Turns out I was not quite done with the TH01 Anniversary Edition yet.
You might have noticed some white streaks at the beginning of Sariel's
second form, which are in fact a bug that I accidentally added to the
initial release.
These can be traced back to a quirk
I wasn't aware of, and hadn't documented so far. When defeating Sariel's
first form during a pattern that spawns pellets, it's likely for the second
form to start with additional pellets that resemble the previous pattern,
but come out of seemingly nowhere. This shouldn't really happen if you look
at the code: Nothing outside the typical pattern code spawns new pellets,
and all existing ones are reset before the form transition…
Except if they're currently showing the 10-frame delay cloud
animation , activated for all pellets during the symmetrical radial 2-ring
pattern in Phase 2 and left activated for the rest of the fight. These
pellets will continue their animation after the transition to the second
form, and turn into regular pellets you have to dodge once their animation
completed.
By itself, this is just one more quirk to keep in mind during refactoring.
It only turned into a bug in the Anniversary Edition because the game tracks
the number of living pellets in a separate counter variable. After resetting
all pellets, this counter is simply set to 0, regardless of any delay cloud
pellets that may still be alive, and it's merely incremented or decremented
when pellets are spawned or leave the playfield.
In the original game, this counter is only used as an optimization to skip
spawning new pellets once the cap is reached. But with batched
EGC-accelerated unblitting, it also makes sense to skip the rather costly
setup and shutdown of the EGC if no pellets are active anyway. Except if the
counter you use to check for that case can be 0 even if there are
pellets alive, which consequently don't get unblitted…
There is an optimal fix though: Instead of unconditionally resetting the
living pellet counter to 0, we decrement it for every pellet that
does get reset. This preserves the quirk and gives us a
consistently correct counter, allowing us to still skip every unnecessary
loop over the pellet array.
Cutting out the lengthy defeat animation makes it easier to see where the
additional pellets come from.
Cutting out the lengthy defeat animation makes it easier to see where the
additional pellets come from. Also, note how regular unblitting resumes
once the first pellet gets clipped at the top of the playfield – the
living pellet counter then gets decremented to -1, and who uses
<= rather than == on a seemingly unsigned
counter, right?
Cutting out the lengthy defeat animation makes it easier to see where the
additional pellets come from.
Ultimately, this was a harmless bug that didn't affect gameplay, but it's
still something that players would have probably reported a few more times.
So here's a free bugfix:
Starting the year with a delivery that wasn't delayed until the last
day of the month for once, nice! Still, very soon and
high-maintenance did not go well together…
It definitely wasn't Sara's fault though. As you would expect from a Stage 1
Boss, her code was no challenge at all. Most of the TH02, TH04, and TH05
bosses follow the same overall structure, so let's introduce a new table to
replace most of the boilerplate overview text:
Phase #
Patterns
HP boundary
Timeout condition
(Entrance)
4,650
288 frames
2
4
2,550
2,568 frames
(= 32 patterns)
3
4
450
5,296 frames
(= 24 patterns)
4
1
0
1,300 frames
Total
9
9,452 frames
In Phases 2 and 3, Sara cycles between waiting, moving randomly for a
fixed 28 frames, and firing a random pattern among the 4 phase-specific
ones. The pattern selection makes sure to never
pick any pattern twice in a row. Both phases contain spiral patterns that
only differ in the clockwise or counterclockwise turning direction of the
spawner; these directions are treated as individual unrelated patterns, so
it's possible for the "same" pattern to be fired multiple times in a row
with a flipped direction.
The two phases also differ in the wait and pattern durations:
In Phase 2, the wait time starts at 64 frames and decreases by 12
frames after the first 5 patterns each, ending on a minimum of 4 frames.
In Phase 3, it's a constant 16 frames instead.
All Phase 2 patterns are fired for 28 frames, after a 16-frame
gather animation. The Phase 3 pattern time starts at 80 frames and
increases by 24 frames for the first 6 patterns, ending at 200 frames
for all later ones.
Phase 4 consists of the single laser corridor pattern with additional
random bullets every 16 frames.
And that's all the gameplay-relevant detail that ZUN put
into Sara's code. It doesn't even make sense to describe the remaining
patterns in depth, as their groups can significantly change between
difficulties and rank values. The
📝 general code structure of TH05 bosses
won't ever make for good-code, but Sara's code is just a
lesser example of what I already documented for Shinki.
So, no bugs, no unused content, only inconsequential bloat to be found here,
and less than 1 push to get it done… That makes 9 PC-98 Touhou bosses
decompiled, with 22 to go, and gets us over the sweet 50% overall
finalization mark! 🎉 And sure, it might be possible to pass through the
lasers in Sara's final pattern, but the boss script just controls the
origin, angle, and activity of lasers, so any quirk there would be part of
the laser code… wait, you can do what?!?
TH05 expands TH04's one-off code for Yuuka's Master and Double Sparks into a
more featureful laser system, and Sara is the first boss to show it off.
Thus, it made sense to look at it again in more detail and finalize the code
I had purportedly
📝 reverse-engineered over 4 years ago.
That very short delivery notice already hinted at a very time-consuming
future finalization of this code, and that prediction certainly came true.
On the surface, all of the low-level laser ray rendering and
collision detection code is undecompilable: It uses the SI and
DI registers without Turbo C++'s safety backups on the stack,
and its helper functions take their input and output parameters from
convenient registers, completely ignoring common calling conventions. And
just to raise the confusion even further, the code doesn't just set
these registers for the helper function calls and then restores their
original values, but permanently shifts them via additions and
subtractions. Unfortunately, these convenient registers also include the
BP base pointer to the stack frame of a function… and shifting
that register throws any intuition behind accessed local variables right out
of the window for a good part of the function, requiring a correctly shifted
view of the stack frame just to make sense of it again.
How could such code even have been written?! This
goes well beyond the already wrong assumption that using more stack space is
somehow bad, and straight into the territory of self-inflicted pain.
So while it's not a lot of instructions, it's quite dense and really hard to
follow. This code would really benefit from a decompilation that
anchors all this madness as much as possible in existing C++ structures… so
let's decompile it anyway?
Doing so would involve emitting lots of raw machine code bytes to hide the
SI and DI registers from the compiler, but I
already had a certain
📝 batshit insane compiler bug workaround abstraction
lying around that could make such code more readable. Hilariously, it only
took this one additional use case for that abstraction to reveal itself as
premature and way too complicated. Expanding
the core idea into a full-on x86 instruction generator ended up simplifying
the code structure a lot. All we really want there is a way to set all
potential parameters to e.g. a specific form of the MOV
instruction, which can all be expressed as the parameters to a force-inlined
__emit__() function. Type safety can help by providing
overloads for different operand widths here, but there really is no need for
classes, templates, or explicit specialization of templates based on
classes. We only need a couple of enums with opcode, register,
and prefix constants from the x86 reference documentation, and a set of
associated macros that token-paste pseudoregisters onto the prefixes of
these enum constants.
And that's how you get a custom compile-time assembler in a 1994 C++
compiler and expand the limits of decompilability even further. What's even
truly left now? Self-modifying code, layout tricks that can't be replicated
with regularly structured control flow… and that's it. That leaves quite a
few functions I previously considered undecompilable to be revisited once I
get to work on making this game more portable.
With that, we've turned the low-level laser code into the expected horrible
monstrosity that exposes all the hidden complexity in those few ASM
instructions. The high-level part should be no big deal now… except that
we're immediately bombarded with Fixup overflow errors at link
time? Oh well, time to finally learn the true way of fixing this highly
annoying issue in a second new piece of decompilation tech – and one
that might actually be useful for other x86 Real Mode retro developers at
that.
Earlier in the RE history of TH04 and TH05, I often wrote about the need to
split the two original code segments into multiple segments within two
groups, which makes it possible to slot in code from different
translation units at arbitrary places within the original segment. If we
don't want to define a unique segment name for each of these slotted-in
translation units, we need a way to set custom segment and group names in C
land. Turbo C++ offers two #pragmas for that:
#pragma option -zCsegment -zPgroup – preferred in most
cases as it's equivalent to setting the default segment and group via the
command line, but can only be used at the beginning of a translation unit,
before the first non-preprocessor and non-comment C language token
#pragma codeseg segment <group> – necessary if a
translation unit needs to emit code into two or more segments
For the most part, these #pragmas work well, but they seemed to
not help much when it came to calling near functions declared
in different segments within the same group. It took a bit of trial and
error to figure out what was actually going on in that case, but there
is a clear logic to it:
Symbols are allocated to the segment and group that's active during
their first appearance, no matter whether that appearance is a declaration
or definition. Any later appearance of the function in a different segment
is ignored.
The linker calculates the 16-bit offsets of such references relative to
the symbol's declared segment, not its actual one. Turbo C++ does
not show an error or warning if the declared and actual segments are
different, as referencing the same symbol from multiple segments is a valid
use case. The linker merely throws the Fixup overflow error if
the calculated distance exceeds 64 KiB and thus couldn't possibly fit
within a near reference. With a wrong segment declaration
though, your code can be incorrect long before a fixup hits that limit.
Summarized in code:
#pragma option -zCfoo_TEXT -zPfoo
void bar(void);
void near qux(void); // defined somewhere else, maybe in a different segment
#pragma codeseg baz_TEXT baz
// Despite the segment change in the line above, this function will still be
// put into `foo_TEXT`, the active segment during the first appearance of the
// function name.
void bar(void) {
}
// This function hasn't been declared yet, so it will go into `baz_TEXT` as
// expected.
void baz(void) {
// This `near` function pointer will be calculated by subtracting the
// flat/linear address of qux() inside the binary from the base address
// of qux()'s declared segment, i.e., `foo_TEXT`.
void (near *ptr_to_qux)(void) = qux;
}
So yeah, you might have to put #pragma codeseg into your
headers to tell the linker about the correct segment of a
near function in advance. 🤯 This is an important insight for
everyone using this compiler, and I'm shocked that none of the Borland C++
books documented the interaction of code segment definitions and
near references at least at this level of clarity. The TASM
manuals did have a few pages on the topic of groups, but that syntax
obviously doesn't apply to a C compiler. Fixup overflows in particular are
such a common error and really deserved better than the unhelpful 🤷
of an explanation that ended up in the User's Guide. Maybe this whole
technique of custom code segment names was considered arcane even by 1993,
judging from the mere three sentences that #pragma codeseg was
documented with? Still, it must have been common knowledge among Amusement
Makers, because they couldn't have built these exact binaries without
knowing about these details. This is the true solution to
📝 any issues involving references to near functions,
and I'm glad to see that ZUN did not in fact lie to the compiler. 👍
OK, but now the remaining laser code compiles, and we get to write
C++ code to draw some hitboxes during the two collision-detected states of
each laser. These confirm what the low-level code from earlier already
uncovered: Collision detection against lasers is done by testing a
12×12-pixel box at every 16 pixels along the length of a laser, which leaves
obvious 4-pixel gaps at regular intervals that the player can just pass
through. This adds
📝 yet📝 another📝 quirk to the growing list of quirks that
were either intentional or must have been deliberately left in the game
after their initial discovery. This is what constants were invented for, and
there really is no excuse for not using them – especially during
intoxicated coding, and/or if you don't have a compile-time abstraction for
Q12.4 literals.
When detecting laser collisions, the game checks the player's single
center coordinate against any of the aforementioned 12×12-pixel boxes.
Therefore, it's correct to split these 12×12 pixels into two 6×6-pixel
boxes and assign the other half to the player for a more natural
visualization. Always remember that hitbox visualizations need to keep
all colliding entities in mind –
📝 assigning a constant-sized hitbox to "the player" and "the bullets" will be wrong in most other cases.
Using subpixel coordinates in collision detection also introduces a slight
inaccuracy into any hitbox visualization recorded in-engine on a 16-color
PC-98. Since we have to render discrete pixels, we cannot exactly place a
Q12.4 coordinate in the 93.75% of cases where the fractional part is
non-zero. This is why pretty much every laser segment hitbox in the video
above shows up as 7×7 rather than 6×6: The actual W×H area of each box is 13
pixels smaller, but since the hitbox lies between these pixels, we
cannot indicate where it lies exactly, and have to err on the
side of caution. It's also why Reimu's box slightly changes size as she
moves: Her non-diagonal movement speed is 3.5 pixels per frame, and the
constant focused movement in the video above halves that to 1.75 pixels,
making her end up on an exact pixel every 4 frames. Looking forward to the
glorious future of displays that will allow us to scale up the playfield to
16× its original pixel size, thus rendering the game at its exact internal
resolution of 6144×5888 pixels. Such a port would definitely add a lot of
value to the game…
The remaining high-level laser code is rather unremarkable for the most
part, but raises one final interesting question: With no explicitly defined
limit, how wide can a laser be? Looking at the laser structure's 1-byte
width field and the unsigned comparisons all throughout the update and
rendering code, the answer seems to be an obvious 255 pixels. However, the
laser system also contains an automated shrinking state, which can be most
notably seen in Mai's wheel pattern. This state shrinks a laser by 2 pixels
every 2 frames until it reached a width of 0. This presents a problem with
odd widths, which would fall below 0 and overflow back to 255 due to the
unsigned nature of this variable. So rather than, I don't know, treating
width values of 0 as invalid and stopping at a width of 1, or even adding a
condition for that specific case, the code just performs a signed
comparison, effectively limiting the width of a shrinkable laser to a
maximum of 127 pixels. This small signedness
inconsistency now forces the distinction between shrinkable and
non-shrinkable lasers onto every single piece of code that uses lasers. Yet
another instance where
📝 aiming for a cinematic 30 FPS look
made the resulting code much more complicated than if ZUN had just evenly
spread out the subtraction across 2 frames. 🤷
Oh well, it's not as if any of the fixed lasers in the original scripts came
close to any of these limits. Moving lasers are much more streamlined and
limited to begin with: Since they're hardcoded to 6 pixels, the game can
safely assume that they're always thinner than the 28 pixels they get
gradually widened to during their decay animation.
Finally, in case you were missing a mention of hitboxes in the previous
paragraph: Yes, the game always uses the aforementioned 12×12 boxes,
regardless of a laser's width.
This video also showcases the 127-pixel limit because I wanted
to include the shrink animation for a seamless loop.
That was what, 50% of this blog post just being about complications that
made laser difficult for no reason? Next up: The first TH01 Anniversary
Edition build, where I finally get to reap the rewards of having a 100%
decompiled game and write some good code for once.
More than three months without any reverse-engineering progress! It's been
way too long. Coincidentally, we're at least back with a surprising 1.25% of
overall RE, achieved within just 3 pushes. The ending script system is not
only more or less the same in TH04 and TH05, but actually originated in
TH03, where it's also used for the cutscenes before stages 8 and 9. This
means that it was one of the final pieces of code shared between three of
the four remaining games, which I got to decompile at roughly 3× the usual
speed, or ⅓ of the price.
The only other bargains of this nature remain in OP.EXE. The
Music Room is largely equivalent in all three remaining games as well, and
the sound device selection, ZUN Soft logo screens, and main/option menus are
the same in TH04 and TH05. A lot of that code is in the "technically RE'd
but not yet decompiled" ASM form though, so it would shift Finalized% more
significantly than RE%. Therefore, make sure to order the new
Finalization option rather than Reverse-engineering if you
want to make number go up.
So, cutscenes. On the surface, the .TXT files look simple enough: You
directly write the text that should appear on the screen into the file
without any special markup, and add commands to define visuals, music, and
other effects at any place within the script. Let's start with the basics of
how text is rendered, which are the same in all three games:
First off, the text area has a size of 480×64 pixels. This means that it
does not correspond to the tiled area painted into TH05's
EDBK?.PI images:
The yellow area is designated for character names.
Since the font weight can be customized, all text is rendered to VRAM.
This also includes gaiji, despite them ignoring the font weight
setting.
The system supports automatic line breaks on a per-glyph basis, which
move the text cursor to the beginning of the red text area. This might seem like a piece of long-forgotten
ancient wisdom at first, considering the absence of automatic line breaks in
Windows Touhou. However, ZUN probably implemented it more out of pure
necessity: Text in VRAM needs to be unblitted when starting a new box, which
is way more straightforward and performant if you only need to worry
about a fixed area.
The system also automatically starts a new (key press-separated) text
box after the end of the 4th line. However, the text cursor is
also unconditionally moved to the top-left corner of the yellow name
area when this happens, which is almost certainly not what you expect, given
that automatic line breaks stay within the red area. A script author might
as well add the necessary text box change commands manually, if you're
forced to anticipate the automatic ones anyway…
Due to ZUN forgetting an unblitting call during the TH05 refactoring of the
box background buffer, this feature is even completely broken in that game,
as any new text will simply be blitted on top of the old one:
Wait, why are we already talking about game-specific differences after
all? Also, note how the ⏎ animation appears one line below where you'd
expect it.
