⮜ Blog

⮜ List of tags

Showing all posts tagged

📝 Posted:
🚚 Summary of:
P0264, P0265
Commits:
46cd6e7...78728f6, 78728f6...ff19bed
💰 Funded by:
Blue Bolt, [Anonymous], iruleatgames
🏷 Tags:

Oh, it's 2024 already and I didn't even have a delivery for December or January? Yeah… I can only repeat what I said at the end of November, although the finish line is actually in sight now. With 10 pushes across 4 repositories and a blog post that has already reached a word count of 9,240, the Shuusou Gyoku SC-88Pro BGM release is going to break 📝 both the push record set by TH01 Sariel two years ago, and 📝 the blog post length record set by the last Shuusou Gyoku delivery. Until that's done though, let's clear some more PC-98 Touhou pushes out of the backlog, and continue the preparation work for the non-ASCII translation project starting later this year.

But first, we got another free bugfix according to my policy! 📝 Back in April 2022 when I researched the Divide Error crash that can occur in TH04's Stage 4 Marisa fight, I proposed and implemented four possible workarounds and let the community pick one of them for the generally recommended small bugfix mod. I still pushed the others onto individual branches in case the gameplay community ever wants to look more closely into them and maybe pick a different one… except that I accidentally pushed the wrong code for the warp workaround, probably because I got confused with the second warp variant I developed later on.
Fortunately, I still had the intended code for both variants lying around, and used the occasion to merge the current master branch into all of these mod branches. Thanks to wyatt8740 for spotting and reporting this oversight!

  1. The Music Room background masking effect
  2. The GRCG's plane disabling flags
  3. Text color restrictions
  4. The entire messy rest of the Music Room code
  5. TH04's partially consistent congratulation picture on Easy Mode
  6. TH02's boss position and damage variables

As the final piece of code shared in largely identical form between 4 of the 5 games, the Music Rooms were the biggest remaining piece of low-hanging fruit that guaranteed big finalization% gains for comparatively little effort. They seemed to be especially easy because I already decompiled TH02's Music Room together with the rest of that game's OP.EXE back in early 2015, when this project focused on just raw decompilation with little to no research. 9 years of increased standards later though, it turns out that I missed a lot of details, and ended up renaming most variables and functions. Combined with larger-than-expected changes in later games and the usual quality level of ZUN's menu code, this ended up taking noticeably longer than the single push I expected.

The undoubtedly most interesting part about this screen is the animation in the background, with the spinning and falling polygons cutting into a single-color background to reveal a spacey image below. However, the only background image loaded in the Music Room is OP3.PI (TH02/TH03) or MUSIC3.PI (TH04/TH05), which looks like this in a .PI viewer or when converted into another image format with the usual tools:

TH02's Music Room background in its on-disk state TH03's Music Room background in its on-disk state TH04's Music Room background in its on-disk state TH05's Music Room background in its on-disk state
Let's call this "the blank image".

That is definitely the color that appears on top of the polygons, but where is the spacey background? If there is no other .PI file where it could come from, it has to be somewhere in that same file, right? :thonk:
And indeed: This effect is another bitplane/color palette trick, exactly like the 📝 three falling stars in the background of TH04's Stage 5. If we set every bit on the first bitplane and thus change any of the resulting even hardware palette color indices to odd ones, we reveal a full second 8-color sub-image hiding in the same .PI file:

TH02's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom TH03's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom TH04's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom TH05's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom
The spacey sub-image. Never before seen!1!! …OK, touhou-memories beat me by a month. Let's add each image's full 16-color palette to deliver some additional value.

On a high level, the first bitplane therefore acts as a stencil buffer that selects between the blank and spacey sub-image for every pixel. The important part here, however, is that the first bitplane of the blank sub-images does not consist entirely of 0 bits, but does have 1 bits at the pixels that represent the caption that's supposed to be overlaid on top of the animation. Since there now are some pixels that should always be taken from the spacey sub-image regardless of whether they're covered by a polygon, the game can no longer just clear the first bitplane at the start of every frame. Instead, it has to keep a separate copy of the first bitplane's original state (called nopoly_B in the code), captured right after it blitted the .PI image to VRAM. Turns out that this copy also comes in quite handy with the text, but more on that later.


Then, the game simply draws polygons onto only the reblitted first bitplane to conditionally set the respective bits. ZUN used master.lib's grcg_polygon_c() function for this, which means that we can entirely thank the uncredited master.lib developers for this iconic animation – if they hadn't included such a function, the Music Rooms would most certainly look completely different.
This is where we get to complete the series on the PC-98 GRCG chip with the last remaining four bits of its mode register. So far, we only needed the highest bit (0x80) to either activate or deactivate it, and the bit below (0x40) to choose between the 📝 RMW and 📝 TCR/📝 TDW modes. But you can also use the lowest four bits to restrict the GRCG's operations to any subset of the four bitplanes, leaving the other ones untouched:

// Enable the GRCG (0x80) in regular RMW mode (0x40). All bitplanes are
// enabled and written according to the contents of the tile register.
outportb(0x7C, 0xC0);

// The same, but limiting writes to the first bitplane by disabling the
// second (0x02), third (0x04), and fourth (0x08) one, as done in the
// PC-98 Touhou Music Rooms.
outportb(0x7C, 0xCE);

// Regular GRCG blitting code to any VRAM segment…
pokeb(0xA8000, offset, …);

// We're done, turn off the GRCG.
outportb(0x7C, 0x00);

This could be used for some unusual effects when writing to two or three of the four planes, but it seems rather pointless for this specific case at first. If we only want to write to a single plane, why not just do so directly, without the GRCG? Using that chip only involves more hardware and is therefore slower by definition, and the blitting code would be the same, right?
This is another one of these questions that would be interesting to benchmark one day, but in this case, the reason is purely practical: All of master.lib's polygon drawing functions expect the GRCG to be running in RMW mode. They write their pixels as bitmasks where 1 and 0 represent pixels that should or should not change, and leave it to the GRCG to combine these masks with its tile register and OR the result into the bitplanes instead of doing so themselves. Since GRCG writes are done via MOV instructions, not using the GRCG would turn these bitmasks into actual dot patterns, overwriting any previous contents of each VRAM byte that gets modified.
Technically, you'd only have to replace a few MOV instructions with OR to build a non-GRCG version of such a function, but why would you do that if you haven't measured polygon drawing to be an actual bottleneck.

Three overlapping Music Room polygons rendered using master.lib's grcg_polygon_c() function with a disabled GRCGThree overlapping Music Room polygons rendered as in the original game, with the GRCG enabled
An example with three polygons drawn from top to bottom. Without the GRCG, edges of later polygons overwrite any previously drawn pixels within the same VRAM byte. Note how treating bitmasks as dot patterns corrupts even those areas where the background image had nonzero bits in its first bitplane.

As far as complexity is concerned though, the worst part is the implicit logic that allows all this text to show up on top of the polygons in the first place. If every single piece of text is only rendered a single time, how can it appear on top of the polygons if those are drawn every frame?
Depending on the game (because of course it's game-specific), the answer involves either the individual bits of the text color index or the actual contents of the palette:

The contents of nopoly_B with each game's first track selected.

