⮜ Blog

⮜ List of tags

Showing all posts tagged
and

📝 Posted:
🚚 Summary of:
P0278, P0279
Commits:
b6a7285...f0fbaf6, f0fbaf6...20bac82
💰 Funded by:
Yanga, Blue Bolt
🏷 Tags:

That was quick: In a surprising turn of events, Romantique Tp themselves came in just one day after the last blog post went up, updated me with their current and much more positive opinion on Sound Canvas VA, and confirmed that real SC-88Pro hardware clamps invalid Reverb Macro values to the specified range. I promised to release a new Sound Canvas VA BGM pack for free once I knew the exact behavior of real hardware, so let's go right back to Seihou and also integrate the necessary SysEx patches into the game's MIDI player behind a toggle. This would also be a great occasion to quickly incorporate some long overdue code maintenance and build system improvements, and a migration to C++ modules in particular. When I started the Shuusou Gyoku Linux port a year ago, the combination of modules and <windows.h> threw lots of weird errors and even crashed the Visual Studio compiler. But nowadays, Microsoft even uses modules in the Office code base. This must mean that these issues are fixed by now, right?
Well, there's still a bug that causes the modularized C++ standard library to be basically unusable in combination with the static analyzer, and somehow, I was the first one to report it. So it's 3½ years after C++20 was finalized, and somehow, modules are still a bleeding-edge feature and a second-class citizen in even the compiler that supports them the best. I want fast compile times already! 😕
Thankfully, Microsoft agrees that this is a bug, and will work on it at some point. While we're waiting, let's return to the original plan of decompiling the endings of the one PC-98 Touhou game that still needed them decompiled.

  1. TH02's endings
  2. TH02's Staff Roll
  3. TH02's verdict screen, and its hidden challenge
  4. TH02's end-of-stage bonus screens

After the textless slideshows of TH01, TH02 was the first Touhou game to feature lore text in its endings. Given that this game stores its 📝 in-game dialog text in fixed-size plaintext files, you wouldn't expect anything more fancy for the endings either, so it's not surprising to see that the END?.TXT files use the same concept, with 44 visible bytes per line followed by two bytes of padding for the CR/LF newline sequence. Each of these lines is typed to the screen in full, with all whitespace and a fixed time for each 2-byte chunk.
As a result, everything surrounding the text is just as hardcoded as TH01's endings were, which once again opens up the possibility of freely integrating all sorts of creative animations without the overhead of an interpreter. Sadly, TH02 only makes use of this freedom in a mere two cases: the picture scrolling effect from Reimu's head to Marisa's head in the Bad Endings, and a single hardware palette change in the Good Endings.

Powered by master.lib's egc_shift_down().
Screenshot of the (0-based) line #13 in TH02's Good Endings, together with its associated (and colored) pictureScreenshot of the (0-based) line #14 in TH02's Good Endings, showing off how it doesn't change the picture of the previous line and only applies a different grayscale palette
Same image, different palette. Note how the palette for 2️⃣ must still contain a green color for the VRAM-rendered bold text, which the image is not supposed to use.

Hardcoding also still made sense for this game because of how the ending text is structured. The Good and Bad Endings for the individual shot types respectively share 55% and 77% of their text, and both only diverge after the first 27 lines. In straight-line procedural code, this translates to one branch for each shot type at a single point, neatly matching the high-level structure of these endings.

But that's the end of the positive or neutral aspects I can find in these scripts. The worst part, by far, is ZUN's approach to displaying the text in alternating colors, and how it impacts the entire structure of the code.
The simplest solution would have involved a hardcoded array with the color of each line, just like how the in-game dialogs store the face IDs for each text box. But for whatever reason, ZUN did not apply this piece of wisdom to the endings and instead hardcoded these color changes by… mutating a global variable before calling the text typing function for every individual line.:zunpet: This approach ruins any possibility of compressing the script code into loops. While ZUN did use loops, all of them are very short because they can only last until the next color change. In the end, the code contains 90 explicitly spelled-out calls to the 5-parameter line typing function that only vary in the pointer to each line and in the slower speed used for the one or two final lines of each ending. As usual, I've deduplicated the code in the ReC98 repository down to a sensible level, but here's the full inlined and macro-expanded horror:

Raw decompilation of TH02's script function for its three Bad Endings, without inline function or macro trickeryRaw decompilation of TH02's script function for its three Good Endings, without inline function or macro trickery
It's highly likely that this is what ZUN hacked into his PC-98 and was staring at back in 1997. :godzun:

All this redundancy bloats the two script functions for the 6 endings to a whopping 3,344 bytes inside TH02's MAINE.EXE. In particular, the single function that covers the three Good Endings ends up with a total of 631 x86 ASM instructions, making it the single largest function in TH02 and the 7th longest function in all of PC-98 Touhou. If the 📝 single-executable build for TH02's debloated and anniversary branches ends up needing a few more KB to reduce its size below the original MAIN.EXE, there are lots of opportunities to compress it all.

The ending text can also be fast-forwarded by holding any key. As we've come to expect for this sort of ZUN code, the text typing function runs its own rendering loop with VSync delays and input detection, which means that we 📝 once 📝 again have to talk about the infamous quirk of the PC-98 keyboard controller in relation to held keys. We've still got 54 not yet decompiled calls to input detection functions left in this codebase, are you excited yet?! :tannedcirno:
Holding any key speeds up the text of all ending lines before the last one by displaying two kana/kanji instead of one per rendered frame and reducing the delay between the rendered frames to 1/3 of its regular length. In pseudocode:

for(i = 0; i < number_of_2_byte_chunks_on_displayed_line; i++) {
	input = convert_current_pc98_bios_input_state_to_game_specific_bitflags();
	add_chunk_to_internal_text_buffer(i);
	blit_internal_text_buffer_from_the_beginning();
	if(input == INPUT_NONE) {
		// Basic case, no key pressed
		frame_delay(frames_per_chunk);
	} else if((i % 2) == 1) {
		// Key pressed, chunk number is odd.
		frame_delay(frames_per_chunk / 3);
	} else {
		// Key pressed, chunk number is even.
		// No delay; next iteration adds to the same frame.
	}
}

This is exactly the kind of code you would write if you wanted to deliberately maximize the impact of this hardware quirk. If the game happens to read the current input state right after a key up scancode for the last previously held and game-relevant key, it will then wrongly take the branch that uninterruptibly waits for the regular, non-divided amount of VSync interrupts. In my tests, this broke the rhythm of the fast-forwarded text about once per line. Note how this branch can also be taken on an even chunk: Rendering glyphs straight from font ROM to VRAM is not exactly cheap, and if each iteration (needlessly) blits one more full-width glyph than the last one, the probability of a key up scancode arriving in the middle of a frame only increases.
The fact that TH02 allows any of the supported input keys to be held points to another detail of this quirk I haven't mentioned so far. If you press multiple keys at once, the PC-98's keyboard controller only sends the periodic key up scancodes as long as you are holding the last key you pressed. Because the controller only remembers this last key, pressing and releasing any other key would get rid of these scancodes for all keys you are still holding.
As usual, this ZUN bug only occurs on real hardware and with DOSBox-X's correct emulation of the PC-98 keyboard controller.


After the ending, we get to witness the most seamless transition between ending and Staff Roll in any Touhou game as the BGM immediately changes to the Staff Roll theme, and the ending picture is shifted into the same place where the Staff Roll pictures will appear. Except that the code misses the exact position by four pixels, and cuts off another four pixels at the right edge of the picture:

Also, note the green 1-pixel line at the right edge of this specific picture. This is a bug in the .PI file where the picture is indeed shifted one pixel to the left. :zunpet:

What follows is a comparatively large amount of unused content for a single scene. It starts right at the end of this underappreciated 11-frame animation loaded from ENDFT.BFT:

TH02's ENDFT.BFT
Wastefully using the 4bpp BFNT format. The single ZUN frame at the end of the animation is unused; while it might look identical to the ZUN glyphs later on in the Staff Roll, that's only because both are independently rendered boldfaced versions of the same font ROM glyphs. Then again, it does prove that ZUN created this animation on a PC-98 model made by NEC, as the Epson clones used a font ROM with a distinctly different look.

TH02's Staff Roll is also unique for the pre-made screenshots of all 5 stages that get shown together with a fancy rotating rectangle animation while the Staff Roll progresses in sync with the BGM. The first interesting detail shows up immediately after the first image, where the code jumps over one of the 320×200 quarters in ED06.PI, leaving the screenshot of the Stage 2 midboss unused.
All of the cutscenes in PC-98 Touhou store their pictures as 320×200 quarters within a single 640×400 .PI file. Anywhere else, all four quarters are supposed to be displayed with the same palette specified in the .PI header, but TH02's Staff Roll screenshots are also unique in how all quarters beyond the top-left one require palettes loaded from external .RGB files to look right. Consequently, the game doesn't clearly specify the intended palette of this unused screenshot, and leaves two possibilities:

The unused second 320×200 quarter of TH02's ED06.PI, displayed in the Stage 2 color palette used in-game.
The unused second 320×200 quarter of TH02's ED06.PI, displayed in the palette specified in the .PI header. These are the colors you'd see when looking at the file in a .PI viewer, when converting it into another format with the usual tools, or in sprite rips that don't take TH02's hardcoded palette changes into account. These colors are only intended for the Stage 1 screenshot in the top-left quarter of the file.
The unused second 320×200 quarter of TH02's ED06.PI, displayed in the palette from ED06B.RGB, which the game uses for the following screenshot of the Meira fight. As it's from the same stage, it almost matches the in-game colors seen in 1️⃣, and only differs in the white color (#FFF) being slightly red-tinted (#FCC).

