🎉 Which is certainly the most user-visible improvement in all of these two pushes. :onricdennat:


Back in 2015, I already decompiled all of TH02's seg2 functions. As suggested by the Borland compiler, I tried to follow a "one translation unit per segment" layout, bundling the binary-specific contents via #include. In the end, it required two translation units – and that was even after manually inserting the original padding bytes via #pragma codestring… yuck. But it worked, compiled, and kept the linker's job (and, by extension, segmentation worries) to a minimum. And as long as it all matched the original binaries, it still counted as a valid reconstruction of ZUN's code. :zunpet:

However, that idea ultimately falls apart once TH03 starts mixing undecompilable ASM code inbetween C functions. Now, we officially have no choice but to use multiple C and ASM translation units, with maybe only just one or two #includes in them…

…or we finally start reconstructing the actual seg2 library, turning every sequence of related functions into its own translation unit. This way, we can simply reuse the once-compiled .OBJ files for all the binaries those functions appear in, without requiring that additional layer of translation units mirroring the original segmentation.
The best example for this is TH03's almost undecompilable function that generates a lookup table for horizontally flipping 8 1bpp pixels. It's part of every binary since TH03, but only used in that game. With the previous approach, we would have had to add 9 C translation units, which would all have just #included that one file. Now, we simply put the .OBJ file into the correct place on the linker command line, as soon as we can.

💡 And suddenly, the linker just inserts the correct padding bytes itself.

The most immediate gains there also happened to come from TH03. Which is also where we did get some tiny RE% and PI% gains out of this after all, by reverse-engineering some of its sprite blitting setup code. Sure, I should have done even more RE here, to also cover those 5 functions at the end of code segment #2 in TH03's MAIN.EXE that were in front of a number of library functions I already covered in this push. But let's leave that to an actual RE push 😛


All in all though, I was just getting started with this; the real gains in terms of removed ASM files are still to come. But in the meantime, the funding situation has become even better in terms of allowing me to focus on things nobody asked for. 🙂 So here's a slightly better idea: Instead of spending two more pushes on this, let's shoot for TH05 MAINE.EXE position independence next. If I manage to get it done, we'll have a 100% position-independent TH05 by the time -Tom- finishes his MAIN.EXE PI demo, rather than the 94% we'd get from just MAIN.EXE. That's bound to make a much better impression on all the people who will then (re-)discover the project.

📝 Posted:
🚚 Summary of:
P0110
Commits:
2c7d86b...8b5c146
💰 Funded by:
[Anonymous], Blue Bolt
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ animation+ tcc+ shinki+ ex-alice+

… and just as I explained 📝 in the last post how decompilation is typically more sensible and efficient than ASM-level reverse-engineering, we have this push demonstrating a counter-example. The reason why the background particles and lines in the Shinki and EX-Alice battles contributed so much to position dependence was simply because they're accessed in a relatively large amount of functions, one for each different animation. Too many to spend the remaining precious crowdfunded time on reverse-engineering or even decompiling them all, especially now that everyone anticipates 100% PI for TH05's MAIN.EXE.

Therefore, I only decompiled the two functions of the line structure that also demonstrate best how it works, which in turn also helped with RE. Sadly, this revealed that we actually can't 📝 overload operator =() to get that nice assignment syntax for 12.4 fixed-point values, because one of those new functions relies on Turbo C++'s built-in optimizations for trivially copyable structures. Still, impressive that this abstraction caused no other issues for almost one year.

As for the structures themselves… nope, nothing to criticize this time! Sure, one good particle system would have been awesome, instead of having separate structures for the Stage 2 "starfield" particles and the one used in Shinki's battle, with hardcoded animations for both. But given the game's short development time, that was quite an acceptable compromise, I'd say.
And as for the lines, there just has to be a reason why the game reserves 20 lines per set, but only renders lines #0, #6, #12, and #18. We'll probably see once we get to look at those animation functions more closely.