Finally, here's a list of all the smaller details that turn the Music Rooms into such a mess:

And that's all the Music Rooms! The OP.EXE binaries of TH04 and especially TH05 are now very close to being 100% RE'd, with only the respective High Score menus and TH04's title animation still missing. As for actual completion though, the finalization% metric is more relevant as it also includes the ZUN Soft logo, which I RE'd on paper but haven't decompiled. I'm 📝 still hoping that this will be the final piece of code I decompile for these two games, and that no one pays to get it done earlier… :onricdennat:


For the rest of the second push, there was a specific goal I wanted to reach for the remaining anything budget, which was blocked by a few functions at the beginning of TH04's and TH05's MAINE.EXE. In another anticlimactic development, this involved yet another way too early decompilation of a main() function…
Generally, this main() function just calls the top-level functions of all other ending-related screens in sequence, but it also handles the TH04-exclusive congratulating All Clear images within itself. After a 1CC, these are an additional reward on top of the Good Ending, showing the player character wearing a different outfit depending on the selected difficulty. On Easy Mode, however, the Good Ending is unattainable because the game always ends after Stage 5 with a Bad Ending, but ZUN still chose to show the EASY ALL CLEAR!! image in this case, regardless of how many continues you used.
While this might seem inconsistent with the other difficulties, it is consistent within Easy Mode itself, as the enforced Bad Ending after Stage 5 also doesn't distinguish between the number of continues. Also, Try to Normal Rank!! could very well be ZUN's roundabout way of implying "because this is how you avoid the Bad Ending".

With that out of the way, I was finally able to separate the VRAM text renderer of TH04 and TH05 into its own assembly unit, 📝 finishing the technical debt repayment project that I couldn't complete in 2021 due to assembly-time code segment label arithmetic in the data segment. This now allows me to translate this undecompilable self-modifying mess of ASM into C++ for the non-ASCII translation project, and thus unify the text renderers of all games and enhance them with support for Unicode characters loaded from a bitmap font. As the final finalized function in the SHARED segment, it also allowed me to remove 143 lines of particularly ugly segmentation workarounds 🙌


The remaining 1/6th of the second push provided the perfect occasion for some light TH02 PI work. The global boss position and damage variables represented some equally low-hanging fruit, being easily identified global variables that aren't part of a larger structure in this game. In an interesting twist, TH02 is the only game that uses an increasing damage value to track boss health rather than decreasing HP, and also doesn't internally distinguish between bosses and midbosses as far as these variables are concerned. Obviously, there's quite a bit of state left to be RE'd, not least because Marisa is doing her own thing with a bunch of redundant copies of her position, but that was too complex to figure out right now.

Also doing their own thing are the Five Magic Stones, which need five positions rather than a single one. Since they don't move, the game doesn't have to keep 📝 separate position variables for both VRAM pages, and can handle their positions in a much simpler way that made for a nice final commit.
And for the first time in a long while, I quite like what ZUN did there! Not only are their positions stored in an array that is indexed with a consistent ID for every stone, but these IDs also follow the order you fight the stones in: The two inner ones use 0 and 1, the two outer ones use 2 and 3, and the one in the center uses 4. This might look like an odd choice at first because it doesn't match their horizontal order on the playfield. But then you notice that ZUN uses this property in the respective phase control functions to iterate over only the subrange of active stones, and you realize how brilliant it actually is.

Screenshot of TH02's Five Magic Stones, with the first two (both internally and in the order you fight them in) alive and activated Screenshot of TH02's Five Magic Stones, with the second two (both internally and in the order you fight them in) alive and activated Screenshot of TH02's Five Magic Stones, with the last one (both internally and in the order you fight them in) alive and activated

This seems like a really basic thing to get excited about, especially since the rest of their data layout sure isn't perfect. Splitting each piece of state and even the individual X and Y coordinates into separate 5-element arrays is still counter-productive because the game ends up paying more memory and CPU cycles to recalculate the element offsets over and over again than this would have ever saved in cache misses on a 486. But that's a minor issue that could be fixed with a few regex replacements, not a misdesigned architecture that would require a full rewrite to clean it up. Compared to the hardcoded and bloated mess that was 📝 YuugenMagan's five eyes, this is definitely an improvement worthy of the good-code tag. The first actual one in two years, and a welcome change after the Music Room!

These three pieces of data alone yielded a whopping 5% of overall TH02 PI in just 1/6th of a push, bringing that game comfortably over the 60% PI mark. MAINE.EXE is guaranteed to reach 100% PI before I start working on the non-ASCII translations, but at this rate, it might even be realistic to go for 100% PI on MAIN.EXE as well? Or at least technical position independence, without the false positives.

Next up: Shuusou Gyoku SC-88Pro BGM. It's going to be wild.

📝 Posted:
🚚 Summary of:
P0245
Commits:
97f0c3b...5876755
💰 Funded by:
Blue Bolt, Ember2528, [Anonymous], Yanga
🏷 Tags:

And then, the supposed boilerplate code revealed yet another confusing issue that quickly forced me back to serial work, leading to no parallel progress made with Shuusou Gyoku after all. 🥲 The list of functions I put together for the first ½ of this push seemed so boring at first, and I was so sure that there was almost nothing I could possibly talk about:

That's three instances of ZUN removing sprites way earlier than you'd want to, intentionally deciding against those sprites flying smoothly in and out of the playfield. Clearly, there has to be a system and a reason behind it.

Turns out that it can be almost completely blamed on master.lib. None of the super_*() sprite blitting functions can clip the rendered sprite to the edges of VRAM, and much less to the custom playfield rectangle we would actually want here. This is exactly the wrong choice to make for a game engine: Not only is the game developer now stuck with either rendering the sprite in full or not at all, but they're also left with the burden of manually calculating when not to display a sprite.
However, strictly limiting the top-left screen-space coordinate to (0, 0) and the bottom-right one to (640, 400) would actually stop rendering some of the sprites much earlier than the clipping conditions we encounter in these games. So what's going on there?