It might seem obvious that the Stage 2 palette in 1️⃣ is the correct one, but ZUN indeed uses ED06B.RGB with the red-tinted white color for the following screenshot of the Meira fight. Not only does this palette not match Meira's in-game appearance, but it also discolors the rectangle animation and the surrounding Staff Roll text:

Also, that tearing on frame #1 is not a recording artifact, but the expected result of yet another VSync-related landmine. 💣 This time, it's caused by the combination of 1) the entire sequence from the ending to the verdict screen being single-buffered, and 2) this animation always running immediately after an expensive operation (640×400 .PI image loading and blitting to VRAM, 320×200 VRAM inter-page copy, or hardware palette loading from a packed file), without waiting for the VSync interrupt. This makes it highly likely for the first frame of this animation to start rendering at a point where the (real or emulated) electron beam has already traveled over a significant portion of the screen.

But when I went into Stage 2 to compare these colors to the in-game palette, I found something even more curious. ZUN obviously made this screenshot with the Reimu-C shot type, but one of the shot sprites looks slightly different from how it does in-game. :thonk: These screenshots must have been made earlier in development when the sprite didn't yet feature the second ring at the top. The same applies to the Stage 4 screenshot later on:

Original version of the third 320×200 quarter from TH02's ED06.PI, representing the Meira boss fight and showing off an old version of the Reimu-C shot spritesOriginal version of the first 320×200 quarter from TH02's ED07.PI, representing Stage 4 and showing off an old version of the Reimu-C shot sprites
Edited version of the third 320×200 quarter from TH02's ED06.PI, representing the Meira boss fight; Reimu-C's shot sprites were replaced with their final versionEdited version of the first 320×200 quarter from TH02's ED07.PI, representing Stage 4; Reimu-C's shot sprites were replaced with their final version

Finally, the rotating rectangle animation delivers one more minor rendering bug. Each of the 20 frames removes the largest and outermost rectangle from VRAM by redrawing it in the same black color of the background before drawing the remaining rectangles on top. The corners of these rectangles are placed on a shrinking circle that starts with a radius of 256 pixels and is centered at (192, 200), which results in a maximum possible X coordinate of 448 for the rightmost corner of the rectangle. However, the Staff Roll text starts at an X coordinate of 416, causing the first two full-width glyphs to still fall within the area of the circle. Each line of text is also only rendered once before the animation. So if any of the rectangles then happens to be placed at an angle that causes its edges to overlap the text, its removal will cut small holes of black pixels into the glyphs:

The green dotted circle corresponds to the newest/smallest rectangle. Note how ZUN only happened to avoid the holes for the two final animations by choosing an initial angle and angular velocity that causes the resulting rectangles to just barely avoid touching the TEST PLAYER glyphs.

At least the following verdict screen manages to have no bugs aside from the slightly imperfect centering of its table values, and only comes with a small amount of additional bloat. Let's get right to the mapping from skill points to the 12 title strings from END3.TXT, because one of them is not like the others:

SkillTitle
≥100神を超えた巫女!!
90 - 99もはや神の領域!!
80 - 99A級シューター!!
78 - 79うきうきゲーマー!
77バニラはーもにー!
70 - 76うきうきゲーマー!
60 - 69どきどきゲーマー!
50 - 59要練習ゲーマー
40 - 49非ゲーマー級
30 - 39ちょっとだめ
20 - 29非人間級
10 - 19人間でない何か
≤9死んでいいよ、いやいやまじで
Looks like I'm the first one to document the required skill points as well? Everyone else just copy-pastes END3.TXT without providing context.

So how would you get exactly 77 and achieve vanilla harmony? Here's the formula:

Difficulty level* × 20
+10 - (Continues used × 3)
+max((50 - (Lives lost × 3) - Bombs used), 0)
+min(max(📝 item_skill, 0), 25)
* Ranges from 0 (Easy) to 3 (Lunatic).
Across all 5 stages.
With Easy Mode capping out at 85, this is possible on every difficulty, although it requires increasingly perfect play the lower you go. Reaching 77 on purpose, however, pretty much demands a careful route through the entire game, as every collected and missed item will influence the item_skill in some way. This almost feels it's like the ultimate challenge that this game has to offer. Looking forward to the first Vanilla Harmony% run!

And with that, TH02's MAINE.EXE is both fully position-independent and ready for translation. There's a tiny bit of undecompiled bit of code left in the binary, but I'll leave that for rounding up a future TH02 decompilation push.


With one of the game's skill-based formulas decompiled, it's fitting to round out the second push with the other two. The in-game bonus tables at the end of a stage also have labels that we'd eventually like to translate, after all.
The bonus formula for the 4 regular stages is also the first place where we encounter TH02's rank value, as well as the only instance in PC-98 Touhou where the game actually displays a rank-derived value to the player. KirbyComment and Colin Douglas Howell accurately documented the rank mechanics over at Touhou Wiki two years ago, which helped quite a bit as rank would have been slightly out of scope for these two pushes. 📝 Similar to TH01, TH02's rank value only affects bullet speed, but the exact details of how rank is factored in will have to wait until RE progress arrives at this game's bullet system.
These bonuses are calculated by taking a sum of various gameplay metrics and multiplying it with the amount of point items collected during the stage. In the 4 regular stages, the sum consists of:

 難易度 Difficulty level* × 2,000
ステージ (Rank + 16) ×   200
ボム max((2,500 - (Bombs used* ×   500)), 0)
ミス max((3,000 - (Lives lost* × 1,000)), 0)
靈撃初期数 (4 - Starting bombs) ×   800
靈夢初期数 (5 - Starting lives) × 1,000
* Within this stage, across all continues.
Yup, 封魔録.TXT does indeed document this correctly.

As rank can range from -6 to +4 on Easy and +16 on the other difficulties, this sum can range between:

EasyNormalHardLunatic
Minimum 2,8004,8006,8008,800
Maximum 16,70021,10023,10025,100

The sum for the Extra Stage is not documented in 封魔録.TXT:

クリア 10,000
ミス回数 max((20,000 - (Lives lost × 4,000)), 0)
ボム回数 max((20,000 - (Bombs used × 4,000)), 0)
クリアタイム ⌊max((20,000 - Boss fight frames*), 0) ÷ 10⌋ × 10
* Amount of frames spent fighting Evil Eye Σ, counted from the end of the pre-boss dialog until the start of the defeat animation.

And that's two pushes packed full of the most bloated and copy-pasted code that's unique to TH02! So bloated, in fact, that TH02 RE as a whole jumped by almost 7%, which in turn finally pushed overall RE% over the 60% mark. 🎉 It's been a while since we hit a similar milestone; 50% overall RE happened almost 2 years ago during 📝 P0204, a month before I completed the TH01 decompilation.
Next up: Continuing to wait for Microsoft to fix the static analyzer bug until May at the latest, and working towards the newly popular dreams of TH03 netplay by looking at some of its foundational gameplay code.

📝 Posted:
🚚 Summary of:
P0262, P0263
Commits:
ae2fc28...741d889, 741d889...46cd6e7
💰 Funded by:
Blue Bolt, [Anonymous]
🏷 Tags:

And once again, the Shuusou Gyoku task was too complex to be satisfyingly solved within a single month. Even just finding provably correct loop sections in both the original and arranged MIDI files required some rather involved detection algorithms. I could have just defined what sounded like correct loops, but the results of these algorithms were quite surprising indeed. Turns out that not even Seihou is safe from ZUN quirks, and some tracks technically loop much later than you'd think they do, or don't loop at all. And since I then wanted to put these MIDI loops back into the game to ensure perfect synchronization between the recordings and MIDI versions, I ended up rewriting basically all the MIDI code in a cross-platform way. This rewrite also uncovered a pbg bug that has traveled from Shuusou Gyoku into Windows Touhou, where it survived until ZUN ultimately removed all MIDI code in TH11 (!)

Fortunately, the backlog still had enough general PC-98 Touhou funds that I could spend on picking some soon-important low-hanging fruit, giving me something to deliver for the end of the month after all. TH04 and TH05 use almost identical code for their main/option menus, so decompiling it would make number go up quite significantly and the associated blog post won't be that long…

Wait, what's this, a bug report from touhou-memories concerning the website?

  1. Tab switchers tended to break on certain Firefox versions, and
  2. video playback didn't work on Microsoft Edge at all?

Those are definitely some high-priority bugs that demand immediate attention.