Overall, the system is geared toward exclusively full-width text. As
exemplified by the 2014 static English patches and the screenshots in this
blog post, half-width text is possible, but comes with a lot of
asterisks attached:
Each loop of the script interpreter starts by looking at the next
byte to distinguish commands from text. However, this step also skips
over every ASCII space and control character, i.e., every byte
≤ 32. If you only intend to display full-width glyphs anyway, this
sort of makes sense: You gain complete freedom when it comes to the
physical layout of these script files, and it especially allows commands
to be freely separated with spaces and line breaks for improved
readability. Still, enforcing commands to be separated exclusively by
line breaks might have been even better for readability, and would have
freed up ASCII spaces for regular text…
Non-command text is blindly processed and rendered two bytes at a
time. The rendering function interprets these bytes as a Shift-JIS
string, so you can use half-width characters here. While the
second byte can even be an ASCII 0x20 space due to the
parser's blindness, all half-width characters must still occur in pairs
that can't be interrupted by commands:
As a workaround for at least the ASCII space issue, you can replace
them with any of the unassigned
Shift-JIS lead bytes – 0x80, 0xA0, or
anything between 0xF0 and 0xFF inclusive.
That's what you see in all screenshots of this post that display
half-width spaces.
Finally, did you know that you can hold ESC to fast-forward
through these cutscenes, which skips most frame delays and reduces the rest?
Due to the blocking nature of all commands, the ESC key state is
only updated between commands or 2-byte text groups though, so it can't
interrupt an ongoing delay.
Superficially, the list of game-specific differences doesn't look too long,
and can be summarized in a rather short table:
It's when you get into the implementation that the combined three systems
reveal themselves as a giant mess, with more like 56 differences between the
games. Every single new weird line of code opened up
another can of worms, which ultimately made all of this end up with 24
pieces of bloat and 14 bugs. The worst of these should be quite interesting
for the general PC-98 homebrew developers among my audience:
The final official 0.23 release of master.lib has a bug in
graph_gaiji_put*(). To calculate the JIS X 0208 code point for
a gaiji, it is enough to ADD 5680h onto the gaiji ID. However,
these functions accidentally use ADC instead, which incorrectly
adds the x86 carry flag on top, causing weird off-by-one errors based on the
previous program state. ZUN did fix this bug directly inside master.lib for
TH04 and TH05, but still needed to work around it in TH03 by subtracting 1
from the intended gaiji ID. Anyone up for maintaining a bug-fixed master.lib
repository?
The worst piece of bloat comes from TH03 and TH04 needlessly
switching the visibility of VRAM pages while blitting a new 320×200 picture.
This makes it much harder to understand the code, as the mere existence of
these page switches is enough to suggest a more complex interplay between
the two VRAM pages which doesn't actually exist. Outside this visibility
switch, page 0 is always supposed to be shown, and page 1 is always used
for temporarily storing pixels that are later crossfaded onto page 0. This
is also the only reason why TH03 has to render text and gaiji onto both VRAM
pages to begin with… and because TH04 doesn't, changing the picture in the
middle of a string of text is technically bugged in that game, even though
you only get to temporarily see the new text on very underclocked PC-98
systems.
These performance implications made me wonder why cutscenes even bother with
writing to the second VRAM page anyway, before copying each crossfade step
to the visible one.
📝 We learned in June how costly EGC-"accelerated" inter-page copies are;
shouldn't it be faster to just blit the image once rather than twice?
Well, master.lib decodes .PI images into a packed-pixel format, and
unpacking such a representation into bitplanes on the fly is just about the
worst way of blitting you could possibly imagine on a PC-98. EGC inter-page
copies are already fairly disappointing at 42 cycles for every 16 pixels, if
we look at the i486 and ignore VRAM latencies. But under the same
conditions, packed-pixel unpacking comes in at 81 cycles for every 8
pixels, or almost 4× slower. On lower-end systems, that can easily sum up to
more than one frame for a 320×200 image. While I'd argue that the resulting
tearing could have been an acceptable part of the transition between two
images, it's understandable why you'd want to avoid it in favor of the
pure effect on a slower framerate.
Really makes me wonder why master.lib didn't just directly decode .PI images
into bitplanes. The performance impact on load times should have been
negligible? It's such a good format for
the often dithered 16-color artwork you typically see on PC-98, and
deserves better than master.lib's implementation which is both slow to
decode and slow to blit.
That brings us to the individual script commands… and yes, I'm going to
document every single one of them. Some of their interactions and edge cases
are not clear at all from just looking at the code.
Almost all commands are preceded by… well, a 0x5C lead byte.
Which raises the question of whether we should
document it as an ASCII-encoded \ backslash, or a Shift-JIS-encoded
¥ yen sign. From a gaijin perspective, it seems obvious that it's a
backslash, as it's consistently displayed as one in most of the editors you
would actually use nowadays. But interestingly, iconv
-f shift-jis -t utf-8 does convert any 0x5C
lead bytes to actual ¥ U+00A5 YEN SIGN code points
.
Ultimately, the distinction comes down to the font. There are fonts
that still render 0x5C as ¥, but mainly do so out
of an obvious concern about backward compatibility to JIS X 0201, where this
mapping originated. Unsurprisingly, this group includes MS Gothic/Mincho,
the old Japanese fonts from Windows 3.1, but even Meiryo and Yu
Gothic/Mincho, Microsoft's modern Japanese fonts. Meanwhile, pretty much
every other modern font, and freely licensed ones in particular, render this
code point as \, even if you set your editor to Shift-JIS. And
while ZUN most definitely saw it as a ¥, documenting this code
point as \ is less ambiguous in the long run. It can only
possibly correspond to one specific code point in either Shift-JIS or UTF-8,
and will remain correct even if we later mod the cutscene system to support
full-blown Unicode.
Now we've only got to clarify the parameter syntax, and then we can look at
the big table of commands:
Numeric parameters are read as sequences of up to 3 ASCII digits. This
limits them to a range from 0 to 999 inclusive, with 000 and
0 being equivalent. Because there's no further sentinel
character, any further digit from the 4th one onwards is
interpreted as regular text.
Filename parameters must be terminated with a space or newline and are
limited to 12 characters, which translates to 8.3 basenames without any
directory component. Any further characters are ignored and displayed as
text as well.
Each .PI image can contain up to four 320×200 pictures ("quarters") for
the cutscene picture area. In the script commands, they are numbered like
this:
0
1
2
3
\@
Clears both VRAM pages by filling them with VRAM color 0. 🐞
In TH03 and TH04, this command does not update the internal text area
background used for unblitting. This bug effectively restricts usage of
this command to either the beginning of a script (before the first
background image is shown) or its end (after no more new text boxes are
started). See the image below for an
example of using it anywhere else.
\b2
Sets the font weight to a value between 0 (raw font ROM glyphs) to 3
(very thicc). Specifying any other value has no effect.
🐞 In TH04 and TH05, \b3 leads to glitched pixels when
rendering half-width glyphs due to a bug in the newly micro-optimized
ASM version of
📝 graph_putsa_fx(); see the image below for an example.
In these games, the parameter also directly corresponds to the
graph_putsa_fx() effect function, removing the sanity check
that was present in TH03. In exchange, you can also access the four
dissolve masks for the bold font (\b2) by specifying a
parameter between 4 (fewest pixels) to 7 (most
pixels). Demo video below.
\c15
Changes the text color to VRAM color 15.
\c=字,15
Adds a color map entry: If 字 is the first code point
inside the name area on a new line, the text color is automatically set
to 15. Up to 8 such entries can be registered
before overflowing the statically allocated buffer.
🐞 The comma is assumed to be present even if the color parameter is omitted.
\e0
Plays the sound effect with the given ID.
\f
(no-op)
\fi1
\fo1
Calls master.lib's palette_black_in() or
palette_black_out() to play a hardware palette fade
animation from or to black, spending roughly 1 frame on each of the 16 fade steps.
\fm1
Fades out BGM volume via PMD's AH=02h interrupt call,
in a non-blocking way. The fade speed can range from 1 (slowest) to 127 (fastest).
Values from 128 to 255 technically correspond to
AH=02h's fade-in feature, which can't be used from cutscene
scripts because it requires BGM volume to first be lowered via
AH=19h, and there is no command to do that.
\g8
Plays a blocking 8-frame screen shake
animation.
\ga0
Shows the gaiji with the given ID from 0 to 255
at the current cursor position. Even in TH03, gaiji always ignore the
text delay interval configured with \v.
@3
TH05's replacement for the \ga command from TH03 and
TH04. The default ID of 3 corresponds to the
gaiji. Not to be confused with \@, which starts with a backslash,
unlike this command.
@h
Shows the gaiji.
@t
Shows the gaiji.
@!
Shows the gaiji.
@?
Shows the gaiji.
@!!
Shows the gaiji.
@!?
Shows the gaiji.
\k0
Waits 0 frames (0 = forever) for an advance key to be pressed before
continuing script execution. Before waiting, TH05 crossfades in any new
text that was previously rendered to the invisible VRAM page…
🐞 …but TH04 doesn't, leaving the text invisible during the wait time.
As a workaround, \vp1 can be
used before \k to immediately display that text without a
fade-in animation.
\m$
Stops the currently playing BGM.
\m*
Restarts playback of the currently loaded BGM from the
beginning.
\m,filename
Stops the currently playing BGM, loads a new one from the given
file, and starts playback.
\n
Starts a new line at the leftmost X coordinate of the box, i.e., the
start of the name area. This is how scripts can "change" the name of the
currently speaking character, or use the entire 480×64 pixels without
being restricted to the non-name area.
Note that automatic line breaks already move the cursor into a new line.
Using this command at the "end" of a line with the maximum number of 30
full-width glyphs would therefore start a second new line and leave the
previously started line empty.
If this command moved the cursor into the 5th line of a box,
\s is executed afterward, with
any of \n's parameters passed to \s.
\p
(no-op)
\p-
Deallocates the loaded .PI image.
\p,filename
Loads the .PI image with the given file into the single .PI slot
available to cutscenes. TH04 and TH05 automatically deallocate any
previous image, 🐞 TH03 would leak memory without a manual prior call to
\p-.
\pp
Sets the hardware palette to the one of the loaded .PI image.
\p@
Sets the loaded .PI image as the full-screen 640×400 background
image and overwrites both VRAM pages with its pixels, retaining the
current hardware palette.
\p=
Runs \pp followed by \p@.
\s0
\s-
Ends a text box and starts a new one. Fades in any text rendered to
the invisible VRAM page, then waits 0 frames
(0 = forever) for an advance key to be
pressed. Afterward, the new text box is started with the cursor moved to
the top-left corner of the name area. \s- skips the wait time and starts the new box
immediately.
\t100
Sets palette brightness via master.lib's
palette_settone() to any value from 0 (fully black) to 200
(fully white). 100 corresponds to the palette's original colors.
Preceded by a 1-frame delay unless ESC is held.
\v1
Sets the number of frames to wait between every 2 bytes of rendered
text.
Sets the number of frames to spend on each of the 4 fade
steps when crossfading between old and new text. The game-specific
default value is also used before the first use of this command.
\v2
\vp0
Shows VRAM page 0. Completely useless in
TH03 (this game always synchronizes both VRAM pages at a command
boundary), only of dubious use in TH04 (for working around a bug in \k), and the games always return to
their intended shown page before every blitting operation anyway. A
debloated mod of this game would just remove this command, as it exposes
an implementation detail that script authors should not need to worry
about. None of the original scripts use it anyway.
\w64
\w and \wk wait for the given number
of frames
\wm and \wmk wait until PMD has played
back the current BGM for the total number of measures, including
loops, given in the first parameter, and fall back on calling
\w and \wk with the second parameter as
the frame number if BGM is disabled.
🐞 Neither PMD nor MMD reset the internal measure when stopping
playback. If no BGM is playing and the previous BGM hasn't been
played back for at least the given number of measures, this command
will deadlock.
Since both TH04 and TH05 fade in any new text from the invisible VRAM
page, these commands can be used to simulate TH03's typing effect in
those games. Demo video below.
Contrary to \k and \s, specifying 0 frames would
simply remove any frame delay instead of waiting forever.
The TH03-exclusive k variants allow the delay to be
interrupted if ⏎ Return or Shot are held down.
TH04 and TH05 recognize the k as well, but removed its
functionality.
All of these commands have no effect if ESC is held.
\wm64,64
\wk64
\wmk64,64
\wi1
\wo1
Calls master.lib's palette_white_in() or
palette_white_out() to play a hardware palette fade
animation from or to white, spending roughly 1 frame on each of the 16 fade steps.
\=4
Immediately displays the given quarter of the loaded .PI image in
the picture area, with no fade effect. Any value ≥ 4 resets the picture area to black.
\==4,1
Crossfades the picture area between its current content and quarter
#4 of the loaded .PI image, spending 1 frame on each of the 4 fade steps unless
ESC is held. Any value ≥ 4 is
replaced with quarter #0.
\$
Stops script execution. Must be called at the end of each file;
otherwise, execution continues into whatever lies after the script
buffer in memory.
TH05 automatically deallocates the loaded .PI image, TH03 and TH04
require a separate manual call to \p- to not leak its memory.
Bold values signify the default if the parameter
is omitted; \c is therefore
equivalent to \c15.
The \@ bug. Yes, the ¥ is fake. It
was easier to GIMP it than to reword the sentences so that the backslashes
landed on the second byte of a 2-byte half-width character pair.
The font weights and effects available through \b, including the glitch with
\b3 in TH04 and TH05.
Font weight 3 is technically not rendered correctly in TH03 either; if
you compare 1️⃣ with 4️⃣, you notice a single missing column of pixels
at the left side of each glyph, which would extend into the previous
VRAM byte. Ironically, the TH04/TH05 version is more correct in
this regard: For half-width glyphs, it preserves any further pixel
columns generated by the weight functions in the high byte of the 16-dot
glyph variable. Unlike TH03, which still cuts them off when rendering
text to unaligned X positions (3️⃣), TH04 and TH05 do bit-rotate them
towards their correct place (4️⃣). It's only at byte-aligned X positions
(2️⃣) where they remain at their internally calculated place, and appear
on screen as these glitched pixel columns, 15 pixels away from the glyph
they belong to. It's easy to blame bugs like these on micro-optimized
ASM code, but in this instance, you really can't argue against it if the
original C++ version was equally incorrect.
Combining \b and s- into a partial dissolve
animation. The speed can be controlled with \v.
Simulating TH03's typing effect in TH04 and TH05 via \w. Even prettier in TH05 where we
also get an additional fade animation
after the box ends.
So yeah, that's the cutscene system. I'm dreading the moment I will have to
deal with the other command interpreter in these games, i.e., the
stage enemy system. Luckily, that one is completely disconnected from any
other system, so I won't have to deal with it until we're close to finishing
MAIN.EXE… that is, unless someone requests it before. And it
won't involve text encodings or unblitting…
The cutscene system got me thinking in greater detail about how I would
implement translations, being one of the main dependencies behind them. This
goal has been on the order form for a while and could soon be implemented
for these cutscenes, with 100% PI being right around the corner for the TH03
and TH04 cutscene executables.
Once we're there, the "Virgin" old-school way of static translation patching
for Latin-script languages could be implemented fairly quickly:
Establish basic UTF-8 parsing for less painful manual editing of the
source files
Procedurally generate glyphs for the few required additional letters
based on existing font ROM glyphs. For example, we'd generate ä
by painting two short lines on top of the font ROM's a glyph,
or generate ¿ by vertically flipping the question mark. This
way, the text retains a consistent look regardless of whether the translated
game is run with an NEC or EPSON font ROM, or the that Neko Project II auto-generates if you
don't provide either.
(Optional) Change automatic line breaks to work on a per-word
basis, rather than per-glyph
That's it – script editing and distribution would be handled by your local
translation group. It might seem as if this would also work for Greek and
Cyrillic scripts due to their presence in the PC-98 font ROM, but I'm not
sure if I want to attempt procedurally shrinking these glyphs from 16×16 to
8×16… For any more thorough solution, we'd need to go for a more "Chad" kind
of full-blown translation support:
Implement text subdivisions at a sensible granularity while retaining
automatic line and box breaks
Compile translatable text into a Japanese→target language dictionary
(I'm too old to develop any further translation systems that would overwrite
modded source text with translations of the original text)
Implement a custom Unicode font system (glyphs would be taken from GNU
Unifont unless translators provide a different 8×16 font for their
language)
Combine the text compiler with the font compiler to only store needed
glyphs as part of the translation's font file (dealing with a multi-MB font
file would be rather ugly in a Real Mode game)
Write a simple install/update/patch stacking tool that supports both
.HDI and raw-file DOSBox-X scenarios (it's different enough from thcrap to
warrant a separate tool – each patch stack would be statically compiled into
a single package file in the game's directory)
Add a nice language selection option to the main menu
(Optional) Support proportional fonts
Which sounds more like a separate project to be commissioned from
Touhou Patch Center's Open Collective funds, separate from the ReC98 cap.