The answer is a combination of playfield borders, hardware scrolling, and master.lib needing to provide at least some help to support the latter. Hardware scrolling on PC-98 works by dividing VRAM into two vertical partitions along the Y-axis and telling the GDC to display one of them at the top of the screen and the other one below. The contents of VRAM remain unmodified throughout, which raises the interesting question of how to deal with sprites that reach the vertical edges of VRAM. If the top VRAM row that starts at offset 0x0000 ends up being displayed below the bottom row of VRAM that starts at offset 0x7CB0 for 399 of the 400 possible scrolling positions, wouldn't we then need to vertically wrap most of the rendered sprites?
For this reason, master.lib provides the super_roll_*() functions, which unconditionally perform exactly this vertical wrapping. But this creates a new problem: If these functions still can't clip, and don't even know which VRAM rows currently correspond to the top and bottom row of the screen (since master.lib's graph_scrollup() function doesn't retain this information), won't we also see sprites wrapping around the actual edges of the screen? That's something we certainly wouldn't want in a vertically scrolling game…
The answer is yes, and master.lib offers no solution for this issue. But this is where the playfield borders come in, and helpfully cover 16 pixels at the top and 16 pixels at the bottom of the screen. As a result, they can hide up to 32 rows of potentially wrapped sprite pixels below them:


The earliest possible frame that TH05 can start rendering the Stage 5 midboss on. Hiding the text layer reveals how master.lib did in fact "blindly" render the top part of her sprite to the bottom of the playfield. That's where her sprite starts before it is correctly wrapped around to the top of VRAM.
If we scrolled VRAM by another 200 pixels (and faked an equally shifted TRAM for demonstration purposes), we get an equally valid game scene that points out why a vertically scrolling PC-98 game must wrap all sprites at the vertical edges of VRAM to begin with.
Also, note how the HP bar has filled up quite a bit before the midboss can actually appear on screen.
VRAM contents of the first possible frame that TH05's Stage 5 midboss can appear on, at their original scrolling position. Also featuring the 64×64 bounding box of the midboss sprite.VRAM contents of the first possible frame that TH05's Stage 5 midboss can appear on, scrolled down by a further 200 pixels. Also featuring the 64×64 bounding box of the midboss sprite.

And that's how the lowest possible top Y coordinate for sprites blitted using the master.lib super_roll_*() functions during the scrolling portions of TH02, TH04, and TH05 is not 0, but -16. Any lower, and you would actually see some of the sprite's upper pixels at the bottom of the playfield, as there are no more opaque black text cells to cover them. Theoretically, you could lower this number for some animation frames that start with multiple rows of transparent pixels, but I thankfully haven't found any instance of ZUN using such a hack. So far, at least… :godzun:
Visualized like that, it all looks quite simple and logical, but for days, I did not realize that these sprites were rendered to a scrolling VRAM. This led to a much more complicated initial explanation involving the invisible extra space of VRAM between offsets 0x7D00 and 0x7FFF that effectively grant a hidden additional 9.6 lines below the playfield. Or even above, since PC-98 hardware ignores the highest bit of any offset into a VRAM bitplane segment (& 0x7FFF), which prevents blitting operations from accidentally reaching into a different bitplane. Together with the aforementioned rows of transparent pixels at the top of these midboss sprites, the math would have almost worked out exactly. :tannedcirno:

The need for manual clipping also applies to the X-axis. Due to the lack of scrolling in this dimension, the boundaries there are much more straightforward though. The minimum left coordinate of a sprite can't fall below 0 because any smaller coordinate would wrap around into the 📝 tile source area and overwrite some of the pixels there, which we obviously don't want to re-blit every frame. Similarly, the right coordinate must not extend into the HUD, which starts at 448 pixels.
The last part might be surprising if you aren't familiar with the PC-98 text chip. Contrary to the CGA and VGA text modes of IBM-compatibles, PC-98 text cells can only use a single color for either their foreground or background, with the other pixels being transparent and always revealing the pixels in VRAM below. If you look closely at the HUD in the images above, you can see how the background of cells with gaiji glyphs is slightly brighter (◼ #100) than the opaque black cells (◼ #000) surrounding them. This rather custom color clearly implies that those pixels must have been rendered by the graphics GDC. If any other sprite was rendered below the HUD, you would equally see it below the glyphs.

So in the end, I did find the clear and logical system I was looking for, and managed to reduce the new clipping conditions down to a set of basic rules for each edge. Unfortunately, we also need a second macro for each edge to differentiate between sprites that are smaller or larger than the playfield border, which is treated as either 32×32 (for super_roll_*()) or 32×16 (for non-"rolling" super_*() functions). Since smaller sprites can be fully contained within this border, the games can stop rendering them as soon as their bottom-right coordinate is no longer seen within the playfield, by comparing against the clipping boundaries with <= and >=. For example, a 16×16 sprite would be completely invisible once it reaches (16, 0), so it would still be rendered at (17, 1). A larger sprite during the scrolling part of a stage, like, say, the 64×64 midbosses, would still be rendered if their top-left coordinate was (0, -16), so ZUN used < and > comparisons to at least get an additional pixel before having to stop rendering such a sprite. Turbo C++ 4.0J sadly can't constant-fold away such a difference in comparison operators.

And for the most part, ZUN did follow this system consistently. Except for, of course, the typical mistakes you make when faced with such manual decisions, like how he treated TH04's Stage 4 midboss as a "small" sprite below 32×32 pixels (it's 64×64), losing that precious one extra pixel. Or how the entire rendering code for the 48×48 boss explosion sprite pretends that it's actually 64×64 pixels large, which causes even the initial transformation into screen space to be misaligned from the get-go. :zunpet: But these are additional bugs on top of the single one that led to all this research.
Because that's what this is, a bug. 🐞 Every resulting pixel boundary is a systematic result of master.lib's unfortunate lack of clipping. It's as much of a bug as TH01's byte-aligned rendering of entities whose internal position is not byte-aligned. In both cases, the entities are alive, simulated, and partake in collision detection, but their rendered appearance doesn't accurately reflect their internal position.
Initially, I classified 📝 the sudden pop-in of TH05's Stage 5 midboss as a quirk because we had no conclusive evidence that this wasn't intentional, but now we do. There have been multiple explanations for why ZUN put borders around the playfield, but master.lib's lack of sprite clipping might be the biggest reason.

And just like byte-aligned rendering, the clipping conditions can easily be removed when porting the game away from PC-98 hardware. That's also what uth05win chose to do: By using OpenGL and not having to rely on hardware scrolling, it can simply place every sprite as a textured quad at its exact position in screen space, and then draw the black playfield borders on top in the end to clip everything in a single draw call. This way, the Stage 5 midboss can smoothly fly into the playfield, just as defined by its movement code:

The entire smooth Stage 5 midboss entrance animation as shown in uth05win. If the simultaneous appearance of the Enemy!! label doesn't lend further proof to this having been ZUN's actual intention, I don't know what will.

Meanwhile, I designed the interface of the 📝 generic blitter used in the TH01 Anniversary Edition entirely around clipping the blitted sprite at any explicit combination of VRAM edges. This was nothing I tacked on in the end, but a core aspect that informed the architecture of the code from the very beginning. You really want to have one and only one place where sprite clipping is done right – and only once per sprite, regardless of how many bitplanes you want to write to.


Which brings us to the goal that the final ¼ of this push went toward. I thought I was going to start cleaning up the 📝 player movement and rendering code, but that turned out too complicated for that amount of time – especially if you want to start with just cleanup, preserving all original bugs for the time being.
Fixing and smoothening player and Orb movement would be the next big task in Anniversary Edition development, needing about 3 pushes. It would start with more performance research into runtime-shifting of larger sprites, followed by extending my generic blitter according to the results, writing new optimized loaders for the original image formats, and finally rewriting all rendering code accordingly. With that code in place, we can then start cleaning up and fixing the unique code for each boss, one by one.