This was quite a 📝 TH03-style RE push, which yielded way more PI% than RE%. But now that that's done, I can finally not get distracted by all that stuff when looking at the list of remaining memory references. Next up: The last few missing structures in TH05's MAIN.EXE!

📝 Posted:
🚚 Summary of:
P0076, P0077
Commits:
222fc99...9ae9754, 9ae9754...f4eb7a8
💰 Funded by:
[Anonymous], -Tom-, Splashman
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ resident+ gaiji+ tcc+

Well, that took twice as long as I thought, with the two pushes containing a lot more maintenance than actual new research. Spending some time improving both field names and types in 32th System's TH03 resident structure finally gives us all of those structures. Which means that we can now cover all the remaining decompilable ZUN.COM parts at once…

Oh wait, their main() functions have stayed largely identical since TH02? Time to clean up and separate that first, then… and combine two recent code generation observations into the solution to a decompilation puzzle from 4½ years ago. Alright, time to decomp-

Oh wait, we'd kinda like to properly RE all the code in TH03-TH05 that deals with loading and saving .CFG files. Almost every outside contributor wanted to grab this supposedly low-hanging fruit a lot earlier, but (of course) always just for a single game, while missing how the format evolved.

So, ZUN.COM. For some reason, people seem to consider it particularly important, even though it contains neither any game logic nor any code specific to PC-98 hardware… All that this decompilable part does is to initialize a game's .CFG file, allocate an empty resident structure using master.lib functions, release it after you quit the game, error-check all that, and print some playful messages~ (OK, TH05's also directly fills the resident structure with all data from MIKO.CFG, which all the other games do in OP.EXE.) At least modders can now freely change and extend all the resident structures, as well as the .CFG files? And translators can translate those messages that you won't see on a decently fast emulator anyway? Have fun, I guess 🤷‍

And you can in fact do this right now – even for TH04 and TH05, whose ZUN.COM currently isn't rebuilt by ReC98. There is actually a rather involved reason for this:

  • One of the missing files is TH05's GJINIT.COM.
  • Which contains all of TH05's gaiji characters in hardcoded 1bpp form, together with a bit of ASM for writing them to the PC-98's hardware gaiji RAM
  • Which means we'd ideally first like to have a sprite compiler, for all the hardcoded 1bpp sprites
  • Which must compile to an ASM slice in the meantime, but should also output directly to an OMF .OBJ file (for performance now), as well as to C code (for portability later)
  • The custom build system I've been using since mid-August has some declarations for OMF .OBJ files, but it needs maybe 1 or 2 more weeks of polish to be shipped
  • Which I won't put in as long as the backlog contains actual progress to drive up the percentages on the front page.

So yeah, no meaningful RE and PI progress at any of these levels. Heck, even as a modder, you can just replace the zun zun_res (TH02), zun -5 (TH03), or zun -s (TH04/TH05) calls in GAME.BAT with a direct call to your modified *RES*.COM. And with the alternative being "manually typing 0 and 1 bits into a text file", editing the sprites in TH05's GJINIT.COM is way more comfortable in a binary sprite editor anyway.

For me though, the best part in all of this was that it finally made sense to throw out the old Borland C++ run-time assembly slices 🗑 This giant waste of time became obvious 5 years ago, but any ASM dump of a .COM file would have needed rather ugly workarounds without those slices. Now that all .COM binaries that were originally written in C are compiled from C, we can all enjoy slightly faster grepping over the entire repository, which now has 229 fewer files. Productivity will skyrocket! :tannedcirno:

Next up: Three weeks of almost full-time ReC98 work! Two more PI-focused pushes to finish this TH05 stretch first, before switching priorities to TH01 again.