  1. Microsoft Edge's anti-support of AV1
  2. TH04/TH05's main/option menu
  3. TH04/TH05's first-launch sound setup menu
  4. TH05's title animation ☯️

The tab switcher issue was easily fixed by replacing the previous z-index trickery with a more robust solution involving the hidden attribute. The second one, however, is much more aggravating, because video playback on Edge has been broken ever since I 📝 switched the preferred video codec to AV1.
This goes so far beyond not supporting a specific codec. Usually, unsupported codecs aren't supposed to be an issue: As soon as you start using the HTML <video> tag, you'll learn that not every browser supports all codecs. And so you set up an encoding pipeline to serve each video in a mix of new and ancient formats, put the <source> tag of the most preferred codec first, and rest assured that browsers will fall back on the best-supported option as necessary. Except that Edge doesn't even try, and insists on staying on a non-playing AV1 video. 🙄

The codecs parameter for the <source> type attribute was the first potential solution I came across. Specifying the video codec down to the finest encoding details right in the HTML markup sounds like a good idea, similar to specifying sizes of images and videos to prevent layout reflows on long pages during the initial page load. So why was this the first time I heard of this feature? The fact that there isn't a simple ffprobe -show_html_codecs_string command to retrieve this string might already give a clue about how useful it is in practice. Instead, you have to manually piece the string together by grepping your way through all of a video's metadata
…and then it still doesn't change anything about Edge's behavior, even when also specifying the string for the VP9 and VP8 sources. Calling the infamously ridiculous HTMLMediaElement.canPlayType() method with a representative parameter of "video/webm; codecs=av01.1.04M.08.0.000.01.13.00.0" explains why: Both the AV1-supporting Chrome and Edge return "probably", but only the former can actually play this format. 🤦

But wait, there is an AV1 video extension in the Microsoft Store that would add support to any unspecified favorite video app. Except that it stopped working inside Edge as of version 116. And even if it did: If you can't query the presence of this extension via JavaScript, it might as well not exist at all.
Not to mention that the favorite video app part is obviously a lie as a lot of widely preferred Windows video apps are bundled with their own codecs, and have probably long supported AV1.

In the end, there's no way around the utter desperation move of removing the AV1 <source> for Edge users. Serving each video in two other formats means that we can at least do something here – try visiting the GitHub release page of the P0234-1 TH01 Anniversary Edition build in Edge and you also don't get to see anything, because that video uses AV1 and GitHub understandably doesn't re-encode every uploaded video into a variety of old formats.
Just for comparison, I tried both that page and the ReC98 blog on an old Android 6 phone from 2014, and even that phone picked and played the AV1 videos with the latest available Chrome and Firefox versions. This was the phone whose available Firefox version didn't support VP9 in 2019, which was my initial reason for adding the VP8 versions. Looks like it's finally time to drop those… 🤔 Maybe in the far future once I start running out of space on this server.

Removing the <source> tags can be done in one of two places:

  1. server-side, detecting Edge via the User-Agent header, or
  2. client-side, using navigator.userAgentData.brands.

I went with 2) because more dynamic server-side code would only move us further away from static site generation, which would make a lot of sense as the next evolutionary step in the architecture of this website. The client-side solution is much simpler too, and we can defer the deletion until a user actually hovers over a specific video.
And while we're at it, let's also add a popup complaining about this whole state of affairs. Edge is heavily marketed inside Windows as "the modern browser recommended by Microsoft", and you sure wouldn't expect low-quality chroma-subsampled VP9 from such a tagline. With such a level of anti-support for AV1, Edge users deserve to know exactly what's going on, especially since this post also explains what they will encounter on other websites.

A popup on top of a ReC98 blog video, showing the caption "⚠️ Edge does not support AV1, falling back on low-quality video…"
That's the polite way of putting it.

Alright, where was I? For TH01, the main menu was the last thing I decompiled before the 100% finalization mark, so it's rather anticlimactic to already cover the TH04/TH05 one now, with both of the games still being very far away from 100%, just because people will soon want to translate the description text in the bottom-right corner of the screen. But then again, the ZUN Soft logo animation would make for an even nicer final piece of decompiled code, especially since the bouncing-ball logo from TH01, TH02, and TH03 was the very first decompilation I did, all the way back in 2015.

The code quality of ZUN's VRAM-based menus has barely increased between TH01 and TH05. Both the top-level and option menu still need to know the bounding rectangle of the other one to unblit the right pixels when switching between the two. And since ZUN sure loved hardcoded and copy-pasted numbers in the PC-98 days, the coordinates both tend to be excessively large, and excessively wrong. :zunpet: Luckily, each menu item comes with its own correct unblitting rectangle, which avoids any graphical glitches that would otherwise occur.
As for actual observable quirks and bugs, these menus only contain one of each, and both are exclusive to TH04:

And yes, these videos do have a frame rate of 2 FPS.

Now that 100% finalization of their OP.EXE binaries is within reach, all this bloat made me think about the viability of a 📝 single-executable build for TH04's and TH05's debloated and anniversary versions. It would be really nice to have such a build ready before I start working on the non-ASCII translations – not just because they will be based on the anniversary branch by default, but also because it would significantly help their development if there are 4 fewer executables to worry about.
However, it's not as simple for these games as it was for TH01. The unique code in their OP.EXE and MAINE.EXE binaries is much larger than Borland's easily removed C++ exception handler, so I'd have to remove a lot more bloat to keep the resulting single binary at or below the size of the original MAIN.EXE. But I'm sure going to try.


Speaking of code that can be debloated for great effect: The second push of this delivery focused on the first-launch sound setup menu, whose BGM and sound effect submenus are almost complete code duplicates of each other. The debloated branch could easily remove more than half of the code in there, yielding another ≈800 bytes in case we need them.
If hex-editing MIKO.CFG is more convenient for you than deleting that file, you can set its first byte to FF to re-trigger this menu. Decompiling this screen was not only relevant now because it contains text rendered with font ROM glyphs and it would help dig our way towards more important strings in the data segment, but also because of its visual style. I can imagine many potential mods that might want to use the same backgrounds and box graphics for their menus.

TH04's first-launch sound setup menu, showing the BGM mode selectionTH05's first-launch sound setup menu, showing the sound effect mode selection
How about an initial language selection menu in the same style?

With the two submenus being shown in a fixed sequence, there's not a lot of room for the code to do anything wrong, and it's even more identical between the two games than the main menu already was. Thankfully, ZUN just reblits the respective options in the new color when moving the cursor, with no 📝 palette tricks. TH04's background image only uses 7 colors, so he could have easily reserved 3 colors for that. In exchange, the TH05 image gets to use the full 16 colors with no change to the code.


Rounding out this delivery, we also got TH05's rolling Yin-Yang Orb animation before the title screen… and it's just more bloat and landmines on a smaller scale that might be noticeable on slower PC-98 models. In total, there are three unnecessary inter-page copies of the entire VRAM that can easily insert lag frames, and two minor page-switching landmines that can potentially lead to tearing on the first frame of the roll or fade animation. Clearly, ZUN did not have smoothness or code quality in mind there, as evidenced by the fact that this animation simply displays 8 .PI files in sequence. But hey, a short animation like this is 📝 another perfectly appropriate place for a quick-and-dirty solution if you develop with a deadline.
And that's 1.30% of all PC-98 Touhou code finalized in two pushes! We're slowly running out of these big shared pieces of ASM code…

I've been neglecting TH03's OP.EXE quite a bit since it simply doesn't contain any translatable plaintext outside the Music Room. All menu labels are gaiji, and even the character selection menu displays its monochrome character names using the 4-plane sprites from CHNAME.BFT. Splitting off half of its data into a separate .ASM file was more akin to getting out a jackhammer to free up the room in front of the third remaining Music Room, but now we're there, and I can decompile all three of them in a natural way, with all referenced data.
Next up, therefore: Doing just that, securing another important piece of text for the upcoming non-ASCII translations and delivering another big piece of easily finalized code. I'm going to work full-time on ReC98 for almost all of December, and delivering that and the Shuusou Gyoku SC-88Pro recording BGM back-to-back should free up about half of the slightly higher cap for this month.

📝 Posted:
🚚 Summary of:
P0258, P0259, P0260, P0261
Commits:
5876755...e8a0b3e, e8a0b3e...dfaa3c6, dfaa3c6...ed9ee93, ed9ee93...ae2fc28
💰 Funded by:
Blue Bolt, [Anonymous], Yanga, Splashman
🏷 Tags:

And we're back to PC-98 Touhou for a brief interruption of the ongoing Shuusou Gyoku Linux port. Let's clear some of the Touhou-related progress from the backlog, and use the unconstrained nature of these contributions to prepare the 📝 upcoming non-ASCII translations commissioned by Touhou Patch Center. The current budget won't cover all of my ambitions, but it would at least be nice if all text in these games was feasibly translatable by the time I officially start working on that project.

At a little over 3 pushes, it might be surprising to see that this took longer than the 📝 TH03/TH04/TH05 cutscene system. It's obvious that TH02 started out with a different system for in-game dialog, but while TH04 and TH05 look identical on the surface, they only actually share 30% of their dialog code. So this felt more like decompiling 2.4 distinct systems, as opposed to one identical base with tons of game-specific differences on top.