Until that's funded, the code still contains a few smaller and easier pieces of code that are equally related to rendering bugs, but could be dealt with in a more incremental way. Line rendering is one of those, and first needs some refactoring of every call site, including 📝 the rotating squares around Mima and 📝 YuugenMagan's pentagram. So far, I managed to remove another 1,360 bytes from the binary within this final ¼ of a push, but there's still quite a bit to do in that regard.
This is the perfect kind of feature for smaller (micro-)transactions. Which means that we've now got meaningful TH01 code cleanup and Anniversary Edition subtasks at every price range, no matter whether you want to invest a lot or just a little into this goal.

If you can, because Ember2528 revealed the plan behind his Shuusou Gyoku contributions: A full-on Linux port of the game, which will be receiving all the funding it needs to happen. 🐧 Next up, therefore: Turning this into my main project within ReC98 for the next couple of months, and getting started by shipping the long-awaited first step towards that goal.
I've raised the cap to avoid the potential of rounding errors, which might prevent the last needed Shuusou Gyoku push from being correctly funded. I already had to pick the larger one of the two pending TH02 transactions for this push, because we would have mathematically ended up 1/25500 short of a full push with the smaller transaction. :onricdennat: And if I'm already at it, I might as well free up enough capacity to potentially ship the complete OpenGL backend in a single delivery, which is currently estimated to cost 7 pushes in total.

📝 Posted:
🚚 Summary of:
P0238, P0239
Commits:
(Website) 4698397...edf2926, c5e51e6...P0239
💰 Funded by:
Ember2528
🏷 Tags:

:stripe: Stripe is now properly integrated into this website as an alternative to PayPal! Now, you can also financially support the project if PayPal doesn't work for you, or if you prefer using a provider out of Stripe's greater variety. It's unfortunate that I had to ship this integration while the store is still sold out, but the Shuusou Gyoku OpenGL backend has turned out way too complicated to be finished next to these two pushes within a month. It will take quite a while until the store reopens and you all can start using Stripe, so I'll just link back to this blog post when it happens.

Integrating Stripe wasn't the simplest task in the world either. At first, the Checkout API seems pretty friendly to developers: The entire payment flow is handled on the backend, in the server language of your choice, and requires no frontend JavaScript except for the UI feedback code you choose to write. Your backend API endpoint initiates the Stripe Checkout session, answers with a redirect to Stripe, and Stripe then sends a redirect back to your server if the customer completed the payment. Superficially, this server-based approach seems much more GDPR-friendly than PayPal, because there are no remote scripts to obtain consent for. In reality though, Stripe shares much more potential personal data about your credit card or bank account with a merchant, compared to PayPal's almost bare minimum of necessary data. :thonk:
It's also rather annoying how the backend has to persist the order form information throughout the entire Checkout session, because it would otherwise be lost if the server restarts while a customer is still busy entering data into Stripe's Checkout form. Compare that to the PayPal JavaScript SDK, which only POSTs back to your server after the customer completed a payment. In Stripe's case, more JavaScript actually only makes the integration harder: If you trigger the initial payment HTTP request from JavaScript, you will have to improvise a bit to avoid the CORS error when redirecting away to a different domain.

But sure, it's all not too bad… for regular orders at least. With subscriptions, however, things get much worse. Unlike PayPal, Stripe kind of wants to stay out of the way of the payment process as much as possible, and just be a wrapper around its supported payment methods. So if customers aren't really meant to register with Stripe, how would they cancel their subscriptions? :thonk:
Answer: Through the… merchant? Which I quite dislike in principle, because why should you have to trust me to actually cancel your subscription after you requested it? It also means that I probably should add some sort of UI for self-canceling a Stripe subscription, ideally without adding full-blown user accounts. Not that this solves the underlying trust issue, but it's more convenient than contacting me via email or, worse, going through your bank somehow. Here is how my solution works:

I might have gone a bit overboard with the crypto there, but I liked the idea of not storing any of the Stripe session IDs in the server database. It's not like that makes the system more complex anyway, and it's nice to have a separate confirmation step before canceling a subscription.

But even that wasn't everything I had to keep in mind here. Once you switch from test to production mode for the final tests, you'll notice that certain SEPA-based payment providers take their sweet time to process and activate new subscriptions. The Checkout session object even informs you about that, by including a payment status field. Which initially seems just like another field that could indicate hacking attempts, but treating it as such and rejecting any unpaid session can also reject perfectly valid subscriptions. I don't want all this control… 🥲
Instead, all I can do in this case is to tell you about it. In my test, the Stripe dashboard said that it might take days or even weeks for the initial subscription transaction to be confirmed. In such a case, the respective fraction of the cap will unfortunately need to remain red for that entire time.

And that was 1½ pushes just to replicate the basic functionality of a simple PayPal integration with the simplest type of Stripe integration. On the architectural site, all the necessary refactoring work made me finally upgrade my frontend code to TypeScript at least, using the amazing esbuild to handle transpilation inside the server binary. Let's see how long it will now take for me to upgrade to SCSS…


With the new payment options, it makes sense to go for another slight price increase, from up to per push. The amount of taxes I have to pay on this income is slowly becoming significant, and the store has been selling out almost immediately for the last few months anyway. If demand remains at the current level or even increases, I plan to gradually go up to by the end of the year.
📝 As 📝 usual, I'm going to deliver existing orders in the backlog at the value they were originally purchased at. Due to the way the cap has to be calculated, these contributions now appear to have increased in value by a rather awkward 13.33%.


This left ½ of a push for some more work on the TH01 Anniversary Edition. Unfortunately, this was too little time for the grand issue of removing byte-aligned rendering of bigger sprites, which will need some additional blitting performance research. Instead, I went for a bunch of smaller bugfixes:

The final point, however, raised the question of what we're now going to do about 📝 a certain issue in the 地獄/Jigoku Bad Ending. ZUN's original expensive way of switching the accessed VRAM page was the main reason behind the lag frames on slower PC-98 systems, and search-replacing the respective function calls would immediately get us to the optimized version shown in that blog post. But is this something we actually want? If we wanted to retain the lag, we could surely preserve that function just for this one instance…
The discovery of this issue predates the clear distinction between bloat, quirks, and bugs, so it makes sense to first classify what this issue even is. The distinction comes all down to observability, which I defined as changes to rendered frames between explicitly defined frame boundaries. That alone would be enough to categorize any cause behind lag frames as bloat, but it can't hurt to be more explicit here.

Therefore, I now officially judge observability in terms of an infinitely fast PC-98 that can instantly render everything between two explicitly defined frames, and will never add additional lag frames. If we plan to port the games to faster architectures that aren't bottlenecked by disappointing blitter chips, this is the only reasonable assumption to make, in my opinion: The minimum system requirements in the games' README files are minimums, after all, not recommendations. Chasing the exact frame drop behavior that ZUN must have experienced during the time he developed these games can only be a guessing game at best, because how can we know which PC-98 model ZUN actually developed the games on? There might even be more than one model, especially when it comes to TH01 which had been in development for at least two years before ZUN first sold it. It's also not like any current PC-98 emulator even claims to emulate the specific timing of any existing model, and I sure hope that nobody expects me to import a bunch of bulky obsolete hardware just to count dropped frames.