📝 Posted:
🚚 Summary of:
P0071
Commits:
327021b...4bb04ab
💰 Funded by:
KirbyComment, -Tom-
🏷 Tags:
rec98+ th03- gameplay+ player+

Turns out that covering TH03's 128-byte player structure was way more insightful than expected! And while it doesn't include every bit of per-player data, we still got to know quite a bit about the game from just trying to name its members:

  • 50 frames of invincibility when starting a new round
  • 110 frames of invincibility when getting hit
  • 64 frames of knockback when getting hit
  • 128 frames before a charged up gauge/boss attack is fired automatically
  • The damage a player will take from the next hit starts out at ½ heart at the beginning of each round, and increases by another ½ heart every 1024 frames, capped at a maximum of 3 hearts. This guarantees that a player will always survive at least two hits.
  • In Story Mode, hit damage is biased in favor of the player for the first 6 stages. The CPU will always take an additional 1½ hearts of damage in stages 1 and 2, 1 heart in stages 3 and 4, and ½ heart in stages 5 and 6, plus the above frame-based and capped damage amount. So while it's therefore possible to cause 4½ hearts of damage in Stages 1 and 2 if the first hit is somehow delayed for at least 5120 frames, you'd still win faster if the CPU gets hit as soon as possible.
  • CPU players will charge up a gauge/boss attack as soon as their gauge has reached a certain level. These levels are now proved to be random; at the start of every round, the game generates a sequence of 64 gauge level positions (from 1 to 4), separately for each player. If a round were to last long enough for a CPU player to fire all 64 of those predetermined attacks, you'd observe that sequence repeating.
    • Yes, that means that in theory, these levels can be RNG-manipulated. More details on that once we got this game's resident structure, where the seed is stored.
  • CPU players follow two main strategies: trying to not get hit, and… not quite doing that once they've survived for a certain safety threshold of frames. For the first 2000 frames of a round, this safety frame counter is reset to 0 every 64 frames, leading the CPU to switch quickly between the two strategies in the first few Story Mode stages on lower difficulties, where this safety threshold is less than 64. The calculation of the actual value is a bit more complex; more on that also once we got this game's resident structure.
  • Section 13 of 夢時空.TXT states that Boss Attacks are only counted towards the Clear Bonus if they were caused by reaching a certain number of spell points. This is incorrect; manually charged Level 4 Boss Attacks are counted as well.

The next TH03 pushes can now cover all the functions that reference this structure in one way or another, and actually commit all this research and translate it into some RE%. Since the non-TH05 priorities have become a bit unclear after the last 50 € RE contribution though (as of this writing, it's still 10 € to decide on what game to cover in two RE pushes!), I'll be returning to TH05 until that's decided.

📝 Posted:
🚚 Summary of:
P0070
Commits:
a931758...327021b
💰 Funded by:
KirbyComment
🏷 Tags:
rec98+ th03- gameplay+ score+

As noted in 📝 P0061, TH03 gameplay RE is indeed going to progress very slowly in the beginning. A lot of the initial progress won't even be reflected in the RE% – there are just so many features in this game that are intertwined into each other, and I only consider functions to be "reverse-engineered" once we understand every involved piece of code and data, and labeled every absolute memory reference in it. (Yes, that means that the percentages on the front page are actually underselling ReC98's progress quite a bit, and reflect a pretty low bound of our actual understanding of the games.)

So, when I get asked to look directly at gameplay code right now, it's quite the struggle to find a place that can be covered within a push or two and that would immediately benefit scoreplayers. The basics of score and combo handling themselves managed to fit in pretty well, though:

  • Just like TH04 and TH05, TH03 stores the current score as 8 binary-coded decimal digits. Since the last constant 0 is not included, the maximum score displayable without glitches therefore is 999,999,990 points, but the game will happily store up to 24,699,999,990 points before the score wraps back to 0.
  • There are (surprisingly?) only 6 places where the game actually adds points to the score. Not quite sure about all of them yet, but they (of course) include ending a combo, killing enemies, and the bonus at the end of a round.
  • Combos can be continued for 80 frames after a 2-hit. The hit counter can only be increased in the first 48, and effectively resets to 0 for the last 32, when the Spell Point value starts blinking.
  • TH03 can track a total of 16 independent "hit combo sources" per player, simultaneously. These are not related to the number of actual explosions; rather, each explosion is assigned to one of the 16 slots when it spawns, and all consecutive explosions spawned from that one will then add to the hit combo in that slot. The hit number displayed in the top left is simply the largest one among all these.