The table of contents was pretty popular last time around, so let's have another one:

  1. Overview of TH04's dialog system
  2. Changes introduced in TH05
  3. Command reference for the TH04 and TH05 systems
  4. Overview of TH02's dialog system
  5. TH02's face portrait images
  6. Bugs during TH02's dialog box slide-in animation
  7. Bugs and quirks in Mima's defeat dialog (might be lore-relevant)
  8. TH03 win messages

Let's start with the ones from TH04 and TH05, since they are not that broken. For TH04, ZUN started out by copy-pasting the cutscene system, causing the result to inherit many of the caveats I already described in the cutscene blog post:

Then, however, he greatly simplified the system. Mainly, this was done by moving text rendering from the PC-98 graphics chip to the text chip, which avoids the need for any text-related unblitting code, but ZUN also added a bunch of smaller changes:

While it would seem that TH05 has no issues with ASCII 0x20 spaces, the text as a whole is still blindly processed two bytes at a time, and any commands can only appear at even byte positions within a line. I dimmed the VRAM pixels to 25% of their original brightness to make the text easier to read.
The same text backported to TH04, additionally demonstrating how that game's dialog system inherited the whitespace skipping behavior of TH03's cutscene system. Just like there, ASCII 0x20 spaces only work at odd byte positions because the game treats them as the trailing byte of a full-width Shift-JIS codepoint. I don't know how large the budget for the upcoming non-ASCII translations will be, but I'm going to fix this even in the very basic fully static variant. I dimmed the VRAM pixels to 25% of their original brightness to make the text easier to read.
Demonstrating the lack of automatic line or box breaks in TH05's dialog systemDemonstrating the lack of automatic line or box breaks in TH04's dialog system, in addition to its lack of support for ASCII 0x20 spaces carried over from TH03's cutscene system

TH05 then moved from TH04's plaintext scripts to the binary .TX2 format while removing all the unused commands copy-pasted from the cutscene system. Except for a single additional command intended to clear a text box, TH05's dialog system only supports a strict subset of the features of TH04's system.
This change also introduced the following differences compared to TH04:

Writing the 0x02 byte to text RAM results in an SX character, which is simply the PC-98 font ROM's glyph for that Shift-JIS codepoint.
Also note how each face change is now preceded by two frames of delay.
No problem in TH04. Note how the dialog also runs a bit faster – TH04 only adds the aforementioned one frame of delay to each face change, and has fewer two-byte chunks of text to display overall.

For modding these files, you probably want to use TXDEF from -Tom-'s MysticTK. It decodes these files into a text representation, and its encoder then takes care of the character-specific byte offsets in the 10-byte header. This text representation simplifies the format a lot by avoiding all corner cases and landmines you'd experience during hex-editing – most notably by interpreting the box-starting 0x0D as a command to show text that takes a string parameter, avoiding the broken calls to script commands in the middle of text. However, you'd still have to manually ensure an even number of bytes on every line of text.

In the entry function of TH05's dialog loop, we also encounter the hack that is responsible for properly handling 📝 ZUN's hidden Extra Stage replay. Since the dialog loop doesn't access the replay inputs but still requires key presses to advance through the boxes, ZUN chose to just skip the dialog altogether in the specific case of the Extra Stage replay being active, and replicated all sprite management commands from the dialog script by just hardcoding them.
And you know what? Not only do I not mind this hack, but I would have preferred it over the actual dialog system! The aforementioned sprite management commands effectively boil down to manual memory management, deallocating all stage enemy and midboss sprites and thus ensuring that the boss sprites end up at specific master.lib sprite IDs (patnums). The hardcoded boss rendering function then expects these sprites to be available at these exact IDs… which means that the otherwise hardcoded bosses can't render properly without the dialog script running before them. :zunpet:
There is absolutely no excuse for the game to burden dialog scripts with this functionality. Sure, delayed deallocation would allow them to blit stage-specific sprites, but the original games don't do that; probably because none of the two games feature an unblitting command. And even if they did, it would have still been cleaner to expose the boss-specific sprite setup as a single script command that can then also be called from game code if the script didn't do so. Commands like these just are a recipe for crashes, especially with parsers that expect fullwidth Shift-JIS text and where misaligned ASCII text can easily cause these commands to be skipped.

But then again, it does make for funny screenshot material if you accidentally the deallocation and then see bosses being turned into stage enemies:

TH04's dialog before the Stage 4 Marisa fight without deallocating the stage sprites inside the script, causing Marisa to be turned into one of the stage enemiesTH04's dialog before the Stage 6 Yuuka fight without deallocating the stage sprites inside the script, causing Yuuka to be turned into two different cels of the same stage enemyTH05's dialog before the Louise fight without deallocating the stage sprites inside the script, causing Louise to be turned into one of the ice enemies from TH05's Stage 2TH05's dialog before the Louise fight without deallocating the stage sprites inside the script, causing Mai and Yuki to be turned into a windmill and fairy/demon enemy, respectively
Some of the more amusing consequences of not calling the sprite-deallocating :th04: \c /  :th05: 0x04 command inside a dialog script.
In the case of 4️⃣, the game then even crashes on this frame at the end of the dialog, in a way that resembles the infamous 📝 TH04 crash before Stage 5 Yuuka if no EMS driver is loaded. Both the stage- and boss-specific BFNT sprites are loaded into memory at this point, leaving no room for the 256×256-pixel background image on the size-limited master.lib heap.

With all the general details out of the way, here's the command reference:

:th04: :th05:
0
1
0x00
0x01
Selects either the player character (0) or the boss (1) as the currently speaking character, and moves the cursor to the beginning of the text box. In TH04, this command also directly starts the new dialog box, which is probably why it's not prefixed with a \ as it only makes sense outside of text. TH05 requires a separate 0x0D command to do the same.
\=1 0x02 0x!! Replaces the face portrait of the currently active speaking character with image #1 within her .CD2 file.
\=255 0x02 0xFF Removes the face portrait from the currently active text box.
\l,filename 0x03 filename 0x00 Calls master.lib's super_entry_bfnt() function, which loads sprites from a BFNT file to consecutive IDs starting at the current patnum write cursor.
\c 0x04 Deallocates all stage-specific BFNT sprites (i.e., stage enemies and midbosses), freeing up conventional RAM for the boss sprites and ensuring that master.lib's patnum write cursor ends up at :th04: 128 / :th05: 180.
In TH05's Extra Stage, this command also replaces 📝 the sprites loaded from MIKO16.BFT with the ones from ST06_16.BFT.
\d Deallocates all face portrait images.
The game automatically does this at the end of each dialog sequence. However, ZUN wanted to load Stage 6 Yuuka's 76 KiB of additional animations inside the script via \l, and would have once again run up against the master.lib heap size limit without that extra free memory.
\m,filename 0x05 filename 0x00 Stops the currently playing BGM, loads a new one from the given file, and starts playback.
\m$ 0x05 $ 0x00 Stops the currently playing BGM.
Note that TH05 interprets $ as a null-terminated filename as well.
\m* Restarts playback of the currently loaded BGM from the beginning.
\b0,0,0 0x06 0x!!!! 0x!!!! 0x!! Blits the master.lib patnum with the ID indicated by the third parameter to the current VRAM page at the top-left screen position indicated by the first two parameters.
\e0 Plays the sound effect with the given ID.
\t100 Sets palette brightness via master.lib's palette_settone() to any value from 0 (fully black) to 200 (fully white). 100 corresponds to the palette's original colors.
\fo1
\fi1
Calls master.lib's palette_black_out() or palette_black_in() to play a hardware palette fade animation from or to black, spending roughly 1 frame on each of the 16 fade steps.
\wo1
\wi1
0x09 0x!!
0x0A 0x!!
Calls master.lib's palette_white_out() or palette_white_in() to play a hardware palette fade animation from or to white, spending roughly 1 frame on each of the 16 fade steps.
The TH05 version of 0x09 also clears the text in both boxes before the animation.
\n 0x0B Starts a new line by resetting the X coordinate of the TRAM cursor to the left edge of the text area and incrementing the Y coordinate.
The new line will always be the next one below the last one that was properly started, regardless of whether the text previously wrapped to the next TRAM row at the edge of the screen.
\g8 Plays a blocking 8-frame screen shake animation. Copy-pasted from the cutscene parser, but actually used right at the end of the dialog shown before TH04's Bad Ending.
\ga0 0x0C 0x!! Shows the gaiji with the given ID from 0 to 255 at the current cursor position, ignoring the per-glyph delay.
\k0 Waits 0 frames (0 = forever) for any key to be pressed before continuing script execution.
0x0D Starts a new dialog box with the previously selected speaker. All text until the next 0xFF command will appear on screen.
Inside dialogs, this is a no-op.
0x0E Takes the current dialog cursor as the top-left corner of a 240×48-pixel rectangle, and replaces all text RAM characters within that rectangle with whitespace.
This is only used to clear the player character's text box before Shinki's final いくよ‼ box. Shinki has two consecutive text boxes in all 4 scripts here, and ZUN probably wanted to clear the otherwise blue text to imply a dramatic pause before Shinki's final sentence. Nice touch.
(You could, however, also use it after a box-ending 0xFF command to mess with text RAM in general.)
\# Quits the currently running loop. This returns from either the text loop to the command loop, or it ends the dialog sequence by returning from the command loop back to gameplay. If this stage of the game later starts another dialog sequence, it will start at the next script byte.
\$ Like \#, but first waits for any key to be pressed.
0xFF Behaves like TH04's \$ in the text loop, and like \# in the command loop. Hence, it's not possible in TH05 to automatically end a text box and advance to the next one without waiting for a key press.
Unused commands are in gray.