That leaves the tearing, where it's much more obvious how it's a bug. On an infinitely fast PC-98, the ドカーン frame would never be visible, and thus falls into the same category as the 📝 two unused animations in the Sariel fight. With only a single unconditional 2-frame delay inside the animation loop, it becomes clear that ZUN intended both frames of the animation to be displayed for 2 frames each:

No tearing, and 34 frames in total for the first of the two instances of this animation.

:th01: TH01 Anniversary Edition, version P0239 2023-05-01-th01-anniv.zip

Next up: Taking the oldest still undelivered push and working towards TH04 position independence in preparation for multilingual translations. The Shuusou Gyoku OpenGL backend shouldn't take that much longer either, so I should have lots of stuff coming up in May afterward.

📝 Posted:
🚚 Summary of:
P0229, P0230, P0231, P0232, P0233, P0234
Commits:
6370f96...d535d87, d535d87...ca523b4, ca523b4...05a49b9, f7ef7f8...abeaf85, abeaf85...dbc5b51, dd2265c...12f29c6
💰 Funded by:
Ember2528, [Anonymous]
🏷 Tags:

128 commits! Who would have thought that the ideal first release of the TH01 Anniversary Edition would involve so much maintenance, and raise so many research questions? It's almost as if the real work only starts after the 100% finalization mark… Once again, I had to steal some funding from the reserved JIS trail word pushes to cover everything I liked to research, which means that the next towards the anything goal will repay this debt. Luckily, this doesn't affect any immediate plans, as I'll be spending March with tasks that are already fully funded.

So, how did this end up so massive? The list of things I originally set out to do was pretty short:

  1. Build entire game into single executable
  2. Fix rendering issues in the one or two most important parts of the game for a good initial impression

But even the first point already started with tons of little cleanup commits. A part of them can definitely be blamed on the rush to hit the 100% decompilation mark before the 25th anniversary last August. However, all the structural changes that I can't commit to master reveal how much of a mess the TH01 codebase actually is.
Merging the executables is mainly difficult because of all the inconsistencies between REIIDEN.EXE and FUUIN.EXE. The worst parts can be found in the REYHI*.DAT format code and the High Score menu, but the little things are just as annoying, like how the current score is an unsigned variable in REIIDEN.EXE, but a signed one in FUUIN.EXE. :zunpet: If it takes me this long and this many commits just to sort out all of these issues, it's no wonder that the only thing I've seen being done with this codebase since TH01's 100% decompilation was a single porting attempt that ended in a rather quick ragequit.
So why are we merging the executables in preparation for the Anniversary Edition, and not waiting with it until we start doing ports?

The game actually is so bloated that the combined binary ended up smaller than the original REIIDEN.EXE. If all you see are the file sizes of the original three executables, this might look like a pretty impressive feat. Like, how can we possibly get 407,812 bytes into less than 238,612 bytes, without using compression?
If you've ever looked at the linker map though, it's not at all surprising. Excluding the aforementioned inconsistencies that are hard to quantify, OP.EXE and FUUIN.EXE only feature 5,767 and 6,475 bytes of unique code and data, respectively. All other code in these binaries is already part of REIIDEN.EXE, with more than half of the size coming from the Borland C++ runtime. The single worst offender here is the C++ exception handler that Borland forces onto every non-.COM binary by default, which alone adds 20,512 bytes even if your binary doesn't use C++ exceptions.
On a more hilarious note, this single line is responsible for pulling another unnecessary 14,242 bytes into OP.EXE and FUUIN.EXE. This floating-point multiplication is completely unnecessary in this context because all possible parameters are integers, but it's enough for Turbo C++ and TLINK to pull in the entire x87 FPU emulation machinery. These two binaries don't even draw lines, but since this function is part of the general graphics code translation unit and contains other functions that these binaries do need, TLINK links in the entire thing. Maybe, multiple executables aren't the best choice either if you use a linker that can't do dead code elimination…

Since the 📝 Orb's physics do turn the entire precision of a double variable into gameplay effects, it's not feasible to ever get rid of all FPU code in TH01. The exception handler, however, can be removed, which easily brings the combined binary below the size of the original REIIDEN.EXE. Compiling all code with a single set of compiler optimization flags, including the more x86-friendly pascal calling convention, then gets us a few more KB on top. As does, of course, removing unused code: The only remaining purpose of features such as 📝 resident palettes is to potentially make porting more difficult for anyone who doesn't immediately realize that nothing in the game uses these functions.
Technically, all unused code would be bloat, but for now, I'm keeping the parts that may tell stories about the game's development history (such as unused effects or the 📝 mouse cursor), or that might help with debugging. Even with that in mind, I've only scratched the surface when it comes to bloat removal, and the binary is only going to get smaller from here. A lot smaller.

If only we now could start MDRV98 from this new combined binary, we wouldn't need a second batch file either…


Which brings us to the first big research question of this delivery. Using the C spawn() function works fine on this compiler, so spawn("MDRV98.COM") would be all we need to do, right? Except that the game crashes very soon after that subprocess returned. :thonk:
So it's not going to be that easy if the spawned process is a TSR. But why should this be a problem? Let's take a look at the DOS heap, and how DOS lays out processes in conventional memory if we launch the game regularly through GAME.BAT:

The rough layout of the DOS heap when launching TH01 from GAME.BAT.

The batch file starts MDRV98 first, which will therefore end up below the game in conventional memory. This is perfect for a TSR: The program can resize itself arbitrarily before returning to DOS, and the rest of memory will be left over for the game. If we assume such a layout, a DOS program can implement a custom memory allocator in a very simple way, as it only has to search for free memory in one direction – and this is exactly how Borland implemented the C heap for functions like malloc() and free(), and the C++ new and delete operators.
But if we spawn MDRV98 after starting TH01, well…

MDRV98 will spawn in the next free memory location, allocate itself, return to TH01… which suddenly finds its C heap blocked from growing. As a result, the next big allocation will immediately fail with a rather misleading "out of memory" error.

So, what can we do about this? Still in a bloat removal mindset, my gut reaction was to just throw out Borland's C heap implementation, and replace it with a very thin wrapper around the DOS heap as managed by INT 21h, AH=48h/49h/4Ah. Like, why did these DOS compilers even bother with a custom allocator in the first place if DOS already comes with a perfectly fine native one? Using the native allocator would completely erase the distinction between TSR memory and game memory, and inherently allow the game to allocate beyond MDRV98.
I did in fact implement this, and noticed even more benefits:

Ultimately though, the drawbacks became too significant. Most of them are related to the PC-98 Touhou games only ever creating a single DOS process, even though they contain multiple executables. Switching executables is done via exec(), which resizes a program's main allocation to match the new binary and then overwrites the old program image with the new one. If you've ever wondered why DOSBox-X only ever shows OP as the active process name in the title bar, you now know why. As far as DOS is concerned, it's still the same OP.EXE process rooted at the same segment, and exec() doesn't bother rewriting the name either. Most importantly though, this is how REIIDEN.EXE can launch into another REIIDEN.EXE process even if there are less than 238,612 bytes free when exec() is called, and without consuming more memory for every successive binary.
For now, ANNIV.EXE still re-exec()s itself at every point where the original game did, as ZUN's original code really depends on being reinitialized at boss and scene boundaries. The resulting accidental semi-hot reloading is also a useful property to retain during development.
So why is the DOS heap a bad idea for regular game allocation after all?