Oh well, at least we still got a bit of PI% out of this one. From this point though, the next push (or two) should be enough to cover the big 128-byte player structure – which by itself might not be immediately interesting to scoreplayers, but surely is quite a blocker for everything else.

📝 Posted:
🚚 Summary of:
P0065
Commits:
9faa29a...042b780
💰 Funded by:
Touhou Patch Center
🏷 Tags:
rec98+ th03- th04+ th05+ resident+

A~nd resident structures ended up being exactly the right thing to start off the new year with. WindowsTiger and spaztron64 have already been pushing for them with their own reverse-engineering, and together with my own recent GENSOU.SCR RE work, we've clarified just enough context around the harder-to-explain values to make both TH04's and TH05's structures fit nicely into the typical time frame of a single push.

With all the apparently obvious and seemingly just duplicated values, it has always been easy to do a superficial job for most of the structure, then lose motivation for the last few unknown fields. Pretty glad to got this finally covered; I've heard that people are going to write trainer tools now?

Also, where better to slot in a push that, in terms of figures, seems to deliver 0% RE and only miniscule PI progress, than at the end of Touhou Patch Center's 5-push order that already had multiple pushes yielding above-average progress? :onricdennat: As usual, we'll be reaping the rewards of this work in the next few TH04/TH05 pushes…

…whenever they get funded, that is, as for January, the backers have shifted the priorities towards TH01 and TH03. TH01 especially is something I'm quite excited about, as we're finally going to see just how fast this bloated game is really going to progress. Are you excited?

📝 Posted:
🚚 Summary of:
P0064
Commits:
80cec5b...9faa29a
💰 Funded by:
Touhou Patch Center
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ menu+ position-independence+

🎉 TH04's and TH05's OP.EXE are now fully position-independent! 🎉

What does this mean?

You can now add any data or code to the main menus of the two games, by simply editing the ReC98 source, writing your mod in ASM or C/C++, and recompiling the code. Since all absolute memory addresses have now been converted to labels, this will work without causing any instability. See the position independence section in the FAQ for a more thorough explanation about why this was a problem.

What does this not mean?

The original ZUN code hasn't been completely reverse-engineered yet, let alone decompiled. Pretty much all of that is still ASM, which might make modding a bit inconvenient right now.

Since this push was otherwise pretty unremarkable, I made a video demonstrating a few basic things you can do with this:

Now, what to do for the last outstanding Touhou Patch Center push? Bullets, or resident structures? :thonk:

📝 Posted:
🚚 Summary of:
P0061
Commits:
96684f4...5f4f5d8
💰 Funded by:
Touhou Patch Center
🏷 Tags:
rec98+ th03- gameplay+ player+ shot+ animation+

… nope, with a game whose MAIN.EXE is still just 5% reverse-engineered and which naturally makes heavy use of structures, there's still a lot more PI groundwork to be done before RE progress can speed up to the levels that we've now reached with TH05. The good news is that this game is (now) way easier to understand: In contrast to TH04 and TH05, where we needed to work towards player shots over a two-digit number of pushes, TH03 only needed two for SPRITE16, and a half one for the playfield shaking mechanism. After that, I could even already decompile the per-frame shot update and render functions, thanks to TH03's high number of code segments. Now, even the big 128-byte player structure doesn't seem all too far off.

Then again, as TH03 shares no code with any other game, this actually was a completely average PI push. For the remaining three, we'll return to TH04 and TH05 though, which should more than make up for the slight drop in RE speed after this one.