This way, we can make sure that the feature is completely implemented, and I
can talk with every interested translator to make sure that their language
works.
It's still cheaper overall to do this on PC-98 than to first port the games
to a modern system and then translate them. On the other hand, most
of the tasks in the Chad variant (3, 4, 5, and half of 2) purely deal with
the difficulty of getting arbitrary Unicode characters to work natively in a
PC-98 DOS game at all, and would be either unnecessary or trivial if we had
already ported the game. Depending on where the patrons' interests lie, it
may not be worth it. So let's see what all of you think about which
way we should go, or whether it's worth doing at all. (Edit
(2022-12-01): With Splashman's
order towards the stage dialogue system, we've pretty much confirmed that it
is.) Maybe we want to meet in the middle – using e.g. procedural glyph
generation for dynamic translations to keep text rendering consistent with
the rest of the PC-98 system, and just not support non-Latin-script
languages in the beginning? In any case, I've added both options to the
order form. Edit (2023-07-28):Touhou Patch Center has agreed to fund
a basic feature set somewhere between the Virgin and Chad level. Check the
📝 dedicated announcement blog post for more
details and ideas, and to find out how you can support this goal!
Surprisingly, there was still a bit of RE work left in the third push after
all of this, which I filled with some small rendering boilerplate. Since I
also wanted to include TH02's playfield overlay functions,
1/15 of that last push went towards getting a
TH02-exclusive function out of the way, which also ended up including that
game in this delivery.
The other small function pointed out how TH05's Stage 5 midboss pops into
the playfield quite suddenly, since its clipping test thinks it's only 32
pixels tall rather than 64:
Good chance that the pop-in might have been intended. Edit (2023-06-30): Actually, it's a
📝 systematic consequence of ZUN having to work around the lack of clipping in master.lib's sprite functions.
There's even another quirk here: The white flash during its first frame
is actually carried over from the previous midboss, which the
game still considers as actively getting hit by the player shot that
defeated it. It's the regular boilerplate code for rendering a
midboss that resets the responsible damage variable, and that code
doesn't run during the defeat explosion animation.
Next up: Staying with TH05 and looking at more of the pattern code of its
boss fights. Given the remaining TH05 budget, it makes the most sense to
continue in in-game order, with Sara and the Stage 2 midboss. If more money
comes in towards this goal, I could alternatively go for the Mai & Yuki
fight and immediately develop a pretty fix for the cheeto storage
glitch. Also, there's a rather intricate
pull request for direct ZMBV decoding on the website that I've still got
to review…
Last blog post before the 100% completion of TH01! The final parts of
REIIDEN.EXE would feel rather out of place in a celebratory
blog post, after all. They provided quite a neat summary of the typical
technical details that are wrong with this game, and that I now get to
mention for one final time:
The Orb's animation cycle is maybe two frames shorter than it should
have been, showing its last sprite for just 1 frame rather than 3:
The text in the Pause and Continue menus is not quite correctly
centered.
The memory info screen hides quite a bit of information about the .PTN
buffers, and obscures even the info that it does show behind
misleading labels. The most vital information would have been that ZUN could
have easily saved 20% of the memory by using a structure without the
unneeded alpha plane… Oh, and the REWIRTE option
mapped to the ⬇️ down arrow key simply redraws the info screen. Might be
useful after a NODE CHEAK, which replaces the output
with its own, but stays within the same input loop.
But hey, there's an error message if you start REIIDEN.EXE
without a resident MDRV2 or a correctly prepared resident structure! And
even a good, user-friendly one, asking the user to launch the batch file
instead. For some reason, this convenience went out of fashion in the later
games.
The Game Over animation (how fitting) gives us TH01's final piece of weird
sprite blitting code, which seriously manages to include 2 bugs and 3 quirks
in under 50 lines of code. In test mode (game t or game
d), you can trigger this effect by pressing the ⬇️ down arrow key,
which certainly explains why I encountered seemingly random Game Over events
during all the tests I did with this game…
The animation appears to have changed quite a bit during development, to the
point that probably even ZUN himself didn't know what he wanted it to look
like in the end:
The original version unblits a 32×32 rectangle around Reimu that only
grows on the X axis… for the first 5 frames. The unblitting call is
only run if the corresponding sprite wasn't clipped at the edges of the
playfield in the frame before, and ZUN uses the animation's frame
number rather than the sprite loop variable to index the per-sprite
clip flag array. The resulting out-of-bounds access then reads the
sprite coordinates instead, which are never 0, thus interpreting
all 5 sprites as clipped.
This variant would interpret the declared 5 effect coordinates as
distinct sprites and unblit them correctly every frame. The end result
is rather wimpy though… hardly appropriate for a Game Over, especially
with the original animation in mind.
This variant would not unblit anything, and is probably closest to what
the final animation should have been.
Finally, we get to the big main() function, serving as the duct
tape that holds this game together. It may read rather disorganized with all
the (actually necessary) assignments and function calls, but the only
actual minor issue I've seen there is that you're robbed of any
pellet destroy bonus collected on the final frame of the final boss. There
is a certain charm in directly nesting the infinite main gameplay loop
within the infinite per-life loop within the infinite stage loop. But come
on, why is there no fourth scene loop? Instead, the
game just starts a new REIIDEN.EXE process before and after a
boss fight. With all the wildly mutated global state, that was probably a
much saner choice.
The final secrets can be found in the debug stage selection. ZUN
implemented the prompts using the C standard library's scanf()
function, which is the natural choice for quick-and-dirty testing features
like this one. However, the C standard library is also complete and utter
trash, and so it's not surprising that both of the scanf()
calls do… well, probably not what ZUN intended. The guaranteed out-of-bounds
memory access in the select_flag route prompt thankfully has no
real effect on the game, but it gets really interesting with the 面数 stage prompt.
Back in 2020, I already wrote about
📝 stages 21-24, and how they're loaded from actual data that ZUN shipped with the game.
As it now turns out, the code that maps stage IDs to STAGE?.DAT
scene numbers contains an explicit branch that maps any (1-based) stage
number ≥21 to scene 7. Does this mean that an Extra Stage was indeed planned
at some point? That branch seems way too specific to just be meant as a
fallback. Maybe
Asprey was on to something after all…
However, since ZUN passed the stage ID as a signed integer to
scanf(), you can also enter negative numbers. The only place
that kind of accidentally checks for them is the aforementioned stage
ID → scene mapping, which ensures that (1-based) stages < 5 use
the shrine's background image and BGM. With no checks anywhere else, we get
a new set of "glitch stages":
Stage -1Stage -2Stage -3Stage -4Stage -5
The scene loading function takes the entered 0-based stage ID value modulo
5, so these 4 are the only ones that "exist", and lower stage numbers will
simply loop around to them. When loading these stages, the function accesses
the data in REIIDEN.EXE that lies before the statically
allocated 5-element stages-of-scene array, which happens to encompass
Borland C++'s locale and exception handling data, as well as a small bit of
ZUN's global variables. In particular, the obstacle/card HP on the tile I
highlighted in green corresponds to the
lowest byte of the 32-bit RNG seed. If it weren't for that and the fact that
the obstacles/card HP on the few tiles before are similarly controlled by
the x86 segment values of certain initialization function addresses, these
glitch stages would be completely deterministic across PC-98 systems, and
technically canon…
Stage -4 is the only playable one here as it's the only stage to end up
below the
📝 heap corruption limit of 102 stage objects.
Completing it loads Stage -3, which crashes with a Divide Error
just like it does if it's directly selected. Unsurprisingly, this happens
because all 50 card bytes at that memory location are 0, so one division (or
in this case, modulo operation) by the number of cards is enough to crash
the game.
Stage -5 is modulo'd to 0 and thus loads the first regular stage. The only
apparent broken element there is the timer, which is handled by a completely
different function that still operates with a (0-based) stage ID value of
-5. Completing the stage loads Stage -4, which also crashes, but only
because its 61 cards naturally cause the
📝 stack overflow in the flip-in animation for any stage with more than 50 cards.
And that's REIIDEN.EXE, the biggest and most bloated PC-98
Touhou executable, fully decompiled! Next up: Finishing this game with the
main menu, and hoping I'll actually pull it off within 24 hours. (If I do,
we might all have to thank 32th
System, who independently decompiled half of the remaining 14
functions…)
Oh look, it's another rather short and straightforward boss with a rather
small number of bugs and quirks. Yup, contrary to the character's
popularity, Mima's premiere is really not all that special in terms of code,
and continues the trend established with
📝 Kikuri and
📝 SinGyoku. I've already covered
📝 the initial sprite-related bugs last November,
so this post focuses on the main code of the fight itself. The overview:
The TH01 Mima fight consists of 3 phases, with phases 1 and 3 each
corresponding to one half of the 12-HP bar.
📝 Just like with SinGyoku, the distinction
between the red-white and red parts is purely visual once again, and doesn't
reflect anything about the boss script. As usual, all of the phases have to
be completed in order.
Phases 1 and 3 cycle through 4 danmaku patterns each, for a total of 8.
The cycles always start on a fixed pattern.
3 of the patterns in each phase feature rotating white squares, thus
introducing a new sprite in need of being unblitted.
Phase 1 additionally features the "hop pattern" as the last one in its
cycle. This is the only pattern where Mima leaves the seal in the center of
the playfield to hop from one edge of the playfield towards the other, while
also moving slightly higher up on the Y axis, and staying on the final
position for the next pattern cycle. For the first time, Mima selects a
random starting edge, which is then alternated on successive cycles.
Since the square entities are local to the respective pattern function,
Phase 1 can only end once the current pattern is done, even if Mima's HP are
already below 6. This makes Mima susceptible to the
📝 test/debug mode HP bar heap corruption bug.
Phase 2 simply consists of a spread-in teleport back to Mima's initial
position in the center of the playfield. This would only have been strictly
necessary if phase 1 ended on the hop pattern, but is done regardless of the
previous pattern, and does provide a nice visual separation between the two
main phases.
That's it – nothing special in Phase 3.
And there aren't even any weird hitboxes this time. What is maybe
special about Mima, however, is how there's something to cover about all of
her patterns. Since this is TH01, it's won't surprise anyone that the
rotating square patterns are one giant copy-pasta of unblitting, updating,
and rendering code. At least ZUN placed the core polar→Cartesian
transformation in a separate function for creating regular polygons
with an arbitrary number of sides, which might hint toward some more varied
shapes having been planned at one point?
5 of the 6 patterns even follow the exact same steps during square update
frames:
Calculate square corner coordinates
Unblit the square
Update the square angle and radius
Use the square corner coordinates for spawning pellets or missiles
Recalculate square corner coordinates
Render the square
Notice something? Bullets are spawned before the corner coordinates
are updated. That's why their initial positions seem to be a bit off – they
are spawned exactly in the corners of the square, it's just that it's
the square from 8 frames ago.
Mima's first pattern on Normal difficulty.
Once ZUN reached the final laser pattern though, he must have noticed that
there's something wrong there… or maybe he just wanted to fire those
lasers independently from the square unblit/update/render timer for a
change. Spending an additional 16 bytes of the data segment for conveniently
remembering the square corner coordinates across frames was definitely a
decent investment.
When Mima isn't shooting bullets from the corners of a square or hopping
across the playfield, she's raising flame pillars from the bottom of the playfield within very specifically calculated
random ranges… which are then rendered at byte-aligned VRAM positions, while
collision detection still uses their actual pixel position. Since I don't
want to sound like a broken record all too much, I'll just direct you to
📝 Kikuri, where we've seen the exact same issue with the teardrop ripple sprites.
The conclusions are identical as well.
Mima's flame pillar pattern. This video was recorded on a particularly
unlucky seed that resulted in great disparities between a pillar's
internal X coordinate and its byte-aligned on-screen appearance, leading
to lots of right-shifted hitboxes.
Also note how the change from the meteor animation to the three-arm 🚫
casting sprite doesn't unblit the meteor, and leaves that job to
any sprite that happens to fly over those pixels.
However, I'd say that the saddest part about this pattern is how choppy it
is, with the circle/pillar entities updating and rendering at a meager 7
FPS. Why go that low on purpose when you can just make the game render ✨
smoothly ✨ instead?
So smooth it's almost uncanny.
The reason quickly becomes obvious: With TH01's lack of optimization, going
for the full 56.4 FPS would have significantly slowed down the game on its
intended 33 MHz CPUs, requiring more than cheap surface-level ASM
optimization for a stable frame rate. That might very well have been ZUN's
reason for only ever rendering one circle per frame to VRAM, and designing
the pattern with these time offsets in mind. It's always been typical for
PC-98 developers to target the lowest-spec models that could possibly still
run a game, and implementing dynamic frame rates into such an engine-less
game is nothing I would wish on anybody. And it's not like TH01 is
particularly unique in its choppiness anyway; low frame rates are actually a
rather typical part of the PC-98 game aesthetic.
The final piece of weirdness in this fight can be found in phase 1's hop
pattern, and specifically its palette manipulation. Just from looking at the
pattern code itself, each of the 4 hops is supposed to darken the hardware
palette by subtracting #444 from every color. At the last hop,
every color should have therefore been reduced to a pitch-black
#000, leaving the player completely blind to the movement of
the chasing pellets for 30 frames and making the pattern quite ghostly
indeed. However, that's not what we see in the actual game:
Nothing in the pattern's code would cause the hardware palette to get
brighter before the end of the pattern, and yet…
The expected version doesn't look all too unfair, even on Lunatic…
well, at least at the default rank pellet speed shown in this
video. At maximum pellet speed, it is in fact rather brutal.
Looking at the frame counter, it appears that something outside the
pattern resets the palette every 40 frames. The only known constant with a
value of 40 would be the invincibility frames after hitting a boss with the
Orb, but we're not hitting Mima here…
But as it turns out, that's exactly where the palette reset comes from: The
hop animation darkens the hardware palette directly, while the
📝 infamous 12-parameter boss collision handler function
unconditionally resets the hardware palette to the "default boss palette"
every 40 frames, regardless of whether the boss was hit or not. I'd classify
this as a bug: That function has no business doing periodic hardware palette
resets outside the invincibility flash effect, and it completely defies
common sense that it does.
That explains one unexpected palette change, but could this function
possibly also explain the other infamous one, namely, the temporary green
discoloration in the Konngara fight? That glitch comes down to how the game
actually uses two global "default" palettes: a default boss
palette for undoing the invincibility flash effect, and a default
stage palette for returning the colors back to normal at the end of
the bomb animation or when leaving the Pause menu. And sure enough, the
stage palette is the one with the green color, while the boss
palette contains the intended colors used throughout the fight. Sending the
latter palette to the graphics chip every 40 frames is what corrects
the discoloration, which would otherwise be permanent.
The green color comes from BOSS7_D1.GRP, the scrolling
background of the entrance animation. That's what turns this into a clear
bug: The stage palette is only set a single time in the entire fight,
at the beginning of the entrance animation, to the palette of this image.
Apart from consistency reasons, it doesn't even make sense to set the stage
palette there, as you can't enter the Pause menu or bomb during a blocking
animation function.
And just 3 lines of code later, ZUN loads BOSS8_A1.GRP, the
main background image of the fight. Moving the stage palette assignment
there would have easily prevented the discoloration.
But yeah, as you can tell, palette manipulation is complete jank in this
game. Why differentiate between a stage and a boss palette to begin with?
The blocking Pause menu function could have easily copied the original
palette to a local variable before darkening it, and then restored it after
closing the menu. It's not so easy for bombs as the intended palette could
change between the start and end of the animation, but the code could have
still been simplified a lot if there was just one global "default palette"
variable instead of two. Heck, even the other bosses who manipulate their
palettes correctly only do so because they manually synchronize the two
after every change. The proper defense against bugs that result from wild
mutation of global state is to get rid of global state, and not to put up
safety nets hidden in the middle of existing effect code.
The easiest way of reproducing the green discoloration bug in
the TH01 Konngara fight, timed to show the maximum amount of time the
discoloration can possibly last.
In any case, that's Mima done! 7th PC-98 Touhou boss fully
decompiled, 24 bosses remaining, and 59 functions left in all of TH01.