I could release this DOS heap wrapper in unused form for another push if anyone's interested, but for now, I'm pretty happy with not actually using it in the games. Instead, let's stay with the Borland C heap, and find a way to push MDRV98 to the very top of conventional RAM. Like this:

Which is much easier said than done. It would be nice if we could just use the last fit allocation strategy here, but .COM executables always receive all free memory by default anyway, which eliminates any difference between the strategies.
But we can still change memory itself. So let's temporarily claim all remaining free memory, minus the exact amount we need for MDRV98, for our process. Then, the only remaining free space to spawn MDRV98 is at the exact place where we want it to be:

Obviously, we release all the additional memory after spawning MDRV98.

Now we only need to know how much memory to not temporarily allocate. First, we need to replicate the assumption that MDRV98's -M7 command-line parameter corresponds to a resident size of 23,552 bytes. This is not as bad as it seems, because the -M parameter explicitly has a KiB unit, and we can nicely abstract it away for the API.
The (env.) block though? Its minimum size equals the combined length of all environment variables passed to the process, but its maximum size is… not limited at all?! As in, DOS implementations can add and have historically added more free space because some programs insisted on storing their own new environment variables in this exact segment. DOSBox and DOSBox-X follow this tradition by providing a configuration option for the additional amount of environment space, with the latter adding 1024 additional bytes by default, y'know, just in case someone wants to compile FreeDOS on a slow emulator. It's not even worth sending a bug report for this specific case, because it's only a symptom of the fact that unexpectedly large program environment blocks can and will happen, and are to be expected in DOS land.
So thanks to this cruel joke, it's technically impossible to achieve what we want to do there. Hooray! The only thing we can kind of do here is an educated guess: Sum up the length of all environment variables in our environment block, compare that length against the allocated size of the block, and assume that the MDRV98 process will get as much additional memory as our process got. 🤷

The remaining hurdles came courtesy of some Borland C runtime implementation details. You would think that the temporary reallocation could even be done in pure C using the sbrk(), coreleft(), and brk() functions, but all values passed to or returned from these functions are inaccurate because they don't factor in the aforementioned KiB padding to the underlying DOS memory block. So we have to directly use the DOS syscalls after all. Which at least means that learning about them wasn't completely useless…
The final issue is caused inside Borland's spawn() implementation. The environment block for the child process is built out of all the strings reachable from C's environ pointer, which is what that FreeDOS build process should have used. Coalescing them into a single buffer involves yet another C heap allocation… and since we didn't report our DOS memory block manipulation back to the C heap, the malloc() call might think it needs to request more memory from DOS. This resets the DOS memory block back to its intended level, undoing our manipulation right before the actual INT 21h, AH=4Bh EXEC syscall. Or in short:

Manipulate DOS heap ➜ spawn() call ➜ _LoadProg() ➜ allocate and prepare environment block ➜ _spawn() ➜ DOS EXEC syscall

The obvious solution: Replace _LoadProg(), implement the coalescing ourselves, and do it before the heap manipulation. Fortunately, Borland's internal low-level _spawn() function is not static, so we can call it ourselves whenever we want to:

Allocate and prepare environment block ➜ manipulate DOS heap ➜ _spawn() call ➜ EXEC syscall

So yes, launching MDRV98 from C can be done, but it involves advanced witchcraft and is completely ridiculous. :tannedcirno: Launching external sound drivers from a batch file is the right way of doing things.
Fortunately, you don't have to rely on this auto-launching feature. You can still launch DEBLOAT.EXE or ANNIV.EXE from a batch file that launched MDRV98.COM before, and the binaries will detect this case and skip the attempt of launching MDRV98 from C. It's unlikely that my heuristic will ever break, but I definitely recommend replicating GAME.BAT just to be completely sure – especially for user-friendly repacks that don't want to include the original game anyway.
This is also why ANNIV.EXE doesn't launch ZUNSOFT.COM: The "correct" and stable way to launch ANNIV.EXE still involves a batch file, and I would say that expecting people to remove ZUNSOFT.COM from that file is worse than not playing the animation. It's certainly a debate we can have, though.


This deep dive into memory allocation revealed another previously undocumented bug in the original game. The RLE decompression code for the 東方靈異.伝 packfile contains two heap overflows, which are actually triggered by SinGyoku's BOSS1_3.BOS and Konngara's BOSS8_1.BOS. They only do not immediately crash the game when loading these bosses thanks to two implementation details of Borland's C heap. :zunpet:
Obviously, this is a bug we should fix, but according to the definition of bugs, that fix would be exclusive to the anniversary branch. Isn't that too restrictive for something this critical? This code is guaranteed to blow up with a different heap implementation, if only in a Debug build. :thonk: And besides, nobody would notice a fix just by looking at the game's rendered output…

Looks like we have to introduce a fourth category of weird code, in addition to the previous bloat, bug, and quirk categories, for invisible internal issues like these. Let's call it landmine, and fix them on the debloated branch as well. Thanks to Clerish for the naming inspiration!
With this new category, the full definitions for all categories have become quite extensive. Thus, they now live in CONTRIBUTING.md inside the ReC98 repository.

With the new discoveries and the new landmine category, TH01 is now at 67 bugs and 20 landmines. And the solution for the landmine in question? Simplifying the 61 lines of the original code down to 16. And yes, I'm including comments in these numbers – if the interactions of the code are complex enough to require multi-paragraph comments, these are a necessary and valid part of the code.


While we're on the topic of weird code and its visible or invisible effects, there's one thing you might be concerned about. With all the rearchitecting and data shifting we're doing on the debloated branch, what will happen to the 📝 negative glitch stages? These are the result of a clearly observable bug that, by definition, must not be fixed on the debloated branch. But given that the observable layout of the glitch stages is defined by the memory surrounding the scene stage variable, won't the debloated branch inherently alter their appearance (= ⚠️ fanfiction ⚠️), or even remove them completely?