At the end of the day, you might criticize the system for how its landmines make it annoying to mod in ASCII text, but it all works and does what it's supposed to. ZUN could have written the cleanest single and central Shift-JIS iterator that properly chunks a byte buffer into halfwidth and fullwidth codepoints, and I'd still be throwing it out for the upcoming non-ASCII translations in favor of something that either also supports UTF-8 or performs dictionary lookups with a full box of text.
The only actual bug can be found in the input detection, which once again doesn't correctly handle the infamous key up/key down scancode quirk of PC-98 keyboards. All it takes is one wrongly placed input polling call, and suddenly you have to think about how the update cycle behind the PC-98 keyboard state bytes might cause the game to run the regular 2-frame delay for a single 2-byte chunk of text before it shows the full text of a box after all… But even this bug is highly theoretical and could probably only be observed very, very rarely, and exclusively on real hardware.


The same can't be said about TH02 though, but more on that later. Let's first take a look at its data, which started out much simpler in that game. The STAGE?.TXT files contain just raw Shift-JIS text with no trace of commands or structure. Turning on the whitespace display feature in your editor reveals how the dialog system even assumes a fixed byte length for each box: 36 bytes per line which will appear on screen, followed by 4 bytes of padding, which the original files conveniently use to visually split the lines via a CR/LF newline sequence. Make sure to disable trimming of trailing whitespace in your editor to not ruin the file when modding the text… :onricdennat:

靈夢:あんた、まだ名前も聞いてないの··
······に覚えられないわよ。・・・・・··
里香:あたいは、里香よ。覚えときなさ··
・・・い。・・・・・・················
Two boxes from TH02's STAGE5.TXT with visualized whitespace. These also demonstrate how the CR/LF newlines only make up 2 of the 4 padding bytes, and require each line to be padded with two more bytes; you could not use these trailing spaces for actual text. Also note how the exquisite mixture of fullwidth and halfwidth spaces demands the text to be viewed with only the most metrically consistent monospace fonts to preserve the intended alignment. 🍷 It appears quite misaligned on my phone.

Consequently, everything else is hardcoded – every effect shown between text boxes, the face portrait shown for each box, and even how many boxes are part of each dialog sequence. Which means that the source code now contains a long hardcoded list of face IDs for most of the text boxes in the game, with the rest being part of the dedicated hardcoded dialog scripts for 2/3 of the game's stages.
Without the restriction to a fixed set of scripting commands, TH02 naturally gravitated to having the most varied dialog sequences of all PC-98 Touhou games. This flexibility certainly facilitated Mima's grand entrance animation in Stage 4, or the different lines in Stage 4 and 5 depending on whether you already used a continue or not. Marisa's post-boss dialog even inserts the number of continues into the text itself – by, you guessed it, writing to hardcoded byte offsets inside the dialog text before printing it to the screen. :godzun: But once again, I have nothing to criticize here – not even the fact that the alternate dialog scripts have to mutate the "box cursor" to jump to the intended boxes within the file. I know that some people in my audience like VMs, but I would have considered it more bloated if ZUN had implemented a full-blown scripting language just to handle all these special cases.


Another unique aspect of TH02 is the way it stores its face portraits, which are infamous for how hard they are to find in the original data files. These sprites are actually map tiles, stored in MIKO_K.MPN, and drawn using the same functions used to blit the regular map tiles to the 📝 tile source area in VRAM. We can only guess why ZUN chose this one out of the three graphics formats he used in TH02:

TH02's MIKO_K.PTN, arranged into a 16×16-tile layout that reveals how these tiles are combined into face portraits.
MPNDEF from -Tom-'s MysticTK conveniently uses this exact layout in its .BMP output. Earlier MPNDEF versions crashed when converting this file as its 256 tiles led to an 8-bit overflow bug, so make sure you've updated to the current version from the end of October 2023 if you want to convert this file yourself. The format stores the 4 bitplanes of each 16×16 tile in order, so good luck finding a different planar image viewer that would support both such a tiled layout and a custom palette. Sometimes, a weird internal format is the best type of obfuscation. :tannedcirno:
TH02's MIKO_K.PTN with the 16×16 tile grid overlaid

And since you're certainly wondering about all these black tiles at the edges: Yes, these are not only part of the file and pad it from the required 240×192 pixels to 256×256, but also kept in memory during a stage, wasting 9.5 KiB of conventional RAM. That's 172 seconds of potential input replay data, just for those people who might still think that we need EMS for replays.


Alright, we've got the text, we've got the faces, let's slide in the box and display it all on screen. Apparently though, we also have to blit the player and option sprites using raw, low-level master.lib function calls in the process? :thonk: This can't be right, especially because ZUN always blits the option sprite associated with the Reimu-A shot type, regardless of which one the player actually selected. And if you keep moving above the box area before the dialog starts, you get to see exactly how wrong this is:

Let's look closer at Reimu's sprite during the slide-in animation, and in the two frames before:

Zoomed-in area around Reimu's sprite from frame 35 of the video aboveZoomed-in area around Reimu's sprite from frame 36 of the video aboveZoomed-in area around Reimu's sprite from frame 37 of the video above

This one image shows off no less than 4 bugs:

  1. ZUN blits the stationary player sprite here, regardless of whether the player was previously moving left or right. This is a nice way of indicating that Reimu stops moving once the dialog starts, but maybe ZUN should have unblitted the old sprite so that the new one wouldn't have appeared on top. The game only unblits the 384×64 pixels covered by the dialog box on every frame of the slide-in animation, so Reimu would only appear correctly if her sprite happened to be entirely located within that area.
  2. All sprites are shifted up by 1 pixel in frame 2️⃣. This one is not a bug in the dialog system, but in the main game loop. The game runs the relevant actions in the following order:

    1. Invalidate any map tiles covered by entities
    2. Redraw invalidated tiles
    3. Decrement the Y coordinate at the top of VRAM according to the scroll speed
    4. Update and render all game entities
    5. Scroll in new tiles as necessary according to the scroll speed, and report whether the game has scrolled one pixel past the end of the map
    6. If that happened, pretend it didn't by incrementing the value calculated in #3 for all further frames and skipping to #8.
    7. Issue a GDC SCROLL command to reflect the line calculated in #3 on the display
    8. Wait for VSync
    9. Flip VRAM pages
    10. Start boss if we're past the end of the map

    The problem here: Once the dialog starts, the game has already rendered an entire new frame, with all sprites being offset by a new Y scroll offset, without adjusting the graphics GDC's scroll registers to compensate. Hence, the Y position in 3️⃣ is the correct one, and the whole existence of frame 2️⃣ is a bug in itself. (Well… OK, probably a quirk because speedrunning exists, and it would be pretty annoying to synchronize any video regression tests of the future TH02 Anniversary Edition if it renders one fewer frame in the middle of a stage.)

  3. ZUN blits the option sprites to their position from frame 1️⃣. This brings us back to 📝 TH02's special way of retaining the previous and current position in a two-element array, indexed with a VRAM page ID. Normally, this would be equivalent to using dedicated prev and cur structure fields and you'd just index it with the back page for every rendering call. But if you then decide to go single-buffered for dialogs and render them onto the front page instead… :zunpet:
    Note that fixing bug #2 would not cancel out this one – the sprites would then simply be rendered to their position in the frame before 1️⃣.

  4. And of course, the fixed option sprite ID also counts as a bug.

As for the boxes themselves, it's yet another loop that prints 2-byte chunks of Shift-JIS text at an even slower fixed interval of 3 frames. In an interesting quirk though, ZUN assumes that every box starts with the name of the speaking character in its first two fullwidth Shift-JIS characters, followed by a fullwidth colon. These 6 bytes are displayed immediately at the start of every box, without the usual delay. The resulting alignment looks rather janky with Genjii, whose single right-padded kanji looks quite awkward with the fullwidth space between the name and the colon. Kind of makes you wonder why ZUN just didn't spell out his proper name, 玄爺, instead, but I get the stylistic difference.
In Stage 4, the two-kanji assumption then breaks with Marisa's three-kanji name, which causes the full-width colon to be printed as the first delayed character in each of her boxes:


That's all the issues and quirks in the system itself. The scripts themselves don't leave much room for bugs as they basically just loop over the hardcoded face ID array at this level… until we reach the end of the game. Previously, the slide-in animation could simply use the tile invalidation and re-rendering system to unblit the box on each frame, which also explained why Reimu had to be separately rendered on top. But this no longer works with a custom-rendered boss background, and so the game just chooses to flood-fill the area with graphics chip color #0:

Then again, transferring pixels from the back page would be just as wrong as they lag one frame behind. No way around capturing these 384×64 pixels to main memory here… Oh well, this flood-fill at least adds even more legibility on top of the already half-transparent text box. A property that the following dialog sequence unfortunately lacks…

For Mima's final defeat dialog though, ZUN chose to not even show the box. He might have realized the issue by that point, or simply preferred the more dramatic effect this had on the lines. The resulting issues, however, might even have ramifications for such un-technical things as lore and character dynamics. :zunpet: As it turns out, the code for this dialog sequence does in fact render Mima's smiling face for all boxes?! You only don't see it in the original game because it's rendered to the other VRAM page that remains invisible during the dialog sequence:

Caution, flashing lights.

Here's how I interpret the situation:

So, the future TH02 Anniversary Edition will fix the bug by showing the back page, but retain the quirk by rewriting the dialog code to not blit the face.