In other thrilling news, my call for secondary funding priorities in new
TH01 contributions has given us three different priorities so far. This
raises an interesting question though: Which of these contributions should I
now put towards TH01 immediately, and which ones should I leave in the
backlog for the time being? Since I've never liked deciding on priorities,
let's turn this into a popularity contest instead: The contributions with
the least popular secondary priorities will go towards TH01 first, giving
the most popular priorities a higher chance to still be left over after TH01
is done. As of this delivery, we'd have the following popularity order:
TH05 (1.67 pushes), from T0182
Seihou (1 push), from T0184
TH03 (0.67 pushes), from T0146
Which means that T0146 will be consumed for TH01 next, followed by T0184 and
then T0182. I only assign transactions immediately before a delivery though,
so you all still have the chance to change up these priorities before the
next one.
Next up: The final boss of TH01 decompilation, YuugenMagan… if the current
or newly incoming TH01 funds happen to be enough to cover the entire fight.
If they don't turn out to be, I will have to pass the time with some Seihou
work instead, missing the TH01 anniversary deadline as a result.Edit (2022-07-18): Thanks to Yanga for
securing the funding for YuugenMagan after all! That fight will feature
slightly more than half of all remaining code in TH01's
REIIDEN.EXE and the single biggest function in all of PC-98
Touhou, let's go!
It only took a record-breaking 1½ pushes to get SinGyoku done!
No 📝 entity synchronization code after
all! Since all of SinGyoku's sprites are 96×96 pixels, ZUN made the rather
smart decision of just using the sphere entity's position to render the
📝 flash and person entities – and their only
appearance is encapsulated in a single sphere→person→sphere transformation
function.
Just like Kikuri, SinGyoku's code as a whole is not a complete
disaster.
The negative:
It's still exactly as buggy as Kikuri, with both of the ZUN bugs being
rendering glitches in a single function once again.
It also happens to come with a weird hitbox, …
… and some minor questionable and weird pieces of code.
The overview:
SinGyoku's fight consists of 2 phases, with the first one corresponding
to the white part from 8 to 6 HP, and the second one to the rest of the HP
bar. The distinction between the red-white and red parts is purely visual,
and doesn't reflect anything about the boss script.
Both phases cycle between a pellet pattern and SinGyoku's sphere form
slamming itself into the player, followed by it slightly overshooting its
intended base Y position on its way back up.
Phase 1 only consists of the sphere form's half-circle spray pattern.
Technically, the phase can only end during that pattern, but adding
that one additional condition to allow it to end during the slam+return
"pattern" wouldn't have made a difference anyway. The code doesn't rule out
negative HP during the slam (have fun in test or debug mode), but the sum of
invincibility frames alone makes it impossible to hit SinGyoku 7 times
during a single slam in regular gameplay.
Phase 2 features two patterns for both the female and male forms
respectively, which are selected randomly.
This time, we're back to the Orb hitbox being a logical 49×49 pixels in
SinGyoku's center, and the shot hitbox being the weird one. What happens if
you want the shot hitbox to be both offset to the left a bit
and stretch the entire width of SinGyoku's sprite? You get a hitbox
that ends in mid-air, far away from the right edge of the sprite:
Due to VRAM byte alignment, all player shots fired between
gx = 376 and gx = 383 inclusive
appear at the same visual X position, but are internally already partly
outside the hitbox and therefore won't hit SinGyoku – compare the
marked shot at gx = 376 to the one at gx =
380. So much for precisely visualizing hitboxes in this game…
Since the female and male forms also use the sphere entity's coordinates,
they share the same hitbox.
Onto the rendering glitches then, which can – you guessed it – all be found
in the sphere form's slam movement:
ZUN unblits the delta area between the sphere's previous and current
position on every frame, but reblits the sphere itself on… only every second
frame?
For negative X velocities, ZUN made a typo and subtracted the Y velocity
from the right edge of the area to be unblitted, rather than adding the X
velocity. On a cursory look, this shouldn't affect the game all too
much due to the unblitting function's word alignment. Except when it does:
If the Y velocity is much smaller than the X one, the left edge of the
unblitted area can, on certain frames, easily align to a word address past
the previous right edge of the sphere. As a result, not a single sphere
pixel will actually be unblitted, and a small stripe of the sphere will be
left in VRAM for one frame, until the alignment has caught up with the
sphere's movement in the next one.
By having the sphere move from the right edge of the playfield to the
left, this video demonstrates both the lazy reblitting and broken
unblitting at the right edge for negative X velocities. Also, isn't it
funny how Reimu can partly disappear from all the sloppy
SinGyoku-related unblitting going on after her sprite was blitted?
Due to the low contrast of the sphere against the background, you typically
don't notice these glitches, but the white invincibility flashing after a
hit really does draw attention to them. This time, all of these glitches
aren't even directly caused by ZUN having never learned about the
EGC's bit length register – if he just wrote correct code for SinGyoku, none
of this would have been an issue. Sigh… I wonder how many more glitches will
be caused by improper use of this one function in the last 18% of
REIIDEN.EXE.
There's even another bug here, with ZUN hardcoding a horizontal delta of 8
pixels rather than just passing the actual X velocity. Luckily, the maximum
movement speed is 6 pixels on Lunatic, and this would have only turned into
an additional observable glitch if the X velocity were to exceed 24 pixels.
But that just means it's the kind of bug that still drains RE attention to
prove that you can't actually observe it in-game under some
circumstances.
The 5 pellet patterns are all pretty straightforward, with nothing to talk
about. The code architecture during phase 2 does hint towards ZUN having had
more creative patterns in mind – especially for the male form, which uses
the transformation function's three pattern callback slots for three
repetitions of the same pellet group.
There is one more oddity to be found at the very end of the fight:
Right before the defeat white-out animation, the sphere form is explicitly
reblitted for no reason, on top of the form that was blitted to VRAM in the
previous frame, and regardless of which form is currently active. If
SinGyoku was meant to immediately transform back to the sphere form before
being defeated, why isn't the person form unblitted before then? Therefore,
the visibility of both forms is undeniably canon, and there is some
lore meaning to be found here…
In any case, that's SinGyoku done! 6th PC-98 Touhou boss fully
decompiled, 25 remaining.
No FUUIN.EXE code rounding out the last push for a change, as
the 📝 remaining missile code has been
waiting in front of SinGyoku for a while. It already looked bad in November,
but the angle-based sprite selection function definitely takes the cake when
it comes to unnecessary and decadent floating-point abuse in this game.
The algorithm itself is very trivial: Even with
📝 .PTN requiring an additional quarter parameter to access 16×16 sprites,
it's essentially just one bit shift, one addition, and one binary
AND. For whatever reason though, ZUN casts the 8-bit missile
angle into a 64-bit double, which turns the following explicit
comparisons (!) against all possible 4 + 16 boundary angles (!!)
into FPU operations. Even with naive and readable
division and modulo operations, and the whole existence of this function not
playing well with Turbo C++ 4.0J's terrible code generation at all, this
could have been 3 lines of code and 35 un-inlined constant-time
instructions. Instead, we've got this 207-instruction monster… but hey, at
least it works. 🤷
The remaining time then went to YuugenMagan's initialization code, which
allowed me to immediately remove more declarations from ASM land, but more
on that once we get to the rest of that boss fight.
That leaves 76 functions until we're done with TH01! Next up: Card-flipping
stage obstacles.
What's this? A simple, straightforward, easy-to-decompile TH01 boss with
just a few minor quirks and only two rendering-related ZUN bugs? Yup, 2½
pushes, and Kikuri was done. Let's get right into the overview:
Just like 📝 Elis, Kikuri's fight consists
of 5 phases, excluding the entrance animation. For some reason though, they
are numbered from 2 to 6 this time, skipping phase 1? For consistency, I'll
use the original phase numbers from the source code in this blog post.
The main phases (2, 5, and 6) also share Elis' HP boundaries of 10, 6,
and 0, respectively, and are once again indicated by different colors in the
HP bar. They immediately end upon reaching the given number of HP, making
Kikuri immune to the
📝 heap corruption in test or debug mode that can happen with Elis and Konngara.
Phase 2 solely consists of the infamous big symmetric spiral
pattern.
Phase 3 fades Kikuri's ball of light from its default bluish color to bronze over 100 frames. Collision detection is deactivated
during this phase.
In Phase 4, Kikuri activates her two souls while shooting the spinning
8-pellet circles from the previously activated ball. The phase ends shortly
after the souls fired their third spread pellet group.
Note that this is a timed phase without an HP boundary, which makes
it possible to reduce Kikuri's HP below the boundaries of the next
phases, effectively skipping them. Take this video for example,
where Kikuri has 6 HP by the end of Phase 4, and therefore directly
starts Phase 6.
(Obviously, Kikuri's HP can also be reduced to 0 or below, which will
end the fight immediately after this phase.)
Phase 5 combines the teardrop/ripple "pattern" from the souls with the
"two crossed eye laser" pattern, on independent cycles.
Finally, Kikuri cycles through her remaining 4 patterns in Phase 6,
while the souls contribute single aimed pellets every 200 frames.
Interestingly, all HP-bounded phases come with an additional hidden
timeout condition:
Phase 2 automatically ends after 6 cycles of the spiral pattern, or
5,400 frames in total.
Phase 5 ends after 1,600 frames, or the first frame of the
7th cycle of the two crossed red lasers.
If you manage to keep Kikuri alive for 29 of her Phase 6 patterns,
her HP are automatically set to 1. The HP bar isn't redrawn when this
happens, so there is no visual indication of this timeout condition even
existing – apart from the next Orb hit ending the fight regardless of
the displayed HP. Due to the deterministic order of patterns, this
always happens on the 8th cycle of the "symmetric gravity
pellet lines from both souls" pattern, or 11,800 frames. If dodging and
avoiding orb hits for 3½ minutes sounds tiring, you can always watch the
byte at DS:0x1376 in your emulator's memory viewer. Once
it's at 0x1E, you've reached this timeout.
So yeah, there's your new timeout challenge.
The few issues in this fight all relate to hitboxes, starting with the main
one of Kikuri against the Orb. The coordinates in the code clearly describe
a hitbox in the upper center of the disc, but then ZUN wrote a < sign
instead of a > sign, resulting in an in-game hitbox that's not
quite where it was intended to be…
Kikuri's actual hitbox.
Since the Orb sprite doesn't change its shape, we can visualize the
hitbox in a pixel-perfect way here. The Orb must be completely within
the red area for a hit to be registered.
Much worse, however, are the teardrop ripples. It already starts with their
rendering routine, which places the sprites from TAMAYEN.PTN at byte-aligned VRAM positions in the ultimate piece of if(…) {…}
else if(…) {…} else if(…) {…} meme code. Rather than
tracking the position of each of the five ripple sprites, ZUN suddenly went
purely functional and manually hardcoded the exact rendering and collision
detection calls for each frame of the animation, based on nothing but its
total frame counter.
Each of the (up to) 5 columns is also unblitted and blitted individually
before moving to the next column, starting at the center and then
symmetrically moving out to the left and right edges. This wouldn't be a
problem if ZUN's EGC-powered unblitting function didn't word-align its X
coordinates to a 16×1 grid. If the ripple sprites happen to start at an
odd VRAM byte position, their unblitting coordinates get rounded both down
and up to the nearest 16 pixels, thus touching the adjacent 8 pixels of the
previously blitted columns and leaving the well-known black vertical bars in
their place.
OK, so where's the hitbox issue here? If you just look at the raw
calculation, it's a slightly confusingly expressed, but perfectly logical 17
pixels. But this is where byte-aligned blitting has a direct effect on
gameplay: These ripples can be spawned at any arbitrary, non-byte-aligned
VRAM position, and collisions are calculated relative to this internal
position. Therefore, the actual hitbox is shifted up to 7 pixels to the
right, compared to where you would expect it from a ripple sprite's
on-screen position:
Due to the deterministic nature of this part of the fight, it's
always 5 pixels for this first set of ripples. These visualizations are
obviously not pixel-perfect due to the different potential shapes of
Reimu's sprite, so they instead relate to her 32×32 bounding box, which
needs to be entirely inside the red
area.
We've previously seen the same issue with the
📝 shot hitbox of Elis' bat form, where
pixel-perfect collision detection against a byte-aligned sprite was merely a
sidenote compared to the more serious X=Y coordinate bug. So why do I
elevate it to bug status here? Because it directly affects dodging: Reimu's
regular movement speed is 4 pixels per frame, and with the internal position
of an on-screen ripple sprite varying by up to 7 pixels, any micrododging
(or "grazing") attempt turns into a coin flip. It's sort of mitigated
by the fact that Reimu is also only ever rendered at byte-aligned
VRAM positions, but I wouldn't say that these two bugs cancel out each
other.
Oh well, another set of rendering issues to be fixed in the hypothetical
Anniversary Edition – obviously, the hitboxes should remain unchanged. Until
then, you can always memorize the exact internal positions. The sequence of
teardrop spawn points is completely deterministic and only controlled by the
fixed per-difficulty spawn interval.
Aside from more minor coordinate inaccuracies, there's not much of interest
in the rest of the pattern code. In another parallel to Elis though, the
first soul pattern in phase 4 is aimed on every difficulty except
Lunatic, where the pellets are once again statically fired downwards. This
time, however, the pattern's difficulty is much more appropriately
distributed across the four levels, with the simultaneous spinning circle
pellets adding a constant aimed component to every difficulty level.
Kikuri's phase 4 patterns, on every difficulty.
That brings us to 5 fully decompiled PC-98 Touhou bosses, with 26 remaining…
and another ½ of a push going to the cutscene code in
FUUIN.EXE.
You wouldn't expect something as mundane as the boss slideshow code to
contain anything interesting, but there is in fact a slight bit of
speculation fuel there. The text typing functions take explicit string
lengths, which precisely match the corresponding strings… for the most part.
For the "Gatekeeper 'SinGyoku'" string though, ZUN passed 23
characters, not 22. Could that have been the "h" from the Hepburn
romanization of 神玉?!
Also, come on, if this text is already blitted to VRAM for no reason,
you could have gone for perfect centering at unaligned byte positions; the
rendering function would have perfectly supported it. Instead, the X
coordinates are still rounded up to the nearest byte.
The hardcoded ending cutscene functions should be even less interesting –
don't they just show a bunch of images followed by frame delays? Until they
don't, and we reach the 地獄/Jigoku Bad Ending with
its special shake/"boom" effect, and this picture:
Picture #2 from ED2A.GRP.
Which is rendered by the following code:
for(int i = 0; i <= boom_duration; i++) { // (yes, off-by-one)
if((i & 3) == 0) {
graph_scrollup(8);
} else {
graph_scrollup(0);
}
end_pic_show(1); // ← different picture is rendered
frame_delay(2); // ← blocks until 2 VSync interrupts have occurred
if(i & 1) {
end_pic_show(2); // ← picture above is rendered
} else {
end_pic_show(1);
}
}
Notice something? You should never see this picture because it's
immediately overwritten before the frame is supposed to end. And yet
it's clearly flickering up for about one frame with common emulation
settings as well as on my real PC-9821 Nw133, clocked at 133 MHz.
master.lib's graph_scrollup() doesn't block until VSync either,
and removing these calls doesn't change anything about the blitted images.
end_pic_show() uses the EGC to blit the given 320×200 quarter
of VRAM from page 1 to the visible page 0, so the bottleneck shouldn't be
there either…
…or should it? After setting it up via a few I/O port writes, the common
method of EGC-powered blitting works like this:
Read 16 bits from the source VRAM position on any single
bitplane. This fills the EGC's 4 16-bit tile registers with the VRAM
contents at that specific position on every bitplane. You do not care
about the value the CPU returns from the read – in optimized code, you would
make sure to just read into a register to avoid useless additional stores
into local variables.
Write any 16 bits
to the target VRAM position on any single bitplane. This copies the
contents of the EGC's tile registers to that specific position on
every bitplane.
To transfer pixels from one VRAM page to another, you insert an additional
write to I/O port 0xA6 before 1) and 2) to set your source and
destination page… and that's where we find the bottleneck. Taking a look at
the i486 CPU and its cycle
counts, a single one of these page switches costs 17 cycles – 1 for
MOVing the page number into AL, and 16 for the
OUT instruction itself. Therefore, the 8,000 page switches
required for EGC-copying a 320×200-pixel image require 136,000 cycles in
total.
And that's the optimal case of using only those two
instructions. 📝 As I implied last time, TH01
uses a function call for VRAM page switches, complete with creating
and destroying a useless stack frame and unnecessarily updating a global
variable in main memory. I tried optimizing ZUN's code by throwing out
unnecessary code and using 📝 pseudo-registers
to generate probably optimal assembly code, and that did speed up the
blitting to almost exactly 50% of the original version's run time. However,
it did little about the flickering itself. Here's a comparison of the first
loop with boom_duration = 16, recorded in DOSBox-X with
cputype=auto and cycles=max, and with
i overlaid using the text chip. Caution, flashing lights:
The original animation, completing in 50 frames instead of the expected
34, thanks to slow blitting. Combined with the lack of
double-buffering, this results in noticeable tearing as the screen
refreshes while blitting is still in progress.
(Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
This optimized version completes in the expected 34 frames. No tearing
happens to be visible in this recording, but the ドカーン image is still visible on every
second loop iteration. (Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
I pushed the optimized code to the th01_end_pic_optimize
branch, to also serve as an example of how to get close to optimal code out
of Turbo C++ 4.0J without writing a single ASM instruction.
And if you really want to use the EGC for this, that's the best you can do.
It really sucks that it merely expanded the GRCG's 4×8-bit tile register to
4×16 bits. With 32 bits, ≥386 CPUs could have taken advantage of their wider
registers and instructions to double the blitting performance. Instead, we
now know the reason why
📝 Promisence Soft's EGC-powered sprite driver that ZUN later stole for TH03
is called SPRITE16 and not SPRITE32. What a massive disappointment.
But what's perhaps a bigger surprise: Blitting planar
images from main memory is much faster than EGC-powered inter-page
VRAM copies, despite the required manual access to all 4 bitplanes. In
fact, the blitting functions for the .CDG/.CD2 format, used from TH03
onwards, would later demonstrate the optimal method of using REP
MOVSD for blitting every line in 32-pixel chunks. If that was also
used for these ending images, the core blitting operation would have taken
((12 + (3 × (320 / 32))) × 200 × 4) =
33,600 cycles, with not much more overhead for the surrounding row
and bitplane loops. Sure, this doesn't factor in the whole infamous issue of
VRAM being slow on PC-98, but the aforementioned 136,000 cycles don't even
include any actual blitting either. And as you move up to later PC-98
models with Pentium CPUs, the gap between OUT and REP
MOVSD only becomes larger. (Note that the page I linked above has a
typo in the cycle count of REP MOVSD on Pentium CPUs: According
to the original Intel Architecture and Programming Manual, it's
13+𝑛, not 3+𝑛.)
This difference explains why later games rarely use EGC-"accelerated"
inter-page VRAM copies, and keep all of their larger images in main memory.
It especially explains why TH04 and TH05 can get away with naively redrawing
boss backdrop images on every frame.
In the end, the whole fact that ZUN did not define how long this image
should be visible is enough for me to increment the game's overall bug
counter. Who would have thought that looking at endings of all things
would teach us a PC-98 performance lesson… Sure, optimizing TH01 already
seemed promising just by looking at its bloated code, but I had no idea that
its performance issues extended so far past that level.
That only leaves the common beginning part of all endings and a short
main() function before we're done with FUUIN.EXE,
and 98 functions until all of TH01 is decompiled! Next up: SinGyoku, who not
only is the quickest boss to defeat in-game, but also comes with the least
amount of code. See you very soon!
With Elis, we've not only reached the midway point in TH01's boss code, but
also a bunch of other milestones: Both REIIDEN.EXE and TH01 as
a whole have crossed the 75% RE mark, and overall position independence has
also finally cracked 80%!
And it got done in 4 pushes again? Yup, we're back to
📝 Konngara levels of redundancy and
copy-pasta. This time, it didn't even stop at the big copy-pasted code
blocks for the rift sprite and 256-pixel circle animations, with the words
"redundant" and "unnecessary" ending up a total of 18 times in my source
code comments.
But damn is this fight broken. As usual with TH01 bosses, let's start with a
high-level overview:
The Elis fight consists of 5 phases (excluding the entrance animation),
which must be completed in order.
In all odd-numbered phases, Elis uses a random one-shot danmaku pattern
from an exclusive per-phase pool before teleporting to a random
position.
There are 3 exclusive girl-form patterns per phase, plus 4
additional bat-form patterns in phase 5, for a total of 13.
Due to a quirk in the selection algorithm in phases 1 and 3, there
is a 25% chance of Elis skipping an attack cycle and just teleporting
again.
In contrast to Konngara, Elis can freely select the same pattern
multiple times in a row. There's nothing in the code to prevent that
from happening.
This pattern+teleport cycle is repeated until Elis' HP reach a certain
threshold value. The odd-numbered phases correspond to the white (phase 1),
red-white (phase 3), and red (phase 5) sections of the health bar. However,
the next phase can only start at the end of each cycle, after a
teleport.
Phase 2 simply teleports Elis back to her starting screen position of
(320, 144) and then advances to phase 3.
Phase 4 does the same as phase 2, but adds the initial bat form
transformation before advancing to phase 5.
Phase 5 replaces the teleport with a transformation to the bat form.
Rather than teleporting instantly to the target position, the bat gradually
flies there, firing a randomly selected looping pattern from the 4-pattern
bat pool on the way, before transforming back to the girl form.
This puts the earliest possible end of the fight at the first frame of phase
5. However, nothing prevents Elis' HP from reaching 0 before that point. You
can nicely see this in 📝 debug mode: Wait
until the HP bar has filled up to avoid heap corruption, hold ↵ Return
to reduce her HP to 0, and watch how Elis still goes through a total of
two patterns* and four
teleport animations before accepting defeat.
But wait, heap corruption? Yup, there's a bug in the HP bar that already
affected Konngara as well, and it isn't even just about the graphical
glitches generated by negative HP:
The initial fill-up animation is drawn to both VRAM pages at a rate of 1
HP per frame… by passing the current frame number as the
current_hp number.
The target_hp is indicated by simply passing the current
HP…
… which, however, can be reduced in debug mode at an equal rate of up to
1 HP per frame.
The completion condition only checks if
((target_hp - 1) == current_hp). With the
right timing, both numbers can therefore run past each other.
In that case, the function is repeatedly called on every frame, backing
up the original VRAM contents for the current HP point before blitting
it…
… until frame ((96 / 2) + 1), where the
.PTN slot pointer overflows the heap buffer and overwrites whatever comes
after. 📝 Sounds familiar, right?
Since Elis starts with 14 HP, which is an even number, this corruption is
trivial to cause: Simply hold ↵ Return from the beginning of the
fight, and the completion condition will never be true, as the
HP and frame numbers run past the off-by-one meeting point.
Edit (2023-07-21): Pressing ↵ Return to reduce HP
also works in test mode (game t). There, the game doesn't
even check the heap, and consequently won't report any corruption,
allowing the HP bar to be glitched even further.
Regular gameplay, however, entirely prevents this due to the fixed start
positions of Reimu and the Orb, the Orb's fixed initial trajectory, and the
50 frames of delay until a bomb deals damage to a boss. These aspects make
it impossible to hit Elis within the first 14 frames of phase 1, and ensure
that her HP bar is always filled up completely. So ultimately, this bug ends
up comparable in seriousness to the
📝 recursion / stack overflow bug in the memory info screen.
These wavy teleport animations point to a quite frustrating architectural
issue in this fight. It's not even the fact that unblitting the yellow star
sprites rips temporary holes into Elis' sprite; that's almost expected from
TH01 at this point. Instead, it's all because of this unused frame of the
animation:
With this sprite still being part of BOSS5.BOS, Girl-Elis has a
total of 9 animation frames, 1 more than the
📝 8 per-entity sprites allowed by ZUN's architecture.
The quick and easy solution would have been to simply bump the sprite array
size by 1, but… nah, this would have added another 20 bytes to all 6 of the
.BOS image slots. Instead, ZUN wrote the manual
position synchronization code I mentioned in that 2020 blog post.
Ironically, he then copy-pasted this snippet of code often enough that it
ended up taking up more than 120 bytes in the Elis fight alone – with, you
guessed it, some of those copies being redundant. Not to mention that just
going from 8 to 9 sprites would have allowed ZUN to go down from 6 .BOS
image slots to 3. That would have actually saved 420 bytes in
addition to the manual synchronization trouble. Looking forward to SinGyoku,
that's going to be fun again…
As for the fight itself, it doesn't take long until we reach its most janky
danmaku pattern, right in phase 1:
The "pellets along circle" pattern on Lunatic, in its original version
and with fanfiction fixes for everything that can potentially be
interpreted as a bug.
For whatever reason, the lower-right quarter of the circle isn't
animated? This animation works by only drawing the new dots added with every
subsequent animation frame, expressed as a tiny arc of a dotted circle. This
arc starts at the animation's current 8-bit angle and ends on the sum of
that angle and a hardcoded constant. In every other (copy-pasted, and
correct) instance of this animation, ZUN uses 0x02 as the
constant, but this one uses… 0.05 for the lower-right quarter?
As in, a 64-bit double constant that truncates to 0 when added
to an 8-bit integer, thus leading to the start and end angles being
identical and the game not drawing anything.
On Easy and Normal, the pattern then spawns 32 bullets along the outline
of the circle, no problem there. On Lunatic though, every one of these
bullets is instead turned into a narrow-angled 5-spread, resulting in 160
pellets… in a game with a pellet cap of 100.
Now, if Elis teleported herself to a position near the top of the playfield,
most of the capped pellets would have been clipped at that top edge anyway,
since the bullets are spawned in clockwise order starting at Elis' right
side with an angle of 0x00. On lower positions though, you can
definitely see a difference if the cap were high enough to allow all coded
pellets to actually be spawned.
The Hard version gets dangerously close to the cap by spawning a total of 96
pellets. Since this is the only pattern in phase 1 that fires pellets
though, you are guaranteed to see all of the unclipped ones.
The pellets also aren't spawned exactly on the telegraphed circle, but 4 pixels to the left.
Then again, it might very well be that all of this was intended, or, most
likely, just left in the game as a happy accident. The latter interpretation
would explain why ZUN didn't just delete the rendering calls for the
lower-right quarter of the circle, because seriously, how would you not spot
that? The phase 3 patterns continue with more minor graphical glitches that
aren't even worth talking about anymore.
And then Elis transforms into her bat form at the beginning of Phase 5,
which displays some rather unique hitboxes. The one against the Orb is fine,
but the one against player shots…
… uses the bat's X coordinate for both X and Y dimensions.
In regular gameplay, it's not too bad as most
of the bat patterns fire aimed pellets which typically don't allow you to
move below her sprite to begin with. But if you ever tried destroying these
pellets while standing near the middle of the playfield, now you know why
that didn't work. This video also nicely points out how the bat, like any
boss sprite, is only ever blitted at positions on the 8×1-pixel VRAM byte
grid, while collision detection uses the actual pixel position.
The bat form patterns are all relatively simple, with little variation
depending on the difficulty level, except for the "slow pellet spreads"
pattern. This one is almost easiest to dodge on Lunatic, where the 5-spreads
are not only always fired downwards, but also at the hardcoded narrow delta
angle, leaving plenty of room for the player to move out of the way:
The "slow pellet spreads" pattern of Elis' bat form, on every
difficulty. Which version do you think is the easiest one?
Finally, we've got another potential timesave in the girl form's "safety
circle" pattern:
After the circle spawned completely, you lose a life by moving outside it,
but doing that immediately advances the pattern past the circle part. This
part takes 200 frames, but the defeat animation only takes 82 frames, so
you can save up to 118 frames there.
Final funny tidbit: As with all dynamic entities, this circle is only
blitted to VRAM page 0 to allow easy unblitting. However, it's also kind of
static, and there needs to be some way to keep the Orb, the player shots,
and the pellets from ripping holes into it. So, ZUN just re-blits the circle
every… 4 frames?! 🤪 The same is true for the Star of David and its
surrounding circle, but there you at least get a flash animation to justify
it. All the overlap is actually quite a good reason for not even attempting
to 📝 mess with the hardware color palette instead.
Reproducing the crash was the whole challenge here. Even after moving Elis
and Reimu to the exact positions seen in Pearl's video and setting Elis' HP
to 0 on the exact same frame, everything ran fine for me. It's definitely no
division by 0 this time, the function perfectly guards against that
possibility. The line specified in the function's parameters is always
clipped to the VRAM region as well, so we can also rule out illegal memory
accesses here…
… or can we? Stepping through it all reminded me of how this function brings
unblitting sloppiness to the next level: For each VRAM byte touched, ZUN
actually unblits the 4 surrounding bytes, adding one byte to the left
and two bytes to the right, and using a single 32-bit read and write per
bitplane. So what happens if the function tries to unblit the topmost byte
of VRAM, covering the pixel positions from (0, 0) to (7, 0)
inclusive? The VRAM offset of 0x0000 is decremented to
0xFFFF to cover the one byte to the left, 4 bytes are written
to this address, the CPU's internal offset overflows… and as it turns out,
that is illegal even in Real Mode as of the 80286, and will raise a General Protection
Fault. Which is… ignored by DOSBox-X,
every Neko Project II version in common use, the CSCP
emulators, SL9821, and T98-Next. Only Anex86 accurately emulates the
behavior of real hardware here.
OK, but no laser fired by Elis ever reaches the top-left corner of the
screen. How can such a fault even happen in practice? That's where the
broken laser reset+unblit function comes in: Not only does it just flat out pass the wrong
parameters to the line unblitting function – describing the line
already traveled by the laser and stopping where the laser begins –
but it also passes them
wrongly, in the form of raw 32-bit fixed-point Q24.8 values, with no
conversion other than a truncation to the signed 16-bit pixels expected by
the function. What then follows is an attempt at interpolation and clipping
to find a line segment between those garbage coordinates that actually falls
within the boundaries of VRAM:
right/bottom correspond to a laser's origin position, and
left/top to the leftmost pixel of its moved-out top line. The
bug therefore only occurs with lasers that stopped growing and have started
moving.
Moreover, it will only happen if either (left % 256) or
(right % 256) is ≤ 127 and the other one of the two is ≥ 128.
The typecast to signed 16-bit integers then turns the former into a large
positive value and the latter into a large negative value, triggering the
function's clipping code.
The function then follows Bresenham's
algorithm: left is ensured to be smaller than right
by swapping the two values if necessary. If that happened, top
and bottom are also swapped, regardless of their value – the
algorithm does not care about their order.
The slope in the X dimension is calculated using an integer division of
((bottom - top) /
(right - left)). Both subtractions are done on signed
16-bit integers, and overflow accordingly.
(-left × slope_x) is added to top,
and left is set to 0.
If both top and bottom are < 0 or
≥ 640, there's nothing to be unblitted. Otherwise, the final
coordinates are clipped to the VRAM range of [(0, 0),
(639, 399)].
If the function got this far, the line to be unblitted is now very
likely to reach from
the top-left to the bottom-right corner, starting out at
(0, 0) right away, or
from the bottom-left corner to the top-right corner. In this case,
you'd expect unblitting to end at (639, 0), but thanks to an
off-by-one error,
it actually ends at (640, -1), which is equivalent to
(0, 0). Why add clipping to VRAM offset calculations when
everything else is clipped already, right?
Possible laser states that will cause the fault, with some debug
output to help understand the cause, and any pellets removed for better
readability. This can happen for all bosses that can potentially have
shootout lasers on screen when being defeated, so it also applies to Mima.
Fixing this is easier than understanding why it happens, but since y'all
love reading this stuff…
tl;dr: TH01 has a high chance of freezing at a boss defeat sequence if there
are diagonally moving lasers on screen, and if your PC-98 system
raises a General Protection Fault on a 4-byte write to offset
0xFFFF, and if you don't run a TSR with an INT
0Dh handler that might handle this fault differently.
The easiest fix option would be to just remove the attempted laser
unblitting entirely, but that would also have an impact on this game's…
distinctive visual glitches, in addition to touching a whole lot of
code bytes. If I ever get funded to work on a hypothetical TH01 Anniversary
Edition that completely rearchitects the game to fix all these glitches, it
would be appropriate there, but not for something that purports to be the
original game.
(Sidenote to further hype up this Anniversary Edition idea for PC-98
hardware owners: With the amount of performance left on the table at every
corner of this game, I'm pretty confident that we can get it to work
decently on PC-98 models with just an 80286 CPU.)
Since we're in critical infrastructure territory once again, I went for the
most conservative fix with the least impact on the binary: Simply changing
any VRAM offsets >= 0xFFFD to 0x0000 to avoid
the GPF, and leaving all other bugs in place. Sure, it's rather lazy and
"incorrect"; the function still unblits a 32-pixel block there, but adding a
special case for blitting 24 pixels would add way too much code. And
seriously, it's not like anything happens in the 8 pixels between
(24, 0) and (31, 0) inclusive during gameplay to begin with.
To balance out the additional per-row if() branch, I inlined
the VRAM page change I/O, saving two function calls and one memory write per
unblitted row.
That means it's time for a new community_choice_fixes
build, containing the new definitive bugfixed versions of these games:
2022-05-31-community-choice-fixes.zip
Check the th01_critical_fixes
branch for the modified TH01 code. It also contains a fix for the HP bar
heap corruption in test or debug mode – simply changing the ==
comparison to <= is enough to avoid it, and negative HP will
still create aesthetic glitch art.