Well, yes, it will. But we can still preserve their layout by hardcoding the exact original data that the game would originally read, and even emulate the original segment relocations and other pieces of global data.
Doing this is feasible thanks to the fact that there are only 4 glitch stages. Unfortunately, the same can't be said for the timer values, which are determined by an array lookup with the un-modulo'd stage ID. If we wanted to preserve those as well, we'd have to bundle an exact copy of the original REIIDEN.EXE data segment to preserve the values of all 32,768 negative stages you could possibly enter, together with a map of all relocations in this segment. 😵 Which I've decided against for now, since this has been going on for far too long already. Let's first see if anyone ever actually complains about details like this…


Alright, time to start the anniversary branch by rendering everything at its correct internal unaligned X position? Eh… maybe not quite yet. If we just hacked all the necessary bit-shifting code into all the format-specific blitting functions, we'd still retain all this largely redundant, bad, and slow code, and would make no progress in terms of portability. It'd be much better to first write a single generic blitter that's decently optimized, but supports all kinds of sprites to make this optimization actually worth something.
So, next research question: How would such a blitter look like? After I learned during my 📝 first foray into cycle counting that port I/O is slow on 486 CPUs, it became clear that TH04's 📝 GRCG batching for pellets was one of the more useful optimizations that probably contributed a big deal towards achieving the high bullet counts of that game. This leads to two conclusions:

Maybe we should also start by not even doing these unaligned bit shifts ourselves, and instead expect the call site to 📝 always deliver a byte-aligned sprite that is correctly preshifted, if necessary? Some day, we definitely should measure how slow runtime shifting would really be…

What we should do, however, are some further general optimizations that I would have expected from master.lib: Unrolling the vertical loop, and baking a single function for every sprite width to eliminate the horizontal loop. We can then use the widest possible x86 MOV instruction for the lowest possible number of cycles per row – for example, we'd blit a 56-wide sprite with three MOVs (32-bit + 16-bit + 8-bit), and a 64-wide one with two 32-bit MOVs.
Or maybe not? There's a lot of blitting code in both master.lib and PC-98 Touhou that checks for empty bytes within sprites to skip needlessly writing them to VRAM:

uint8_t left_half = ((uint8_t *)(sprite))[0];
uint8_t right_half = ((uint8_t *)(sprite))[1];
if(right_half != 0x00) {
	pokeb(VRAM_SEGMENT, (vram_offset + 0), left_half);
}
if(right_half != 0x00) {
	pokeb(VRAM_SEGMENT, (vram_offset + 1), right_half);
}

Which goes against everything you seem to know about computers. We aren't running on an 8-bit CPU here, so wouldn't it be faster to always write both halves of a sprite in a single operation?

uint16_t both_halves = ((uint16_t *)(sprite))[0];
pokew(VRAM_SEGMENT, vram_offset, both_halves);

That's a single CPU instruction, compared to two instructions and two branches. The only possible explanation for this would be that VRAM writes are so slow on PC-98 that you'd want to avoid them at all costs, even if that means additional branching on the CPU to do so. Or maybe that was something you would want to do on certain models with slow VRAM, but not on others?

So I wrote a benchmark to answer all these questions, and to compare my new blitter against typical TH01 blitting code:

A not really representative run on DOSBox-X. Since the master.lib sprite functions are also unbatched, I expect them to not be much faster than the naive C implementation.

2023-03-05-blitperf.zip And here are the real-hardware results I've got from the PC-9800 Central Discord server:

PC-286LS PC-9801ES PC-9821Cb/Cx PC-9821Ap3 PC-9821An PC-9821Nw133 PC-9821Ra20
80286, 12 MHz i386SX, 16 MHz 486SX, 33 MHz 486DX4, 100 MHz Pentium, 90 MHz Pentium, 133 MHz Pentium Pro, 200 MHz
1987 1989 1994 1994 1994 1997 1996
Unchecked C GRCG 36,85 38,42 26,02 26,87 3,98 4,13 2,08 2,16 1,81 1,87 0,86 0,89 1,25 1,25
MOVS GRCG 15,22 16,87 9,33 10,19 1,22 1,37 0,44 0,44
MOV GRCG 15,42 17,08 9,65 10,53 1,15 1,3 0,44 0,44
4-plane 37,23 43,97 29,2 32,96 4,44 5,01 4,39 4,67 5,11 5,32 5,61 5,74 6,63 6,64
Checking first GRCG 17,49 19,15 10,84 11,72 1,27 1,44 1,04 1,07 0,54 0,54
4-plane 46,49 53,36 35,01 38,79 5,66 6,26 5,43 5,74 6,56 6,8 8,08 8,29 10,25 10,29
Checking second GRCG 16,47 18,12 10,77 11,65 1,25 1,39 1,02 0,51 0,51
4-plane 43,41 50,26 33,79 37,82 5,22 5,81 5,14 5,43 6,18 6,4 7,57 7,77 9,58 9,62
Checking both GRCG 16,14 18,03 10,84 11,71 1,33 1,49 1,01 0,49 0,49
4-plane 43,61 50,45 34,11 37,87 5,39 5,99 4,92 5,23 5,88 6,11 7,19 7,43 9,1 9,13
Amount of frames required to render 2000 16×8 pellet sprites on a variety of PC-98 models, using the new generic blitter. Both preshifted (first column) and runtime-shifted (second column) sprites were tested; empty columns correspond to times faster than a single frame. Thanks to cuba200611, Shoutmon, cybermind, and Digmac for running the tests!

The key takeaways:

Since this won't be the only piece of game-independent and explicitly PC-98-specific custom code involved in this delivery, it makes sense to start a dedicated PC-98 platform layer. This code will gradually eliminate the dependency on master.lib and replace it with better optimized and more readable C++ code. The blitting benchmark, for example, is already implemented completely without master.lib.
While this platform layer is mainly written to generate optimal code within Turbo C++ 4.0J, it can also serve as general PC-98 documentation for everyone who prefers code over machine-translating old Japanese books. Not to mention the immediacy of having all actual relevant information in one place, which might otherwise be pretty well hidden in these books, or some obscure old text file. For example, did you know that uploading gaiji via INT 18h might end up disabling the VSync interrupt trigger, deadlocking the process on the next frame delay loop? This nuisance is not replicated by any emulators, and it's quite frustrating to encounter it when trying to run your code on real hardware. master.lib works around it by simply hooking INT 18h and unconditionally reenabling the VSync interrupt trigger after the original handler returns, and so does our platform layer.


So, with the pellet draw calls batched and routed through the new renderer, we should have gained enough free CPU cycles to disable 📝 interlaced pellet rendering without any impact on frame rates?

Well, kinda. We do get 56.4 FPS, but only together with noticeable and reproducible tearing in the top part of the playfield, suggesting exactly why ZUN interlaced the rendering in the first place. 😕 So have we already reached the limit of single-buffered PC-98 games here, or can we still do something about it?
As it turns out, the main bottleneck actually lies in the pellet unblitting code. Every EGC-"accelerated" unblitting call in TH01 is as unbatched as the pellet blitting calls were, spending an additional 17 I/O port writes per call to completely set up and shut down the EGC, every time. And since this is TH01, the two-instruction operation of changing the active PC-98 VRAM page isn't inlined either, but instead done via a function call to a faraway segment. On the 486, that's:

This sums up to

And this calculation even ignores the lack of small micro-optimizations that could further optimize the blitting loop. Multiply that by the game's pellet cap of 100, and we get a 6-digit number of wasted CPU cycles. On paper, that's roughly 1/6 of the time we have for each of our target 56.423 FPS on the game's target 33 MHz systems. Might not sound all too critical, but the single-buffered nature of the game means that we're effectively racing the beam on every frame. In turn, we have to be even more serious about performance.