And with that, we've secured all in-game dialog for the upcoming non-ASCII translations! The remaining 2/3 of the last push made for a good occasion to also decompile the small amount of code related to TH03's win messages, stored in the @0?TX.TXT files. Similar to TH02's dialog format, these files are also split into fixed-size blocks of 3×60 bytes. But this time, TH03 loads all 60 bytes of a line, including the CR/LF line breaking codepoints in the original files, into the statically allocated buffer that it renders from. These control characters are then only filtered to whitespace by ZUN's graph_putsa_fx() function. If you remove the line breaks, you get to use the full 60 bytes on every line.
The final commits went to the MIKO.CFG loading and saving functions used in TH04's and TH05's OP.EXE, as well as TH04's game startup code to finally catch up with 📝 TH05's counterpart from over 3 years ago. This brought us right in front of the main menu rendering code in both TH04 and TH05, which is identical in both games and will be tackled in the next PC-98 Touhou delivery.

Next up, though: Returning to Shuusou Gyoku, and adding support for SC-88Pro recordings as BGM. Which may or may not come with a slight controversy…

📝 Posted:
🚚 Summary of:
P0147
Commits:
456b621...c940059
💰 Funded by:
Ember2528, -Tom-
🏷 Tags:

Didn't quite get to cover background rendering for TH05's Stage 1-5 bosses in this one, as I had to reverse-engineer two more fundamental parts involved in boss background rendering before.

First, we got the those blocky transitions from stage tiles to bomb and boss backgrounds, loaded from BB*.BB and ST*.BB, respectively. These files store 16 frames of animation, with every bit corresponding to a 16×16 tile on the playfield. With 384×368 pixels to be covered, that would require 69 bytes per frame. But since that's a very odd number to work with in micro-optimized ASM, ZUN instead stores 512×512 pixels worth of bits, ending up with a frame size of 128 bytes, and a per-frame waste of 59 bytes. :tannedcirno: At least it was possible to decompile the core blitting function as __fastcall for once.
But wait, TH05 comes with, and loads, a bomb .BB file for every character, not just for the Reimu and Yuuka bomb transitions you see in-game… 🤔 Restoring those unused stage tile → bomb image transition animations for Mima and Marisa isn't that trivial without having decompiled their actual bomb animation functions before, so stay tuned!

Interestingly though, the code leaves out what would look like the most obvious optimization: All stage tiles are unconditionally redrawn each frame before they're erased again with the 16×16 blocks, no matter if they weren't covered by such a block in the previous frame, or are going to be covered by such a block in this frame. The same is true for the static bomb and boss background images, where ZUN simply didn't write a .CDG blitting function that takes the dirty tile array into account. If VRAM writes on PC-98 really were as slow as the games' README.TXT files claim them to be, shouldn't all the optimization work have gone towards minimizing them? :thonk: Oh well, it's not like I have any idea what I'm talking about here. I'd better stop talking about anything relating to VRAM performance on PC-98… :onricdennat:


Second, it finally was time to solve the long-standing confusion about all those callbacks that are supposed to render the playfield background. Given the aforementioned static bomb background images, ZUN chose to make this needlessly complicated. And so, we have two callback function pointers: One during bomb animations, one outside of bomb animations, and each boss update function is responsible for keeping the former in sync with the latter. :zunpet:

Other than that, this was one of the smoothest pushes we've had in a while; the hardest parts of boss background rendering all were part of 📝 the last push. Once you figured out that ZUN does indeed dynamically change hardware color #0 based on the current boss phase, the remaining one function for Shinki, and all of EX-Alice's background rendering becomes very straightforward and understandable.


Meanwhile, -Tom- told me about his plans to publicly release 📝 his TH05 scripting toolkit once TH05's MAIN.EXE would hit around 50% RE! That pretty much defines what the next bunch of generic TH05 pushes will go towards: bullets, shared boss code, and one full, concrete boss script to demonstrate how it's all combined. Next up, therefore: TH04's bullet firing code…? Yes, TH04's. I want to see what I'm doing before I tackle the undecompilable mess that is TH05's bullet firing code, and you all probably want readable code for that feature as well. Turns out it's also the perfect place for Blue Bolt's pending contributions.

📝 Posted:
🚚 Summary of:
P0138
Commits:
8d953dc...864e864
💰 Funded by:
[Anonymous], Blue Bolt
🏷 Tags:

Technical debt, part 9… and as it turns out, it's highly impractical to repay 100% of it at this point in development. 😕

The reason: graph_putsa_fx(), ZUN's function for rendering optionally boldfaced text to VRAM using the font ROM glyphs, in its ridiculously micro-optimized TH04 and TH05 version. This one sets the "callback function" for applying the boldface effect by self-modifying the target of two CALL rel16 instructions… because there really wasn't any free register left for an indirect CALL, eh? The necessary distance, from the call site to the function itself, has to be calculated at assembly time, by subtracting the target function label from the call site label.
This usually wouldn't be a problem… if ZUN didn't store the resulting lookup tables in the .DATA segment. With code segments, we can easily split them at pretty much any point between functions because there are multiple of them. But there's only a single .DATA segment, with all ZUN and master.lib data sandwiched between Borland C++'s crt0 at the top, and Borland C++'s library functions at the bottom of the segment. Adding another split point would require all data after that point to be moved to its own translation unit, which in turn requires EXTERN references in the big .ASM file to all that moved data… in short, it would turn the codebase into an even greater mess.
Declaring the labels as EXTERN wouldn't work either, since the linker can't do fancy arithmetic and is limited to simply replacing address placeholders with one single address. So, we're now stuck with this function at the bottom of the SHARED segment, for the foreseeable future.


We can still continue to separate functions off the top of that segment, though. Pretty much the only thing noteworthy there, so far: TH04's code for loading stage tile images from .MPN files, which we hadn't reverse-engineered so far, and which nicely fit into one of Blue Bolt's pending ⅓ RE contributions. Yup, we finally moved the RE% bars again! If only for a tiny bit. :tannedcirno:
Both TH02 and TH05 simply store one pointer to one dynamically allocated memory block for all tile images, as well as the number of images, in the data segment. TH04, on the other hand, reserves memory for 8 .MPN slots, complete with their color palettes, even though it only ever uses the first one of these. There goes another 458 bytes of conventional RAM… I should start summing up all the waste we've seen so far. Let's put the next website contribution towards a tagging system for these blog posts.

At 86% of technical debt in the SHARED segment repaid, we aren't quite done yet, but the rest is mostly just TH04 needing to catch up with functions we've already separated. Next up: Getting to that practical 98.5% point. Since this is very likely to not require a full push, I'll also decompile some more actual TH04 and TH05 game code I previously reverse-engineered – and after that, reopen the store!

📝 Posted:
🚚 Summary of:
P0128, P0129
Commits:
dc65b59...dde36f7, dde36f7...f4c2e45
💰 Funded by:
Yanga
🏷 Tags:

So, only one card-flipping function missing, and then we can start decompiling TH01's two final bosses? Unfortunately, that had to be the one big function that initializes and renders all gameplay objects. #17 on the list of longest functions in all of PC-98 Touhou, requiring two pushes to fully understand what's going on there… and then it immediately returns for all "boss" stages whose number is divisible by 5, yet is still called during Sariel's and Konngara's initialization 🤦

Oh well. This also involved the final file format we hadn't looked at yet – the STAGE?.DAT files that describe the layout for all stages within a single 5-stage scene. Which, for a change is a very well-designed form– no, of course it's completely weird, what did you expect? Development must have looked somewhat like this:

With all that, it's almost not worth mentioning how there are 12 turret types, which only differ in which hardcoded pellet group they fire at a hardcoded interval of either 100 or 200 frames, and that they're all explicitly spelled out in every single switch statement. Or how the layout of the internal card and obstacle SoA classes is quite disjointed. So here's the new ZUN bugs you've probably already been expecting!


Cards and obstacles are blitted to both VRAM pages. This way, any other entities moving on top of them can simply be unblitted by restoring pixels from VRAM page 1, without requiring the stationary objects to be redrawn from main memory. Obviously, the backgrounds behind the cards have to be stored somewhere, since the player can remove them. For faster transitions between stages of a scene, ZUN chose to store the backgrounds behind obstacles as well. This way, the background image really only needs to be blitted for the first stage in a scene.

All that memory for the object backgrounds adds up quite a bit though. ZUN actually made the correct choice here and picked a memory allocation function that can return more than the 64 KiB of a single x86 Real Mode segment. He then accesses the individual backgrounds via regular array subscripts… and that's where the bug lies, because he stores the returned address in a regular far pointer rather than a huge one. This way, the game still can only display a total of 102 objects (i. e., cards and obstacles combined) per stage, without any unblitting glitches.
What a shame, that limit could have been 127 if ZUN didn't needlessly allocate memory for alpha planes when backing up VRAM content. :onricdennat:

And since array subscripts on far pointers wrap around after 64 KiB, trying to save the background of the 103rd object is guaranteed to corrupt the memory block header at the beginning of the returned segment. :zunpet: When TH01 runs in debug mode, it correctly reports a corrupted heap in this case.
After detecting such a corruption, the game loudly reports it by playing the "player hit" sound effect and locking up, freezing any further gameplay or rendering. The locking loop can be left by pressing ↵ Return, but the game will simply re-enter it if the corruption is still present during the next heapcheck(), in the next frame. And since heap corruptions don't tend to repair themselves, you'd have to constantly hold ↵ Return to resume gameplay. Doing that could actually get you safely to the next boss, since the game doesn't allocate or free any further heap memory during a 5-stage card-flipping scene, and just throws away its C heap when restarting the process for a boss. But then again, holding ↵ Return will also auto-flip all cards on the way there… 🤨


Finally, some unused content! Upon discovering TH01's stage selection debug feature, probably everyone tried to access Stage 21, just to see what happens, and indeed landed in an actual stage, with a black background and a weird color palette. Turns out that ZUN did ship an unused scene in SCENE7.DAT, which is exactly what's loaded there.
However, it's easy to believe that this is just garbage data (as I initially did): At the beginning of "Stage 22", the game seems to enter an infinite loop somewhere during the flip-in animation.