In other news, we've now also reached peak C++, with the introduction of templates! TH03 stores movement speeds in a 4.4 fixed-point format, which is an 8-bit spin on the usual 16-bit, 12.4 fixed-point format.

📝 Posted:
🚚 Summary of:
P0060
Commits:
29385dd...73f5ae7
💰 Funded by:
Touhou Patch Center
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ blitting+ micro-optimization+ waste+

So, where to start? Well, TH04 bullets are hard, so let's procrastinate start with TH03 instead :tannedcirno: The 📝 sprite display functions are the obvious blocker for any structure describing a sprite, and therefore most meaningful PI gains in that game… and I actually did manage to fit a decompilation of those three functions into exactly the amount of time that the Touhou Patch Center community votes alloted to TH03 reverse-engineering!

And a pretty amazing one at that. The original code was so obviously written in ASM and was just barely decompilable by exclusively using register pseudovariables and a bit of goto, but I was able to abstract most of that away, not least thanks to a few helpful optimization properties of Turbo C++… seriously, I can't stop marveling at this ancient compiler. The end result is both readable, clear, and dare I say portable?! To anyone interested in porting TH03, take a look. How painful would it be to port that away from 16-bit x86?

However, this push is also a typical example that the RE/PI priorities can only control what I look at, and the outcome can actually differ greatly. Even though the priorities were 65% RE and 35% PI, the progress outcome was +0.13% RE and +1.35% PI. But hey, we've got one more push with a focus on TH03 PI, so maybe that one will include more RE than PI, and then everything will end up just as ordered? :onricdennat:

📝 Posted:
🚚 Summary of:
P0056
Commits:
b28cefc...c09446a
💰 Funded by:
rosenrose, [Anonymous]
🏷 Tags:
rec98+ th03- thief+

No priorities, again…?! Please don't do this to me… 😕

Well, let's not continue with TH05 then 😛 And instead use the occasion to commit this interesting discovery, made by @m1yur1 last year. Yup, TH03's "ZUNSP" sprite driver is actually a "rebranded" version of Promisence Soft's SPRITE16.COM. Sure, you were allowed to use this driver in your own game, but replacing the copyright with your own isn't exactly the nicest thing to do… That now makes three library programmers that ZUN didn't credit. Makes me wonder what makes M. Kajihara so special. Probably the fact that Touhou has always been about the music for ZUN, first and foremost.

But what makes this more than a piece of trivia is the fact that Promiscence Soft's SPRITE16 sample game StormySpace was bundled with documentation on the driver. Shoutout to the Neo Kobe PC-98 collection for preserving he original release!

That means more documented third-party code that we don't necessarily have to reverse-engineer, just like master.lib or KAJA's PMD driver. However, the PC-98 EGC is rather complex and definitely not designed for alpha-tested 16-color sprite blitting. So it (once again) took quite a while to make sense of SPRITE16's code and the available documentation on the EGC, to come up with satisfying function names. As a result, I'm going to distribute the entire RE work related to TH03's SPRITE16 interface across a total of three pushes, this one being the first of them.

  • The second one will reverse-engineer the SPRITE16 code reachable from its interrupt handler, and also come with somewhat detailed English documentation on the PC-98 EGC raster ops in particular,
  • and the third one will cover TH03's sprite drawing functions, which look pretty undecompilable once again… (Update: 📝 Delivered and actually decompiled in P0060)

Next up, we do have more TH05 progress though, now for the first time specifically with position independence in mind. Pretty excited for this one!

📝 Posted:
🚚 Summary of:
P0051, P0052, P0053
Commits:
6ed8e60...3ba536a
💰 Funded by:
-Tom-
🏷 Tags:
rec98+ th03- th04+ th05+ animation+ micro-optimization+ hud+

Boss explosions! And… urgh, I really also had to wade through that overly complicated HUD rendering code. Even though I had to pick -Tom-'s 7th push here as well, the worst of that is still to come. TH04 and TH05 exclusively store the current and high score internally as unpacked little-endian BCD, with some pretty dense ASM code involving the venerable x86 BCD instructions to update it.