Once again, I then was left with ½ of a push, which I finally filled with
some FUUIN.EXE code, specifically the verdict screen. The most
interesting part here is the player title calculation, which is quite
sneaky: There are only 6 skill levels, but three groups of
titles for each level, and the title you'll see is picked from a random
group. It looks like this is the first time anyone has documented the
calculation?
As for the levels, ZUN definitely didn't expect players to do particularly
well. With a 1cc being the standard goal for completing a Touhou game, it's
especially funny how TH01 expects you to continue a lot: The code has
branches for up to 21 continues, and the on-screen table explicitly leaves
room for 3 digits worth of continues per 5-stage scene. Heck, these
counts are even stored in 32-bit long variables.
Next up: 📝 Finally finishing the long
overdue Touhou Patch Center MediaWiki update work, while continuing with
Kikuri in the meantime. Originally I wasn't sure about what to do between
Elis and Seihou,
but with Ember2528's surprise
contribution last week, y'all have
demonstrated more than enough interest in the idea of getting TH01 done
sooner rather than later. And I agree – after all, we've got the 25th
anniversary of its first public release coming up on August 15, and I might
still manage to completely decompile this game by that point…
Here we go, TH01 Sariel! This is the single biggest boss fight in all of
PC-98 Touhou: If we include all custom effect code we previously decompiled,
it amounts to a total of 10.31% of all code in TH01 (and 3.14%
overall). These 8 pushes cover the final 8.10% (or 2.47% overall),
and are likely to be the single biggest delivery this project will ever see.
Considering that I only managed to decompile 6.00% across all games in 2021,
2022 is already off to a much better start!
So, how can Sariel's code be that large? Well, we've got:
16 danmaku patterns; including the one snowflake detonating into a giant
94×32 hitbox
Gratuitous usage of floating-point variables, bloating the binary thanks
to Turbo C++ 4.0J's particularly horrid code generation
The hatching birds that shoot pellets
3 separate particle systems, sharing the general idea, overall code
structure, and blitting algorithm, but differing in every little detail
The "gust of wind" background transition animation
5 sets of custom monochrome sprite animations, loaded from
BOSS6GR?.GRC
A further 3 hardcoded monochrome 8×8 sprites for the "swaying leaves"
pattern during the second form
In total, it's just under 3,000 lines of C++ code, containing a total of 8
definite ZUN bugs, 3 of them being subpixel/pixel confusions. That might not
look all too bad if you compare it to the
📝 player control function's 8 bugs in 900 lines of code,
but given that Konngara had 0… (Edit (2022-07-17):
Konngara contains two bugs after all: A
📝 possible heap corruption in test or debug mode,
and the infamous
📝 temporary green discoloration.)
And no, the code doesn't make it obvious whether ZUN coded Konngara or
Sariel first; there's just as much evidence for either.
Some terminology before we start: Sariel's first form is separated
into four phases, indicated by different background images, that
cycle until Sariel's HP reach 0 and the second, single-phase form
starts. The danmaku patterns within each phase are also on a cycle,
and the game picks a random but limited number of patterns per phase before
transitioning to the next one. The fight always starts at pattern 1 of phase
1 (the random purple lasers), and each new phase also starts at its
respective first pattern.
Sariel's bugs already start at the graphics asset level, before any code
gets to run. Some of the patterns include a wand raise animation, which is
stored in BOSS6_2.BOS:
Umm… OK? The same sprite twice, just with slightly different
colors? So how is the wand lowered again?
The "lowered wand" sprite is missing in this file simply because it's
captured from the regular background image in VRAM, at the beginning of the
fight and after every background transition. What I previously thought to be
📝 background storage code has therefore a
different meaning in Sariel's case. Since this captured sprite is fully
opaque, it will reset the entire 128×128 wand area… wait, 128×128, rather
than 96×96? Yup, this lowered sprite is larger than necessary, wasting 1,967
bytes of conventional memory. That still doesn't quite explain the
second sprite in BOSS6_2.BOS though. Turns out that the black
part is indeed meant to unblit the purple reflection (?) in the first
sprite. But… that's not how you would correctly unblit that?
The first sprite already eats up part of the red HUD line, and the second
one additionally fails to recover the seal pixels underneath, leaving a nice
little black hole and some stray purple pixels until the next background
transition. Quite ironic given that both
sprites do include the right part of the seal, which isn't even part of the
animation.
Just like Konngara, Sariel continues the approach of using a single function
per danmaku pattern or custom entity. While I appreciate that this allows
all pattern- and entity-specific state to be scoped locally to that one
function, it quickly gets ugly as soon as such a function has to do more than one thing.
The "bird function" is particularly awful here: It's just one if(…)
{…} else if(…) {…} else if(…) {…} chain with different
branches for the subfunction parameter, with zero shared code between any of
these branches. It also uses 64-bit floating-point double as
its subpixel type… and since it also takes four of those as parameters
(y'know, just in case the "spawn new bird" subfunction is called), every
call site has to also push four double values onto the stack.
Thanks to Turbo C++ even using the FPU for pushing a 0.0 constant, we
have already reached maximum floating-point decadence before even having
seen a single danmaku pattern. Why decadence? Every possible spawn position
and velocity in both bird patterns just uses pixel resolution, with no
fractional component in sight. And there goes another 720 bytes of
conventional memory.
Speaking about bird patterns, the red-bird one is where we find the first
code-level ZUN bug: The spawn cross circle sprite suddenly disappears after
it finished spawning all the bird eggs. How can we tell it's a bug? Because
there is code to smoothly fly this sprite off the playfield, that
code just suddenly forgets that the sprite's position is stored in Q12.4
subpixels, and treats it as raw screen pixels instead.
As a result, the well-intentioned 640×400
screen-space clipping rectangle effectively shrinks to 38×23 pixels in the
top-left corner of the screen. Which the sprite is always outside of, and
thus never rendered again.
The intended animation is easily restored though:
Sariel's third pattern, and the first to spawn birds, in its original
and fixed versions. Note that I somewhat fixed the bird hatch animation
as well: ZUN's code never unblits any frame of animation there, and
simply blits every new one on top of the previous one.
Also, did you know that birds actually have a quite unfair 14×38-pixel
hitbox? Not that you'd ever collide with them in any of the patterns…
Another 3 of the 8 bugs can be found in the symmetric, interlaced spawn rays
used in three of the patterns, and the 32×32 debris "sprites" shown at their endpoint, at
the edge of the screen. You kinda have to commend ZUN's attention to detail
here, and how he wrote a lot of code for those few rapidly animated pixels
that you most likely don't
even notice, especially with all the other wrong pixels
resulting from rendering glitches. One of the bugs in the very final pattern
of phase 4 even turns them into the vortex sprites from the second pattern
in phase 1 during the first 5 frames of
the first time the pattern is active, and I had to single-step the blitting
calls to verify it.
It certainly was annoying how much time I spent making sense of these bugs,
and all weird blitting offsets, for just a few pixels… Let's look at
something more wholesome, shall we?
So far, we've only seen the PC-98 GRCG being used in RMW (read-modify-write)
mode, which I previously
📝 explained in the context of TH01's red-white HP pattern.
The second of its three modes, TCR (Tile Compare Read), affects VRAM reads
rather than writes, and performs "color extraction" across all 4 bitplanes:
Instead of returning raw 1bpp data from one plane, a VRAM read will instead
return a bitmask, with a 1 bit at every pixel whose full 4-bit color exactly
matches the color at that offset in the GRCG's tile register, and 0
everywhere else. Sariel uses this mode to make sure that the 2×2 particles
and the wind effect are only blitted on top of "air color" pixels, with
other parts of the background behaving like a mask. The algorithm:
Set the GRCG to TCR mode, and all 8 tile register dots to the air
color
Read N bits from the target VRAM position to obtain an N-bit mask where
all 1 bits indicate air color pixels at the respective position
AND that mask with the alpha plane of the sprite to be drawn, shifted to
the correct start bit within the 8-pixel VRAM byte
Set the GRCG to RMW mode, and all 8 tile register dots to the color that
should be drawn
Write the previously obtained bitmask to the same position in VRAM
Quite clever how the extracted colors double as a secondary alpha plane,
making for another well-earned good-code tag. The wind effect really doesn't deserve it, though:
ZUN calculates every intermediate result inside this function
over and over and over again… Together with some ugly
pointer arithmetic, this function turned into one of the most tedious
decompilations in a long while.
This gradual effect is blitted exclusively to the front page of VRAM,
since parts of it need to be unblitted to create the illusion of a gust of
wind. Then again, anything that moves on top of air-colored background –
most likely the Orb – will also unblit whatever it covered of the effect…
As far as I can tell, ZUN didn't use TCR mode anywhere else in PC-98 Touhou.
Tune in again later during a TH04 or TH05 push to learn about TDW, the final
GRCG mode!
Speaking about the 2×2 particle systems, why do we need three of them? Their
only observable difference lies in the way they move their particles:
Up or down in a straight line (used in phases 4 and 2,
respectively)
Left or right in a straight line (used in the second form)
Left and right in a sinusoidal motion (used in phase 3, the "dark
orange" one)
Out of all possible formats ZUN could have used for storing the positions
and velocities of individual particles, he chose a) 64-bit /
double-precision floating-point, and b) raw screen pixels. Want to take a
guess at which data type is used for which particle system?
If you picked double for 1) and 2), and raw screen pixels for
3), you are of course correct! Not that I'm implying
that it should have been the other way round – screen pixels would have
perfectly fit all three systems use cases, as all 16-bit coordinates
are extended to 32 bits for trigonometric calculations anyway. That's what,
another 1.080 bytes of wasted conventional memory? And that's even
calculated while keeping the current architecture, which allocates
space for 3×30 particles as part of the game's global data, although only
one of the three particle systems is active at any given time.
That's it for the first form, time to put on "Civilization
of Magic"! Or "死なばもろとも"? Or "Theme of 地獄めくり"? Or whatever SYUGEN is
supposed to mean…
… and the code of these final patterns comes out roughly as exciting as
their in-game impact. With the big exception of the very final "swaying
leaves" pattern: After 📝 Q4.4,
📝 Q28.4,
📝 Q24.8, and double variables,
this pattern uses… decimal subpixels? Like, multiplying the number by
10, and using the decimal one's digit to represent the fractional part?
Well, sure, if you really insist on moving the leaves in cleanly
represented integer multiples of ⅒, which is infamously impossible in IEEE
754. Aside from aesthetic reasons, it only really combines less precision
(10 possible fractions rather than the usual 16) with the inferior
performance of having to use integer divisions and multiplications rather
than simple bit shifts. And it's surely not because the leaf sprites needed
an extended integer value range of [-3276, +3276], compared to
Q12.4's [-2047, +2048]: They are clipped to 640×400 screen space
anyway, and are removed as soon as they leave this area.
This pattern also contains the second bug in the "subpixel/pixel confusion
hiding an entire animation" category, causing all of
BOSS6GR4.GRC to effectively become unused:
The "swaying leaves" pattern. ZUN intended a splash animation to be
shown once each leaf "spark" reaches the top of the playfield, which is
never displayed in the original game.
At least their hitboxes are what you would expect, exactly covering the
30×30 pixels of Reimu's sprite. Both animation fixes are available on the th01_sariel_fixes
branch.
After all that, Sariel's main function turned out fairly unspectacular, just
putting everything together and adding some shake, transition, and color
pulse effects with a bunch of unnecessary hardware palette changes. There is
one reference to a missing BOSS6.GRP file during the
first→second form transition, suggesting that Sariel originally had a
separate "first form defeat" graphic, before it was replaced with just the
shaking effect in the final game.
Speaking about the transition code, it is kind of funny how the… um,
imperative and concrete nature of TH01 leads to these 2×24
lines of straight-line code. They kind of look like ZUN rattling off a
laundry list of subsystems and raw variables to be reinitialized, making
damn sure to not forget anything.
Whew! Second PC-98 Touhou boss completely decompiled, 29 to go, and they'll
only get easier from here! 🎉 The next one in line, Elis, is somewhere
between Konngara and Sariel as far as x86 instruction count is concerned, so
that'll need to wait for some additional funding. Next up, therefore:
Looking at a thing in TH03's main game code – really, I have little
idea what it will be!
Now that the store is open again, also check out the
📝 updated RE progress overview I've posted
together with this one. In addition to more RE, you can now also directly
order a variety of mods; all of these are further explained in the order
form itself.
TH03 finally passed 20% RE, and the newly decompiled code contains no
serious ZUN bugs! What a nice way to end the year.
There's only a single unlockable feature in TH03: Chiyuri and Yumemi as
playable characters, unlocked after a 1CC on any difficulty. Just like the
Extra Stages in TH04 and TH05, YUME.NEM contains a single
designated variable for this unlocked feature, making it trivial to craft a
fully unlocked score file without recording any high scores that others
would have to compete against. So, we can now put together a complete set
for all PC-98 Touhou games: 2021-12-27-Fully-unlocked-clean-score-files.zip
It would have been cool to set the randomly generated encryption keys in
these files to a fixed value so that they cancel out and end up not actually
encrypting the file. Too bad that TH03 also started feeding each encrypted
byte back into its stream cipher, which makes this impossible.
The main loading and saving code turned out to be the second-cleanest
implementation of a score file format in PC-98 Touhou, just behind TH02.
Only two of the YUME.NEM functions come with nonsensical
differences between OP.EXE and MAINL.EXE, rather
than 📝 all of them, as in TH01 or
📝 too many of them, as in TH04 and TH05. As
for the rest of the per-difficulty structure though… well, it quickly
becomes clear why this was the final score file format to be RE'd. The name,
score, and stage fields are directly stored in terms of the internal
REGI*.BFT sprite IDs used on the high score screen. TH03 also
stores 10 score digits for each place rather than the 9 possible ones, keeps
any leading 0 digits, and stores the letters of entered names in reverse
order… yeah, let's decompile the high score screen as well, for a full
understanding of why ZUN might have done all that. (Answer: For no reason at
all. )
And wow, what a breath of fresh air. It's surely not
good-code: The overlapping shadows resulting from using
a 24-pixel letterspacing with 32-pixel glyphs in the name column led ZUN to
do quite a lot of unnecessary and slightly confusing rendering work when
moving the cursor back and forth, and he even forgot about the EGC there.
But it's nowhere close to the level of jank we saw in
📝 TH01's high score menu last year. Good to
see that ZUN had learned a thing or two by his third game – especially when
it comes to storing the character map cursor in terms of a character ID,
and improving the layout of the character map:
That's almost a nicely regular grid there. With the question mark and the
double-wide SP, BS, and END options, the cursor
movement code only comes with a reasonable two exceptions, which are easily
handled. And while I didn't get this screen completely decompiled,
one additional push was enough to cover all important code there.
The only potential glitch on this screen is a result of ZUN's continued use
of binary-coded
decimal digits without any bounds check or cap. Like the in-game HUD
score display in TH04 and TH05, TH03's high score screen simply uses the
next glyph in the character set for the most significant digit of any score
above 1,000,000,000 points – in this case, the period. Still, it only
really gets bad at 8,000,000,000 points: Once the glyphs are
exhausted, the blitting function ends up accessing garbage data and filling
the entire screen with garbage pixels. For comparison though, the current world record
is 133,650,710 points, so good luck getting 8 billion in the first
place.
Next up: Starting 2022 with the long-awaited decompilation of TH01's Sariel
fight! Due to the 📝 recent price increase,
we now got a window in the cap that
is going to remain open until tomorrow, providing an early opportunity to
set a new priority after Sariel is done.
OK, TH01 missile bullets. Can we maybe have a well-behaved entity type,
without any weirdness? Just once?
Ehh, kinda. Apart from another 150 bytes wasted on unused structure members,
this code is indeed more on the low end in terms of overall jank. It does
become very obvious why dodging these missiles in the YuugenMagan, Mima, and
Elis fights feels so awful though: An unfair 46×46 pixel hitbox around
Reimu's center pixel, combined with the comeback of
📝 interlaced rendering, this time in every
stage. ZUN probably did this because missiles are the only 16×16 sprite in
TH01 that is blitted to unaligned X positions, which effectively ends up
touching a 32×16 area of VRAM per sprite.
But even if we assume VRAM writes to be the bottleneck here, it would
have been totally possible to render every missile in every frame at roughly
the same amount of CPU time that the original game uses for interlaced
rendering:
Note that all missile sprites only use two colors, white and green.
Instead of naively going with the usual four bitplanes, extract the
pixels drawn in each of the two used colors into their own bitplanes.
master.lib calls this the "tiny format".
Use the GRCG to draw these two bitplanes in the intended white and green
colors, halving the amount of VRAM writes compared to the original
function.