Well, we've had a heap overflow above, and the cause here is nothing but a stack buffer overflow – a perhaps more modern kind of classic C bug, given its prevalence in the Windows Touhou games. Explained in a few lines of code:

void stageobjs_init_and_render()
{
	int card_animation_frames[50]; // even though there can be up to 200?!
	int total_frames = 0;

	(code that would end up resetting total_frames if it ever tried to reset
	card_animation_frames[50]…)
}

The number of cards in "Stage 22"? 76. There you have it.

But of course, it's trivial to disable this animation and fix these stage transitions. So here they are, Stages 21 to 24, as shipped with the game in STAGE7.DAT:

TH01 stage 21, loaded from <code>STAGE7.DAT</code>TH01 stage 22, loaded from <code>STAGE7.DAT</code>TH01 stage 23, loaded from <code>STAGE7.DAT</code>TH01 stage 24, loaded from <code>STAGE7.DAT</code>

Wow, what a mess. All that was just a bit too much to be covered in two pushes… Next up, assuming the current subscriptions: Taking a vacation with one smaller TH01 push, covering some smaller functions here and there to ensure some uninterrupted Konngara progress later on.

📝 Posted:
🚚 Summary of:
P0123
Commits:
4406c3d...72dfa09
💰 Funded by:
Yanga
🏷 Tags:

Done with the .BOS format, at last! While there's still quite a bunch of undecompiled non-format blitting code left, this was in fact the final piece of graphics format loading code in TH01.

📝 Continuing the trend from three pushes ago, we've got yet another class, this time for the 48×48 and 48×32 sprites used in Reimu's gohei, slide, and kick animations. The only reason these had to use the .BOS format at all is simply because Reimu's regular sprites are 32×32, and are therefore loaded from 📝 .PTN files.
Yes, this makes no sense, because why would you split animations for the same character across two file formats and two APIs, just because of a sprite size difference? This necessity for switching blitting APIs might also explain why Reimu vanishes for a few frames at the beginning and the end of the gohei swing animation, but more on that once we get to the high-level rendering code.

Now that we've decompiled all the .BOS implementations in TH01, here's an overview of all of them, together with .PTN to show that there really was no reason for not using the .BOS API for all of Reimu's sprites:

CBossEntity CBossAnim CPlayerAnim ptn_* (32×32)
Format .BOS .BOS .BOS .PTN
Hitbox
Byte-aligned blitting
Byte-aligned unblitting
Unaligned blitting Single-line and wave only
Precise unblitting
Per-file sprite limit 8 8 32 64
Pixels blitted at once 16 16 8 32

And even that last property could simply be handled by branching based on the sprite width, and wouldn't be a reason for switching formats. But well, it just wouldn't be TH01 without all that redundant bloat though, would it?

The basic loading, freeing, and blitting code was yet another variation on the other .BOS code we've seen before. So this should have caused just as little trouble as the CBossAnim code… except that CPlayerAnim did add one slightly difficult function to the mix, which led to it requiring almost a full push after all. Similar to 📝 the unblitting code for moving lasers we've seen in the last push, ZUN tries to minimize the amount of VRAM writes when unblitting Reimu's slide animations. Technically, it's only necessary to restore the pixels that Reimu traveled by, plus the ones that wouldn't be redrawn by the new animation frame at the new X position.
The theoretically arbitrary distance between the two sprites is, of course, modeled by a fixed-size buffer on the stack :onricdennat:, coming with the further assumption that the sprite surely hasn't moved by more than 1 horizontal VRAM byte compared to the last frame. Which, of course, results in glitches if that's not the case, leaving little Reimu parts in VRAM if the slide speed ever exceeded 8 pixels per frame. :tannedcirno: (Which it never does, being hardcoded to 6 pixels, but still.). As it also turns out, all those bit masking operations easily lead to incredibly sloppy C code. Which compiles into incredibly terrible ASM, which in turn might end up wasting way more CPU time than the final VRAM write optimization would have gained? Then again, in-depth profiling is way beyond the scope of this project at this point.

Next up: The TH04 main menu, and some more technical debt.

📝 Posted:
🚚 Summary of:
P0105, P0106, P0107, P0108
Commits:
3622eb6...11b776b, 11b776b...1f1829d, 1f1829d...1650241, 1650241...dcf4e2c
💰 Funded by:
Yanga
🏷 Tags:

And indeed, I got to end my vacation with a lot of image format and blitting code, covering the final two formats, .GRC and .BOS. .GRC was nothing noteworthy – one function for loading, one function for byte-aligned blitting, and one function for freeing memory. That's it – not even a unblitting function for this one. .BOS, on the other hand…

…has no generic (read: single/sane) implementation, and is only implemented as methods of some boss entity class. And then again for Sariel's dress and wand animations, and then again for Reimu's animations, both of which weren't even part of these 4 pushes. Looking forward to decompiling essentially the same algorithms all over again… And that's how TH01 became the largest and most bloated PC-98 Touhou game. So yeah, still not done with image formats, even at 44% RE.

This means I also had to reverse-engineer that "boss entity" class… yeah, what else to call something a boss can have multiple of, that may or may not be part of a larger boss sprite, may or may not be animated, and that may or may not have an orb hitbox?
All bosses except for Kikuri share the same 5 global instances of this class. Since renaming all these variables in ASM land is tedious anyway, I went the extra mile and directly defined separate, meaningful names for the entities of all bosses. These also now document the natural order in which the bosses will ultimately be decompiled. So, unless a backer requests anything else, this order will be:

  1. Konngara
  2. Sariel
  3. Elis
  4. Kikuri
  5. SinGyoku
  6. (code for regular card-flipping stages)
  7. Mima
  8. YuugenMagan

As everyone kind of expects from TH01 by now, this class reveals yet another… um, unique and quirky piece of code architecture. In addition to the position and hitbox members you'd expect from a class like this, the game also stores the .BOS metadata – width, height, animation frame count, and 📝 bitplane pointer slot number – inside the same class. But if each of those still corresponds to one individual on-screen sprite, how can YuugenMagan have 5 eye sprites, or Kikuri have more than one soul and tear sprite? By duplicating that metadata, of course! And copying it from one entity to another :onricdennat:
At this point, I feel like I even have to congratulate the game for not actually loading YuugenMagan's eye sprites 5 times. But then again, 53,760 bytes of waste would have definitely been noticeable in the DOS days. Makes much more sense to waste that amount of space on an unused C++ exception handler, and a bunch of redundant, unoptimized blitting functions :tannedcirno:

(Thinking about it, YuugenMagan fits this entire system perfectly. And together with its position in the game's code – last to be decompiled means first on the linker command line – we might speculate that YuugenMagan was the first boss to be programmed for TH01?)

So if a boss wants to use sprites with different sizes, there's no way around using another entity. And that's why Girl-Elis and Bat-Elis are two distinct entities internally, and have to manually sync their position. Except that there's also a third one for Attacking-Girl-Elis, because Girl-Elis has 9 frames of animation in total, and the global .BOS bitplane pointers are divided into 4 slots of only 8 images each. :zunpet:
Same for SinGyoku, who is split into a sphere entity, a person entity, and a… white flash entity for all three forms, all at the same resolution. Or Konngara's facial expressions, which also require two entities just for themselves.


And once you decompile all this code, you notice just how much of it the game didn't even use. 13 of the 50 bytes of the boss entity class are outright unused, and 10 bytes are used for a movement clamping and lock system that would have been nice if ZUN also used it outside of Kikuri's soul sprites. Instead, all other bosses ignore this system completely, and just party on the X/Y coordinates of the boss entities directly.

As for the rendering functions, 5 out of 10 are unused. And while those definitely make up less than half of the code, I still must have spent at least 1 of those 4 pushes on effectively unused functionality.
Only one of these functions lends itself to some speculation. For Elis' entrance animation, the class provides functions for wavy blitting and unblitting, which use a separate X coordinate for every line of the sprite. But there's also an unused and sort of broken one for unblitting two overlapping wavy sprites, located at the same Y coordinate. This might indicate that Elis could originally split herself into two sprites, similar to TH04 Stage 6 Yuuka? Or it might just have been some other kind of animation effect, who knows.


After over 3 months of TH01 progress though, it's finally time to look at other games, to cover the rest of the crowdfunding backlog. Next up: Going back to TH05, and getting rid of those last PI false positives. And since I can potentially spend the next 7 weeks on almost full-time ReC98 work, I've also re-opened the store until October!

📝 Posted:
🚚 Summary of:
P0103, P0104
Commits:
b60f38d...05c0028, 05c0028...3622eb6
💰 Funded by:
Ember2528
🏷 Tags:

It's vacation time! Which, for ReC98, means "relaxing by looking at something boring and uninteresting that we'll ultimately have to cover anyway"… like the TH01 HUD.