So, what's actually the goal here. Since I was given no priorities :onricdennat:, I still haven't had to (potentially) waste time researching whether we really can decompile from anywhere else inside a segment other than backwards from the end. So, the most efficient place for decompilation right now still is the end of TH05's main_01_TEXT segment. With maybe 1 or 2 more reverse-engineering commits, we'd have everything for an efficient decompilation up to sub_123AD. And that mass of code just happens to include all the shot type control functions, and makes up 3,007 instructions in total, or 12% of the entire remaining unknown code in MAIN.EXE.

So, the most reasonable thing would be to actually put some of the upcoming decompilation pushes towards reverse-engineering that missing part. I don't think that's a bad deal since it will allow us to mod TH05 shot types in C sooner, but zorg and qp might disagree :thonk:

Next up: thcrap TL notes, followed by finally finishing GhostPhanom's old ReC98 future-proofing pushes. I really don't want to decompile without a proper build system.

📝 Posted:
🚚 Summary of:
P0043, P0044, P0045
Commits:
261d503...612beb8
💰 Funded by:
-Tom-
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ pc98+ blitting+ uth05win+

Turns out I had only been about half done with the drawing routines. The rest was all related to redrawing the scrolling stage backgrounds after other sprites were drawn on top. Since the PC-98 does have hardware-accelerated scrolling, but no hardware-accelerated sprites, everything that draws animated sprites into a scrolling VRAM must then also make sure that the background tiles covered by the sprite are redrawn in the next frame, which required a bit of ZUN code. And that are the functions that have been in the way of the expected rapid reverse-engineering progress that uth05win was supposed to bring. So, looks like everything's going to go really fast now?

📝 Posted:
🚚 Summary of:
P0025, P0026, P0027
Commits:
0cde4b7...261d503
💰 Funded by:
zorg
🏷 Tags:
rec98+ th02+ th03- th04+ th05+ pc98+ blitting+ file-format+ mod+

… yeah, no, we won't get very far without figuring out these drawing routines.
Which process data that comes from the .STD files. Which has various arrays related to the background… including one to specify the scrolling speed. And wait, setting that to 0 actually is what starts a boss battle?

So, have a TH05 Boss Rush patch: 2018-12-26-TH05BossRush.zip Theoretically, this should have also worked for TH04, but for some reason, the Stage 3 boss gets stuck on the first phase if we do this?

Here's the diff for the Boss Rush. Turning it into a thcrap-style Skipgame patch is left as an exercise for the reader.

📝 Posted:
🚚 Summary of:
P0009
Commits:
79cc3ed...141baa4
💰 Funded by:
DTM
🏷 Tags:
rec98+ th03- th04+ th05+ file-format+

While we're waiting for Bruno to release the next thcrap build with ANM header patching, here are the resulting commits of the ReC98 CDG/CD2 special offer purchased by DTM, reverse-engineering all code that covers these formats.

📝 Posted:
🚚 Summary of:
P0019, P0020, P0021, P0022
Commits:
c592464, cbe8a37, 8dfc2cd, 79cc3ed
💰 Funded by:
zorg
🏷 Tags:
rec98+ th03- th04+ th05+ pc98+ input+
> OK, let's do a quick ReC98 update before going back to thcrap, shouldn't take long > Hm, all that input code is kind of in the way, would be nice to cover that first to ease comparisons with uth05win's source code > What the hell, why does ZUN do this? Need to do more research > … > OK, research done, wait, what are those other functions doing? > Wha, everything about this is just ever so slightly awkward

Which ended up turning this one update into 2/10, 3/10, 4/10 and 5/10 of zorg's reverse-engineering commits. But at least we now got all shared input functions of TH02-TH05 covered and well understood.