(Not using the .PTN format would have also avoided the inconsistency of
storing the missile sprites in boss-specific sprite slots.)
That's an optimization that would have significantly benefitted the game, in
contrast to all of the fake ones
introduced in later games. Then again, this optimization is
actually something that the later games do, and it might have in fact been
necessary to achieve their higher bullet counts without significant
slowdown.
After some effectively unused Mima sprite effect code that is so broken that
it's impossible to make sense out of it, we get to the final feature I
wanted to cover for all bosses in parallel before returning to Sariel: The
separate sprite background storage for moving or animated boss sprites in
the Mima, Elis, and Sariel fights. But, uh… why is this necessary to begin
with? Doesn't TH01 already reserve the other VRAM page for backgrounds?
Well, these sprites are quite big, and ZUN didn't want to blit them from
main memory on every frame. After all, TH01 and TH02 had a minimum required
clock speed of 33 MHz, half of the speed required for the later three games.
So, he simply blitted these boss sprites to both VRAM pages, leading
the usual unblitting calls to only remove the other sprites on top of the
boss. However, these bosses themselves want to move across the screen…
and this makes it necessary to save the stage background behind them
in some other way.
Enter .PTN, and its functions to capture a 16×16 or 32×32 square from VRAM
into a sprite slot. No problem with that approach in theory, as the size of
all these bigger sprites is a multiple of 32×32; splitting a larger sprite
into these smaller 32×32 chunks makes the code look just a little bit clumsy
(and, of course, slower).
But somewhere during the development of Mima's fight, ZUN apparently forgot
that those sprite backgrounds existed. And once Mima's 🚫 casting sprite is
blitted on top of her regular sprite, using just regular sprite
transparency, she ends up with her infamous third arm:
Ironically, there's an unused code path in Mima's unblit function where ZUN
assumes a height of 48 pixels for Mima's animation sprites rather than the
actual 64. This leads to even clumsier .PTN function calls for the bottom
128×16 pixels… Failing to unblit the bottom 16 pixels would have also
yielded that third arm, although it wouldn't have looked as natural. Still
wouldn't say that it was intentional; maybe this casting sprite was just
added pretty late in the game's development?
So, mission accomplished, Sariel unblocked… at 2¼ pushes. That's quite some time left for some smaller stage initialization
code, which bundles a bunch of random function calls in places where they
logically really don't belong. The stage opening animation then adds a bunch
of VRAM inter-page copies that are not only redundant but can't even be
understood without knowing the hidden internal state of the last VRAM page
accessed by previous ZUN code…
In better news though: Turbo C++ 4.0 really doesn't seem to have any
complexity limit on inlining arithmetic expressions, as long as they only
operate on compile-time constants. That's how we get macro-free,
compile-time Shift-JIS to JIS X 0208 conversion of the individual code
points in the 東方★靈異伝 string, in a compiler from 1994. As long as you
don't store any intermediate results in variables, that is…
But wait, there's more! With still ¼ of a push left, I also went for the
boss defeat animation, which includes the route selection after the SinGyoku
fight.
As in all other instances, the 2× scaled font is accomplished by first
rendering the text at regular 1× resolution to the other, invisible VRAM
page, and then scaled from there to the visible one. However, the route
selection is unique in that its scaled text is both drawn transparently on
top of the stage background (not onto a black one), and can also change
colors depending on the selection. It would have been no problem to unblit
and reblit the text by rendering the 1× version to a position on the
invisible VRAM page that isn't covered by the 2× version on the visible one,
but ZUN (needlessly) clears the invisible page before rendering any text.
Instead, he assigned a separate VRAM color for both
the 魔界 and 地獄 options, and only changed the palette value for
these colors to white or gray, depending on the correct selection. This is
another one of the
📝 rare cases where TH01 demonstrates good use of PC-98 hardware,
as the 魔界へ and 地獄へ strings don't need to be reblitted during the selection process, only the Orb "cursor" does.
Then, why does this still not count as good-code? When
changing palette colors, you kinda need to be aware of everything
else that can possibly be on screen, which colors are used there, and which
aren't and can therefore be used for such an effect without affecting other
sprites. In this case, well… hover over the image below, and notice how
Reimu's hair and the bomb sprites in the HUD light up when Makai is
selected:
This push did end on a high note though, with the generic, non-SinGyoku
version of the defeat animation being an easily parametrizable copy. And
that's how you decompile another 2.58% of TH01 in just slightly over three
pushes.
Now, we're not only ready to decompile Sariel, but also Kikuri, Elis, and
SinGyoku without needing any more detours into non-boss code. Thanks to the
current TH01 funding subscriptions, I can plan to cover most, if not all, of
Sariel in a single push series, but the currently 3 pending pushes probably
won't suffice for Sariel's 8.10% of all remaining code in TH01. We've got
quite a lot of not specifically TH01-related funds in the backlog to pass
the time though.
Due to recent developments, it actually makes quite a lot of sense to take a
break from TH01: spaztron64 has
managed what every Touhou download site so far has failed to do: Bundling
all 5 game onto a single .HDI together with pre-configured PC-98
emulators and a nice boot menu, and hosting the resulting package on a
proper website. While this first release is already quite good (and much
better than my attempt from 2014), there is still a bit of room for
improvement to be gained from specific ReC98 research. Next up,
therefore:
Researching how TH04 and TH05 use EMS memory, together with the cause
behind TH04's crash in Stage 5 when playing as Reimu without an EMS driver
loaded, and
reverse-engineering TH03's score data file format
(YUME.NEM), which hopefully also comes with a way of building a
file that unlocks all characters without any high scores.
No technical obstacles for once! Just pure overcomplicated ZUN code. Unlike
📝 Konngara's main function, the main TH01
player function was every bit as difficult to decompile as you would expect
from its size.
With TH01 using both separate left- and right-facing sprites for all of
Reimu's moves and separate classes for Reimu's 32×32 and 48×*
sprites, we're already off to a bad start. Sure, sprite mirroring is
minimally more involved on PC-98, as the planar
nature of VRAM requires the bits within an 8-pixel byte to also be
mirrored, in addition to writing the sprite bytes from right to left. TH03
uses a 256-byte lookup table for this, generated at runtime by an infamous
micro-optimized and undecompilable ASM algorithm. With TH01's existing
architecture, ZUN would have then needed to write 3 additional blitting
functions. But instead, he chose to waste a total of 26,112 bytes of memory
on pre-mirrored sprites…
Alright, but surely selecting those sprites from code is no big deal? Just
store the direction Reimu is facing in, and then add some branches to the
rendering code. And there is in fact a variable for Reimu's direction…
during regular arrow-key movement, and another one while shooting and
sliding, and a third as part of the special attack types,
launched out of a slide.
Well, OK, technically, the last two are the same variable. But that's even
worse, because it means that ZUN stores two distinct enums at
the same place in memory: Shooting and sliding uses 1 for left,
2 for right, and 3 for the "invalid" direction of
holding both, while the special attack types indicate the direction in their
lowest bit, with 0 for right and 1 for left. I
decompiled the latter as bitflags, but in ZUN's code, each of the 8
permutations is handled as a distinct type, with copy-pasted and adapted
code… The interpretation of this
two-enum "sub-mode" union variable is controlled
by yet another "mode" variable… and unsurprisingly, two of the bugs in this
function relate to the sub-mode variable being interpreted incorrectly.
Also, "rendering code"? This one big function basically consists of separate
unblit→update→render code snippets for every state and direction Reimu can
be in (moving, shooting, swinging, sliding, special-attacking, and bombing),
pasted together into a tangled mess of nested if(…) statements.
While a lot of the code is copy-pasted, there are still a number of
inconsistencies that defeat the point of my usual refactoring treatment.
After all, with a total of 85 conditional branches, anything more than I did
would have just obscured the control flow too badly, making it even harder
to understand what's going on.
In the end, I spotted a total of 8 bugs in this function, all of which leave
Reimu invisible for one or more frames:
2 frames after all special attacks
2 frames after swing attacks, and
4 frames before swing attacks
Thanks to the last one, Reimu's first swing animation frame is never
actually rendered. So whenever someone complains about TH01 sprite
flickering on an emulator: That emulator is accurate, it's the game that's
poorly written.
And guess what, this function doesn't even contain everything you'd
associate with per-frame player behavior. While it does
handle Yin-Yang Orb repulsion as part of slides and special attacks, it does
not handle the actual player/Orb collision that results in lives being lost.
The funny thing about this: These two things are done in the same function…
Therefore, the life loss animation is also part of another function. This is
where we find the final glitch in this 3-push series: Before the 16-frame
shake, this function only unblits a 32×32 area around Reimu's center point,
even though it's possible to lose a life during the non-deflecting part of a
48×48-pixel animation. In that case, the extra pixels will just stay on
screen during the shake. They are unblitted afterwards though, which
suggests that ZUN was at least somewhat aware of the issue?
Finally, the chance to see the alternate life loss sprite is exactly ⅛.
As for any new insights into game mechanics… you know what? I'm just not
going to write anything, and leave you with this flowchart instead. Here's
the definitive guide on how to control Reimu in TH01 we've been waiting for
24 years:
Pellets are deflected during all gray
states. Not shown is the obvious "double-tap Z and X" transition from
all non-(#1) states to the Bomb state, but that would have made this
diagram even more unwieldy than it turned out. And yes, you can shoot
twice as fast while moving left or right.
While I'm at it, here are two more animations from MIKO.PTN
which aren't referenced by any code:
With that monster of a function taken care of, we've only got boss sprite animation as the final blocker of uninterrupted Sariel progress. Due to some unfavorable code layout in the Mima segment though, I'll need to spend a bit more time with some of the features used there. Next up: The missile bullets used in the Mima and YuugenMagan fights.
Nothing really noteworthy in TH01's stage timer code, just yet another HUD
element that is needlessly drawn into VRAM. Sure, ZUN applies his custom
boldfacing effect on top of the glyphs retrieved from font ROM, but he could
have easily installed those modified glyphs as gaiji.
Well, OK, halfwidth gaiji aren't exactly well documented, and sometimes not
even correctly emulated
📝 due to the same PC-98 hardware oddity I was researching last month.
I've reserved two of the pending anonymous "anything" pushes for the
conclusion of this research, just in case you were wondering why the
outstanding workload is now lower after the two delivered here.
And since it doesn't seem to be clearly documented elsewhere: Every 2 ticks
on the stage timer correspond to 4 frames.
So, TH01 rank pellet speed. The resident pellet speed value is a
factor ranging from a minimum of -0.375 up to a maximum of 0.5 (pixels per
frame), multiplied with the difficulty-adjusted base speed for each pellet
and added on top of that same speed. This multiplier is modified
every time the stage timer reaches 0 and
HARRY UP is shown (+0.05)
for every score-based extra life granted below the maximum number of
lives (+0.025)
every time a bomb is used (+0.025)
on every frame in which the rand value (shown in debug
mode) is evenly divisible by
(1800 - (lives × 200) - (bombs × 50)) (+0.025)
every time Reimu got hit (set to 0 if higher, then -0.05)
when using a continue (set to -0.05 if higher, then -0.125)
Apparently, ZUN noted that these deltas couldn't be losslessly stored in an
IEEE 754 floating-point variable, and therefore didn't store the pellet
speed factor exactly in a way that would correspond to its gameplay effect.
Instead, it's stored similar to Q12.4 subpixels: as a simple integer,
pre-multiplied by 40. This results in a raw range of -15 to 20, which is
what the undecompiled ASM calls still use. When spawning a new pellet, its
base speed is first multiplied by that factor, and then divided by 40 again.
This is actually quite smart: The calculation doesn't need to be aware of
either Q12.4 or the 40× format, as
((Q12.4 * factor×40) / factor×40) still comes out as a
Q12.4 subpixel even if all numbers are integers. The only limiting issue
here would be the potential overflow of the 16-bit multiplication at
unadjusted base speeds of more than 50 pixels per frame, but that'd be
seriously unplayable.
So yeah, pellet speed modifications are indeed gradual, and don't just fall
into the coarse three "high, normal, and low" categories.
That's ⅝ of P0160 done, and the continue and pause menus would make good
candidates to fill up the remaining ⅜… except that it seemed impossible to
figure out the correct compiler options for this code?
The issues centered around the two effects of Turbo C++ 4.0J's
-O switch:
Optimizing jump instructions: merging duplicate successive jumps into a
single one, and merging duplicated instructions at the end of conditional
branches into a single place under a single branch, which the other branches
then jump to
Compressing ADD SP and POP CX
stack-clearing instructions after multiple successive CALLs to
__cdecl functions into a single ADD SP with the
combined parameter stack size of all function calls
But how can the ASM for these functions exhibit #1 but not #2? How
can it be seemingly optimized and unoptimized at the same time? The
only option that gets somewhat close would be -O- -y, which
emits line number information into the .OBJ files for debugging. This
combination provides its own kind of #1, but these functions clearly need
the real deal.
The research into this issue ended up consuming a full push on its own.
In the end, this solution turned out to be completely unrelated to compiler
options, and instead came from the effects of a compiler bug in a totally
different place. Initializing a local structure instance or array like
const uint4_t flash_colors[3] = { 3, 4, 5 };
always emits the { 3, 4, 5 } array into the program's data
segment, and then generates a call to the internal SCOPY@
function which copies this data array to the local variable on the stack.
And as soon as this SCOPY@ call is emitted, the -O
optimization #1 is disabled for the entire rest of the translation
unit?!
So, any code segment with an SCOPY@ call followed by
__cdecl functions must strictly be decompiled from top to
bottom, mirroring the original layout of translation units. That means no
TH01 continue and pause menus before we haven't decompiled the bomb
animation, which contains such an SCOPY@ call. 😕
Luckily, TH01 is the only game where this bug leads to significant
restrictions in decompilation order, as later games predominantly use the
pascal calling convention, in which each function itself clears
its stack as part of its RET instruction.
What now, then? With 51% of REIIDEN.EXE decompiled, we're
slowly running out of small features that can be decompiled within ⅜ of a
push. Good that I haven't been looking a lot into OP.EXE and
FUUIN.EXE, which pretty much only got easy pieces of
code left to do. Maybe I'll end up finishing their decompilations entirely
within these smaller gaps? I still ended up finding one more small
piece in REIIDEN.EXE though: The particle system, seen in the
Mima fight.
I like how everything about this animation is contained within a single
function that is called once per frame, but ZUN could have really
consolidated the spawning code for new particles a bit. In Mima's fight,
particles are only spawned from the top and right edges of the screen, but
the function in fact contains unused code for all other 7 possible
directions, written in quite a bloated manner. This wouldn't feel quite as
unused if ZUN had used an angle parameter instead…
Also, why unnecessarily waste another 40 bytes of
the BSS segment?
But wait, what's going on with the very first spawned particle that just
stops near the bottom edge of the screen in the video above? Well, even in
such a simple and self-contained function, ZUN managed to include an
off-by-one error. This one then results in an out-of-bounds array access on
the 80th frame, where the code attempts to spawn a 41st
particle. If the first particle was unlucky to be both slow enough and
spawned away far enough from the bottom and right edges, the spawning code
will then kill it off before its unblitting code gets to run, leaving its
pixel on the screen until something else overlaps it and causes it to be
unblitted.
Which, during regular gameplay, will quickly happen with the Orb, all the
pellets flying around, and your own player movement. Also, the RNG can
easily spawn this particle at a position and velocity that causes it to
leave the screen more quickly. Kind of impressive how ZUN laid out the
structure
of arrays in a way that ensured practically no effect of this bug on the
game; this glitch could have easily happened every 80 frames instead.
He almost got close to all bugs canceling out each other here!
Next up: The player control functions, including the second-biggest function
in all of PC-98 Touhou.
…or maybe not that soon, as it would have only wasted time to
untangle the bullet update commits from the rest of the progress. So,
here's all the bullet spawning code in TH04 and TH05 instead. I hope
you're ready for this, there's a lot to talk about!
(For the sake of readability, "bullets" in this blog post refers to the
white 8×8 pellets
and all 16×16 bullets loaded from MIKO16.BFT, nothing else.)
But first, what was going on📝 in 2020? Spent 4 pushes on the basic types
and constants back then, still ended up confusing a couple of things, and
even getting some wrong. Like how TH05's "bullet slowdown" flag actually
always prevents slowdown and fires bullets at a constant speed
instead. Or how "random spread" is not the
best term to describe that unused bullet group type in TH04.
Or that there are two distinct ways of clearing all bullets on screen,
which deserve different names:
Mechanic #1: Clearing bullets for a custom amount of
time, awarding 1000 points for all bullets alive on the first frame,
and 100 points for all bullets spawned during the clear time.