📝 As noted earlier, all the score, card combo, stage, and time numbers are drawn into VRAM. Which turns TH01's HUD rendering from the trivial, gaiji-assisted text RAM writes we see in later games to something that, once again, requires blitting and unblitting steps. For some reason though, everything on there is blitted to both VRAM pages? And that's why the HUD chose to allocate a bunch of .PTN sprite slots to store the background behind all "animated" elements at the beginning of a 4-stage scene or boss battle… separately for every affected 16×16 area. (Looking forward to the completely unnecessary code in the Sariel fight that updates these slots after the backgrounds were animated!) And without any separation into helper functions, we end up with the same blitting calls separately copy-pasted for every single HUD element. That's why something as seemingly trivial as this isn't even done after 2 pushes, as we're still missing the stage timer.

Thankfully, the .PTN function signatures come with none of ZUN's little inconsistencies, so I was able to mostly reduce this copy-pasta to a bunch of small inline functions and macros. Those interfaces still remain a bit annoying, though. As a 32×32 format, .PTN merely supports 16×16 sprites with a separate bunch of functions that take an additional quarter parameter from 0 to 3, to select one of the 4 16×16 quarters in a such a sprite…


For life and bomb counts, there was no way around VRAM though, since ZUN wanted to use more than a single color for those. This is where we find at least somewhat of a mildly interesting quirk in all of this: Any life counts greater than the intended 6 will wrap into new rows, with the bombs in the second row overlapping those excess lives. With the way the rest of the HUD rendering works, that wrapping code code had to be explicitly written… which means that ZUN did in fact accomodate (his own?) cheating there.

TH01 life wrapping

Now, I promised image formats, and in the middle of this copy-pasta, we did get one… sort of. MASK.GRF, the red HUD background, is entirely handled with two small bespoke functions… and that's all the code we have for this format. Basically, it's a variation on the 📝 .GRZ format we've seen earlier. It uses the exact same RLE algorithm, but only has a single byte stream for both RLE commands and pixel data… as you would expect from an RLE format.

.GRF actually stores 4 separately encoded RLE streams, which suggests that it was intended for full 16-color images. Unfortunately, MASK.GRF only contains 4 copies of the same HUD background :zunpet:, so no unused beta data for us there. The only thing we could derive from 4 identical bitplanes would be that the background was originally meant to be drawn using color #15, rather than the red seen in the final game. Color #15 is a stage-specific background color that would have made the HUD blend in quite nicely – in the YuugenMagan fight, it's the changing color of the in the background, for example. But really, with no generic implementation of this format, that's all just speculation.

Oh, and in case you were looking for a rip of that image:

TH01 HUD background (MASK.GRF)

So yeah, more of the usual TH01 code, with the usual small quirks, but nothing all too horrible – as expected. Next up: The image formats that didn't make it into this push.

📝 Posted:
🚚 Summary of:
P0092, P0093, P0094
Commits:
29c5a73...4403308, 4403308...0e73029, 0e73029...57a8487
💰 Funded by:
Yanga, Ember2528
🏷 Tags:

Three pushes to decompile the TH01 high score menu… because it's completely terrible, and needlessly complicated in pretty much every aspect:

In the end, I just gave up with my usual redundancy reduction efforts for this one. Anyone wanting to change TH01's high score name entering code would be better off just rewriting the entire thing properly.

And that's all of the shared code in TH01! Both OP.EXE and FUUIN.EXE are now only missing the actual main menu and ending code, respectively. Next up, though: The long awaited TH01 PI push. Which will not only deliver 100% PI for OP.EXE and FUUIN.EXE, but also probably quite some gains in REIIDEN.EXE. With now over 30% of the game decompiled, it's about time we get to look at some gameplay code!

📝 Posted:
🚚 Summary of:
P0083
Commits:
f6cbff0...dfac2f2
💰 Funded by:
Yanga
🏷 Tags:

Nope, RL has given me plenty of things to do from home after all, so the current cap still remains an accurate representation of my free time. 😕

For now though, we've got one more TH01 file format push, covering the core functions for loading and displaying the 32×32 and 16×16 sprites from the .PTN files, as announced – and probably one of the last ones for quite a while to yield both RE and PI progress way above average. But what is this, error return values in a ZUN game?! And actually good code for deriving the alpha channel from the 16th color in the hardware palette?! Sure, the rest of the code could still be improved a lot, but that was quite a surprise, especially after the spaghetti code of 📝 the last push. That makes up for two of the .PTN structure fields (one of them always 0, and one of them always 1) remaining unused, and therefore unknown.

ZUN also uses the .PTN image slots to store the background of frequently updated VRAM sections, in order to be able to repeatedly draw on top of them – like for example the HUD area where the score and time numbers are drawn. Future games would simply use the text RAM and gaiji for those numbers. This would have worked just fine for TH01 too – especially since all the functions decompiled so far align the VRAM X coordinate to the 8-pixel byte grid, which is the simplest way of accessing VRAM given the PC-98's planar memory layout. Looks as if ZUN simply wasn't aware of gaiji during the development of TH01.

This won't be the last time I cover the .PTN format, since all the blitting functions that actually use alpha are exclusive to REIIDEN.EXE, and currently out of decompilation reach. But after some more long overdue cleaning work, TH01 has now passed both TH02 and even TH04 to become the second-most reverse-engineered game in all of ReC98, in terms of absolute numbers! 🎉

Also, PI for TH01's OP.EXE is imminent. Next up though, we've first got the probably final double-speed push for TH01, covering the last set of duplicated functions between the three binaries – quite fitting for the currently last fully funded, outstanding TH01 RE push. Then, we also might get FUUIN.EXE PI within the same push afterwards? After that, TH01 progress will be slowing down, since I'd then have to cover either the main menu or in-game code or the cutscenes, depending on what the backers request. (By default, it's going to be in-game code, of course.)

📝 Posted:
🚚 Summary of:
P0081
Commits:
0252da2...5ac9b30
💰 Funded by:
Ember2528
🏷 Tags:

Sadly, we've already reached the end of fast triple-speed TH01 progress with 📝 the last push, which decompiled the last segment shared by all three of TH01's executables. There's still a bit of double-speed progress left though, with a small number of code segments that are shared between just two of the three executables.

At the end of the first one of these, we've got all the code for the .GRZ format – which is yet another run-length encoded image format, but this time storing up to 16 full 640×400 16-color images with an alpha bit. This one is exclusively used to wastefully store Konngara's sword slash and kuji-in kill animations. Due to… suboptimal code organization, the code for the format is also present in OP.EXE, despite not being used there. But hey, that brings TH01 to over 20% in RE!

Decoupling the RLE command stream from the pixel data sounds like a nice idea at first, allowing the format to efficiently encode a variety of animation frames displayed all over the screen… if ZUN actually made use of it. The RLE stream also has quite some ridiculous overhead, starting with 1 byte to store the 1-bit command (putting a single 8×1 pixel block, or entering a run of N such blocks). Run commands then store another 1-byte run length, which has to be followed by another command byte to identify the run as putting N blocks, or skipping N blocks. And the pixel data is just a sequence of these blocks for all 4 bitplanes, in uncompressed form…

Also, have some rips of all the images this format is used for:

<code>boss8.grz</code>, image 1/16<code>boss8.grz</code>, image 2/16<code>boss8.grz</code>, image 3/16<code>boss8.grz</code>, image 4/16<code>boss8.grz</code>, image 5/16<code>boss8.grz</code>, image 6/16<code>boss8.grz</code>, image 7/16<code>boss8.grz</code>, image 8/16<code>boss8.grz</code>, image 9/16<code>boss8.grz</code>, image 10/16<code>boss8.grz</code>, image 11/16<code>boss8.grz</code>, image 12/16<code>boss8.grz</code>, image 13/16<code>boss8.grz</code>, image 14/16<code>boss8.grz</code>, image 15/16<code>boss8.grz</code>, image 16/16

To make these, I just wrote a small viewer, calling the same decompiled TH01 code: 2020-03-07-grzview.zip Obviously, this means that it not only must to be run on a PC-98, but also discards the alpha information. If any backers are really interested in having a proper converter to and from PNG, I can implement that in an upcoming push… although that would be the perfect thing for outside contributors to do.

Next up, we got some code for the PI format… oh, wait, the actual files are called "GRP" in TH01.

📝 Posted:
🚚 Summary of:
P0063
Commits:
034ae4b...8dbb450
💰 Funded by:
-Tom-
🏷 Tags:

Almost!

Just like most of the time, it was more sensible to cover GENSOU.SCR, the last structure missing in TH05's OP.EXE, everywhere it's used, rather than just rushing out OP.EXE position independence. I did have to look into all of the functions to fully RE it after all, and to find out whether the unused fields actually are unused. The only thing that kept this push from yielding even more above-average progress was the sheer inconsistency in how the games implemented the operations on this PC-98 equivalent of score*.dat:

Technically though, TH05's OP.EXE is position-independent now, and the rest are (should be? :tannedcirno:) merely false positives. However, TH04's is still missing another structure, in addition to its false positives. So, let's wait with the big announcement until the next push… which will also come with a demo video of what will be possible then.