Mechanic #2: Zapping bullets for a fixed 16 frames,
awarding a semi-exponential and loudly announced Bonus!! for all
bullets alive on the first frame, and preventing new bullets from being
spawned during those 16 frames. In TH04 at least; thanks to a ZUN bug,
zapping got reduced to 1 frame and no animation in TH05…
Bullets are zapped at the end of most midboss and boss phases, and
cleared everywhere else – most notably, during bombs, when losing a
life, or as rewards for extends or a maximized Dream bonus. The
Bonus!! points awarded for zapping bullets are calculated iteratively,
so it's not trivial to give an exact formula for these. For a small number
𝑛 of bullets, it would exactly be 5𝑛³ - 10𝑛² + 15𝑛
points – or, using uth05win's (correct) recursive definition,
Bonus(𝑛) = Bonus(𝑛-1) + 15𝑛² - 5𝑛 + 10.
However, one of the internal step variables is capped at a different number
of points for each difficulty (and game), after which the points only
increase linearly. Hence, "semi-exponential".
On to TH04's bullet spawn code then, because that one can at least be
decompiled. And immediately, we have to deal with a pointless distinction
between regular bullets, with either a decelerating or constant
velocity, and special bullets, with preset velocity changes during
their lifetime. That preset has to be set somewhere, so why have
separate functions? In TH04, this separation continues even down to the
lowest level of functions, where values are written into the global bullet
array. TH05 merges those two functions into one, but then goes too far and
uses self-modifying code to save a grand total of two local variables…
Luckily, the rest of its actual code is identical to TH04.
Most of the complexity in bullet spawning comes from the (thankfully
shared) helper function that calculates the velocities of the individual
bullets within a group. Both games handle each group type via a large
switch statement, which is where TH04 shows off another Turbo
C++ 4.0 optimization: If the range of case values is too
sparse to be meaningfully expressed in a jump table, it usually generates a
linear search through a second value table. But with the -G
command-line option, it instead generates branching code for a binary
search through the set of cases. 𝑂(log 𝑛) as the worst case for a
switch statement in a C++ compiler from 1994… that's so cool.
But still, why are the values in TH04's group type enum all
over the place to begin with?
Unfortunately, this optimization is pretty rare in PC-98 Touhou. It only
shows up here and in a few places in TH02, compared to at least 50
switch value tables.
In all of its micro-optimized pointlessness, TH05's undecompilable version
at least fixes some of TH04's redundancy. While it's still not even
optimal, it's at least a decently written piece of ASM…
if you take the time to understand what's going on there, because it
certainly took quite a bit of that to verify that all of the things which
looked like bugs or quirks were in fact correct. And that's how the code
for this function ended up with 35% comments and blank lines before I could
confidently call it "reverse-engineered"…
Oh well, at least it finally fixes a correctness issue from TH01 and TH04,
where an invalid bullet group type would fill all remaining slots in the
bullet array with identical versions of the first bullet.
Something that both games also share in these functions is an over-reliance
on globals for return values or other local state. The most ridiculous
example here: Tuning the speed of a bullet based on rank actually mutates
the global bullet template… which ZUN then works around by adding a wrapper
function around both regular and special bullet spawning, which saves the
base speed before executing that function, and restores it afterward.
Add another set of wrappers to bypass that exact
tuning, and you've expanded your nice 1-function interface to 4 functions.
Oh, and did I mention that TH04 pointlessly duplicates the first set of
wrapper functions for 3 of the 4 difficulties, which can't even be
explained with "debugging reasons"? That's 10 functions then… and probably
explains why I've procrastinated this feature for so long.
At this point, I also finally stopped decompiling ZUN's original ASM just
for the sake of it. All these small TH05 functions would look horribly
unidiomatic, are identical to their decompiled TH04 counterparts anyway,
except for some unique constant… and, in the case of TH05's rank-based
speed tuning function, actually become undecompilable as soon as we
want to return a C++ class to preserve the semantic meaning of the return
value. Mainly, this is because Turbo C++ does not allow register
pseudo-variables like _AX or _AL to be cast into
class types, even if their size matches. Decompiling that function would
have therefore lowered the quality of the rest of the decompiled code, in
exchange for the additional maintenance and compile-time cost of another
translation unit. Not worth it – and for a TH05 port, you'd already have to
decompile all the rest of the bullet spawning code anyway!
The only thing in there that was still somewhat worth being
decompiled was the pre-spawn clipping and collision detection function. Due
to what's probably a micro-optimization mistake, the TH05 version continues
to spawn a bullet even if it was spawned on top of the player. This might
sound like it has a different effect on gameplay… until you realize that
the player got hit in this case and will either lose a life or deathbomb,
both of which will cause all on-screen bullets to be cleared anyway.
So it's at most a visual glitch.
But while we're at it, can we please stop talking about hitboxes? At least
in the context of TH04 and TH05 bullets. The actual collision detection is
described way better as a kill delta of 8×8 pixels between the
center points of the player and a bullet. You can distribute these pixels
to any combination of bullet and player "hitboxes" that make up 8×8. 4×4
around both the player and bullets? 1×1 for bullets, and 8×8 for the
player? All equally valid… or perhaps none of them, once you keep in mind
that other entity types might have different kill deltas. With that in
mind, the concept of a "hitbox" turns into just a confusing abstraction.
The same is true for the 36×44 graze box delta. For some reason,
this one is not exactly around the center of a bullet, but shifted to the
right by 2 pixels. So, a bullet can be grazed up to 20 pixels right of the
player, but only up to 16 pixels left of the player. uth05win also spotted
this… and rotated the deltas clockwise by 90°?!
Which brings us to the bullet updates… for which I still had to
research a decompilation workaround, because
📝 P0148 turned out to not help at all?
Instead, the solution was to lie to the compiler about the true segment
distance of the popup function and declare its signature far
rather than near. This allowed ZUN to save that ridiculous overhead of 1 additional far function
call/return per frame, and those precious 2 bytes in the BSS segment
that he didn't have to spend on a segment value.
📝 Another function that didn't have just a
single declaration in a common header file… really,
📝 how were these games even built???
The function itself is among the longer ones in both games. It especially
stands out in the indentation department, with 7 levels at its most
indented point – and that's the minimum of what's possible without
goto. Only two more notable discoveries there:
Bullets are the only entity affected by Slow Mode. If the number of
bullets on screen is ≥ (24 + (difficulty * 8) + rank) in TH04,
or (42 + (difficulty * 8)) in TH05, Slow Mode reduces the frame
rate by 33%, by waiting for one additional VSync event every two frames.
The code also reveals a second tier, with 50% slowdown for a slightly
higher number of bullets, but that conditional branch can never be executed
Bullets must have been grazed in a previous frame before they can
be collided with. (Note how this does not apply to bullets that spawned
on top of the player, as explained earlier!)
Whew… When did ReC98 turn into a full-on code review?! 😅 And after all
this, we're still not done with TH04 and TH05 bullets, with all the
special movement types still missing. That should be less than one push
though, once we get to it. Next up: Back to TH01 and Konngara! Now have fun
rewriting the Touhou Wiki Gameplay pages 😛
Only one newly ordered push since I've reopened the store? Great, that's
all the justification I needed for the extended maintenance delay that was
part of these two pushes 😛
Having to write comments to explain whether coordinates are relative to
the top-left corner of the screen or the top-left corner of the playfield
has finally become old. So, I introduced
distinct
types for all the coordinate systems we typically encounter, applying
them to all code decompiled so far. Note how the planar nature of PC-98
VRAM meant that X and Y coordinates also had to be different from each
other. On the X side, there's mainly the distinction between the
[0; 640] screen space and the corresponding [0; 80] VRAM byte
space. On the Y side, we also have the [0; 400] screen space, but
the visible area of VRAM might be limited to [0; 200] when running in
the PC-98's line-doubled 640×200 mode. A VRAM Y coordinate also always
implies an added offset for vertical scrolling.
During all of the code reconstruction, these types can only have a
documenting purpose. Turning them into anything more than just
typedefs to int, in order to define conversion
operators between them, simply won't recompile into identical binaries.
Modding and porting projects, however, now have a nice foundation for
doing just that, and can entirely lift coordinate system transformations
into the type system, without having to proofread all the meaningless
int declarations themselves.
So, what was left in terms of memory references? EX-Alice's fire waves
were our final unknown entity that can collide with the player. Decently
implemented, with little to say about them.
That left the bomb animation structures as the one big remaining PI
blocker. They started out nice and simple in TH04, with a small 6-byte
star animation structure used for both Reimu and Marisa. TH05, however,
gave each character her own animation… and what the hell is going
on with Reimu's blue stars there? Nope, not going to figure this out on
ASM level.
A decompilation first required some more bomb-related variables to be
named though. Since this was part of a generic RE push, it made sense to
do this in all 5 games… which then led to nice PI gains in anything
but TH05. Most notably, we now got the
"pulling all items to player" flag in TH04 and TH05, which is
actually separate from bombing. The obvious cheat mod is left as an
exercise to the reader.
So, TH05 bomb animations. Just like the
📝 custom entity types of this game, all 4
characters share the same memory, with the superficially same 10-byte
structure.
But let's just look at the very first field. Seen from a low level, it's a
simple struct { int x, y; } pos, storing the current position
of the character-specific bomb animation entity. But all 4 characters use
this field differently:
For Reimu's blue stars, it's the top-left position of each star, in the
12.4 fixed-point format. But unlike the vast majority of these values in
TH04 and TH05, it's relative to the top-left corner of the
screen, not the playfield. Much better represented as
struct { Subpixel screen_x, screen_y; } topleft.
For Marisa's lasers, it's the center of each circle, as a regular 12.4
fixed-point coordinate, relative to the top-left corner of the playfield.
Much better represented as
struct { Subpixel x, y; } center.
For Mima's shrinking circles, it's the center of each circle in regular
pixel coordinates. Much better represented as
struct { screen_x_t x; screen_y_t y; } center.
For Yuuka's spinning heart, it's the top-left corner in regular pixel
coordinates. Much better represented as
struct { screen_x_t x; screen_y_t y; } topleft.
And yes, singular. The game is actually smart enough to only store a single
heart, and then create the rest of the circle on the fly. (If it were even
smarter, it wouldn't even use this structure member, but oh well.)
Therefore, I decompiled it as 4 separate structures once again, bundled
into an union of arrays.
As for Reimu… yup, that's some pointer arithmetic straight out of
Jigoku* for setting and updating the positions of the falling star
trails. While that certainly required several
comments to wrap my head around the current array positions, the one "bug"
in all this arithmetic luckily has no effect on the game.
There is a small glitch with the growing circles, though. They are
spawned at the end of the loop, with their position taken from the star
pointer… but after that pointer has already been incremented. On
the last loop iteration, this leads to an out-of-bounds structure access,
with the position taken from some unknown EX-Alice data, which is 0 during
most of the game. If you look at the animation, you can easily spot these
bugged circles, consistently growing from the top-left corner (0, 0)
of the playfield:
After all that, there was barely enough remaining time to filter out and
label the final few memory references. But now, TH05's
MAIN.EXE is technically position-independent! 🎉
-Tom- is going to work on a pretty extensive demo of this
unprecedented level of efficient Touhou game modding. For a more impactful
effect of both the 100% PI mark and that demo, I'll be delaying the push
covering the remaining false positives in that binary until that demo is
done. I've accumulated a pretty huge backlog of minor maintenance issues
by now…
Next up though: The first part of the long-awaited build system
improvements. I've finally come up with a way of sanely accelerating the
32-bit build part on most setups you could possibly want to build ReC98
on, without making the building experience worse for the other few setups.
Back to TH05! Thanks to the good funding situation, I can strike a nice
balance between getting TH05 position-independent as quickly as possible,
and properly reverse-engineering some missing important parts of the game.
Once 100% PI will get the attention of modders, the code will then be in
better shape, and a bit more usable than if I just rushed that goal.
By now, I'm apparently also pretty spoiled by TH01's immediate
decompilability, after having worked on that game for so long.
Reverse-engineering in ASM land is pretty annoying, after all,
since it basically boils down to meticulously editing a piece of ASM into
something I can confidently call "reverse-engineered". Most of the
time, simply decompiling that piece of code would take just a little bit
longer, but be massively more useful. So, I immediately tried decompiling
with TH05… and it just worked, at every place I tried!? Whatever the issue
was that made 📝 segment splitting so
annoying at my first attempt, I seem to have completely solved it in the
meantime. 🤷 So yeah, backers can now request pretty much any part of TH04
and TH05 to be decompiled immediately, with no additional segment
splitting cost.
(Protip for everyone interested in starting their own ReC project: Just
declare one segment per function, right from the start, then group them
together to restore the original code segmentation…)
Except that TH05 then just throws more of its infamous micro-optimized and
undecompilable ASM at you. 🙄 This push covered the function that adjusts
the bullet group template based on rank and the selected difficulty,
called every time such a group is configured. Which, just like pretty
much all of TH05's bullet spawning code, is one of those undecompilable
functions. If C allowed labels of other functions as goto
targets, it might have been decompilable into something useful to
modders… maybe. But like this, there's no point in even trying.
This is such a terrible idea from a software architecture point of view, I
can't even. Because now, you suddenly have to mirror your C++
declarations in ASM land, and keep them in sync with each other. I'm
always happy when I get to delete an ASM declaration from the codebase
once I've decompiled all the instances where it was referenced. But for
TH05, we now have to keep those declarations around forever. 😕 And all
that for a performance increase you probably couldn't even measure. Oh
well, pulling off Galaxy Brain-level ASM optimizations is kind of
fun if you don't have portability plans… I guess?
If I started a full fangame mod of a PC-98 Touhou game, I'd base it on
TH04 rather than TH05, and backport selected features from TH05 as
needed. Just because it was released later doesn't make it better, and
this is by far not the only one of ZUN's micro-optimizations that just
went way too far.
Dropping down to ASM also makes it easier to introduce weird quirks.
Decompiled, one of TH05's tuning conditions for
stack
groups on Easy Mode would look something like:
case BP_STACK:
// […]
if(spread_angle_delta >= 2) {
stack_bullet_count--;
}
The fields of the bullet group template aren't typically reset when
setting up a new group. So, spread_angle_delta in the context
of a stack group effectively refers to "the delta angle of the last
spread group that was fired before this stack – whenever that was".
uth05win also spotted this quirk, considered it a bug, and wrote
fanfiction by changing spread_angle_delta to
stack_bullet_count.
As usual for functions that occur in more than one game, I also decompiled
the TH04 bullet group tuning function, and it's perfectly sane, with no
such quirks.
In the more PI-focused parts of this push, we got the TH05-exclusive
smooth boss movement functions, for flying randomly or towards a given
point. Pretty unspectacular for the most part, but we've got yet another
uth05win inconsistency in the latter one. Once the Y coordinate gets close
enough to the target point, it actually speeds up twice as much as the
X coordinate would, whereas uth05win used the same speedup factors for
both. This might make uth05win a couple of frames slower in all boss
fights from Stage 3 on. Hard to measure though – and boss movement partly
depends on RNG anyway.
Next up: Shinki's background animations – which are actually the single
biggest source of position dependence left in TH05.
Now that's more like the speed I was expecting! After a few more
unused functions for palette fading and rectangle blitting, we've reached
the big line drawing functions. And the biggest one among them,
drawing a straight line at any angle between two points using
Bresenham's algorithm, actually happens to be the single longest
function present in more than one binary in all of PC-98 Touhou, and #23
on the list of individual longest functions.
And it technically has a ZUN bug! If you pass a point outside the
(0, 0) - (639, 399) screen range, the function will calculate a new point
at the edge of the screen, so that the resulting line will retain the
angle intended by the points given. Except that it does so by calculating
the line slope using an integer division rather than a floating-point one
Doesn't seem like it actually causes any weirdly
skewed lines to be drawn in-game, though; that case is only hit in the
Mima boss fight, which draws a few lines with a bottom coordinate of
400 rather than the maximum of 399. It might also cause the wrong
background pixels to be restored during parts of the YuugenMagan fight,
leading to flickering sprites, but seriously, that's an issue everywhere
you look in this game.
Together with the rendering-text-to-VRAM function we've mostly already
known from TH02, this pushed the total RE percentage well over 20%, and
almost doubled the TH01 RE percentage, all within three pushes. And
comparatively, it went really smoothly, to the point (ha) where I
even had enough time left to also include the single-point functions that
come next in that code segment. Since about half of the remaining
functions in OP.EXE are present in more than just itself,
I'll be able to at least keep up this speed until OP.EXE hits
the 70% RE mark. That is, as long as the backers' priorities continue to
be generic RE or "giving some love to TH01"… we don't have a precedent for
TH01's actual game code yet.
And that's all the TH01 progress funded for January! Next up, we actually
do have a focus on TH03's game and scoring mechanics… or at least
the foundation for that.