So, time to also add a batched EGC API to our PC-98 platform layer? Writing our own EGC code presents a nice opportunity to finally look deeper into all its registers and configuration options, and see what exactly we can do about ZUN's enforced 16-pixel alignment.
To nobody's surprise, this alignment is completely unnecessary, and only displays a lack of knowledge about the chip. While it is true that the EGC wants VRAM to be exclusively addressed in 16-bit chunks at 16-bit-aligned addresses, it specifically provides

And it gets even better: After ⌈bitlength ÷ 16⌉ write instructions, the EGC's internal shifter state automatically reinitializes itself in preparation for blitting another row of pixels with the same initially configured bit addresses and length. This is perfect for blitting rectangles, as two I/O port writes before the start of your blitting loop are enough to define your entire rectangle.

The manual nature of reading and writing in 16-pixel chunks does come with a slight pitfall though. If the source bit address is larger than the destination bit address, the first 16-bit read won't fill the EGC's internal shift register with all pixels that should appear in the first 16-pixel destination chunk. In this case, the EGC simply won't write anything and leave the first chunk unchanged. In a 📝 regular blitting loop, however, you expect that memory to be written and immediately move on to the next chunks within the row. As a result, the actual blitting process for such a rectangle will no longer be aligned to the configured address and bit length. The first row of the rectangle will appear 16 pixels to the right of the destination address, and the second one will start at bit offset 0 with pixels from the rightmost byte of the first line, which weren't blitted and remained in the tile register.
There is an easy solution though: Before the horizontal loop on each line of the rectangle, simply read one additional 16-pixel chunk from the source location to prefill the shift register. Thankfully, it's large enough to also fit the second read of the then full 16 pixels, without dropping any pixels along the way.

And that's how we get arbitrarily unaligned rectangle copies with the EGC! Except for a small register allocation trick to use two-register addressing, there's not much use in further optimizations, as the runtime of these inter-page blit operations is dominated by the VRAM page switches anyway.

Except that T98-Next seems to disagree about the register prefilling issue:

Glitched blitting results on T98-Next when trying EGC copies where the source bit address is larger than the destination bit address

Every other emulator agrees with real hardware in this regard, so we can safely assume this to be a bug in T98-Next. Just in case this old emulator with its last release from June 2010 still has any fans left nowadays… For now though, even they can still enjoy the TH01 Anniversary Edition: The only EGC copy algorithm that TH01 actually needs is the left one during the single-buffered tests, which even that emulator gets right.
That only leaves 📝 my old offer of documenting the EGC raster ops, and we've got the EGC figured out completely!


And that did in fact remove tearing from the pellet rendering function! For the first time, we can now fight Elis, Kikuri, Sariel, and Konngara with a doubled pellet frame rate:

Switchable videos like these can nicely provide evidence that these changes have no effect on gameplay, making it easy to see that the Orb still collides with all pellets on the same frames. Also, check out the difference in remaining conventional memory (coreleft)…

With only pellets and no other animation on screen, this exact pattern presents the optimal demonstration case for the new unblitter. But as you can already tell from the invincibility sprites, we'd also need to route every other kind of sprite through the same new code. This isn't all too trivial: Most sprites are still rendered at byte-aligned positions, and their blitting APIs hide that fact by taking a pixel position regardless. This is why we can't just replace ZUN's original 16-pixel-aligned EGC unblitting function with ours, and always have to replace both the blitter and the unblitter on a per-sprite basis.
To completely remove all flickering, we'd also like to get rid of all the sprite-specific unblit ➜ update ➜ render sequences, and instead gather all unblitting code to the beginning of the game loop, before any update and rendering calls. So yeah, it will take a long time to completely get rid of all flickering. Until we're there, I recommend any backer to tell me their favorite boss, so that I can focus on getting that one rendered without any flickering. Remember that here at ReC98, we can have a Touhou character popularity contest at any time during the year, whenever the store is open! :tannedcirno:

In the meantime, the consistent use of 8×8 rectangles during pellet unblitting does significantly reduce flickering across the entire game, and shrinks certain holes that pellets tend to rip into lazily reblitted sprites:

TH01 SinGyoku's crossing pellet pattern in the Anniversary Edition, demonstrating smaller unblitting artifactsThe same frame in the original game, featuring much more giant holes ripped into the sphere sprite
SinGyoku's "crossing pellets" pattern, shortly before completing the transformation back to the sphere.

To round out the first release, I added all the other bug fixes to achieve parity with my previously released patched REIIDEN.EXE builds:

So here it is, the first build of TH01's Anniversary Edition: 2023-03-05-th01-anniv.zip Edit (2023-03-12): If you're playing on Neko Project and seeing more flickering than in the original game, make sure you've checked the Screen → Disp vsync option.

Next up: The long overdue extended trip through the depths of TH02's low-level code. From what I've seen of it so far, the work on this project is finally going to become a bit more relaxing. Which is quite welcome after, what, 6 months of stressful research-heavy work?

📝 Posted:
🚚 Summary of:
P0223, P0224, P0225
Commits:
139746c...371292d, 371292d...8118e61, 8118e61...4f85326
💰 Funded by:
rosenrose, Blue Bolt, Splashman, -Tom-, Yanga, Enderwolf, 32th System
🏷 Tags:

More than three months without any reverse-engineering progress! It's been way too long. Coincidentally, we're at least back with a surprising 1.25% of overall RE, achieved within just 3 pushes. The ending script system is not only more or less the same in TH04 and TH05, but actually originated in TH03, where it's also used for the cutscenes before stages 8 and 9. This means that it was one of the final pieces of code shared between three of the four remaining games, which I got to decompile at roughly 3× the usual speed, or ⅓ of the price.
The only other bargains of this nature remain in OP.EXE. The Music Room is largely equivalent in all three remaining games as well, and the sound device selection, ZUN Soft logo screens, and main/option menus are the same in TH04 and TH05. A lot of that code is in the "technically RE'd but not yet decompiled" ASM form though, so it would shift Finalized% more significantly than RE%. Therefore, make sure to order the new Finalization option rather than Reverse-engineering if you want to make number go up.

  1. General overview
  2. Game-specific differences
  3. Command reference
  4. Thoughts about translation support

So, cutscenes. On the surface, the .TXT files look simple enough: You directly write the text that should appear on the screen into the file without any special markup, and add commands to define visuals, music, and other effects at any place within the script. Let's start with the basics of how text is rendered, which are the same in all three games:


Superficially, the list of game-specific differences doesn't look too long, and can be summarized in a rather short table:

:th03: TH03 :th04: TH04 :th05: TH05
Script size limit 65536 bytes (heap-allocated) 8192 bytes (statically allocated)
Delay between every 2 bytes of text 1 frame by default, customizable via \v None
Text delay when holding ESC Varying speed-up factor None
Visibility of new text Immediately typed onto the screen Rendered onto invisible VRAM page, faded in on wait commands
Visibility of old text Unblitted when starting a new box Left on screen until crossfaded out with new text
Key binding for advancing the script Any key ⏎ Return, Shot, or ESC
Animation while waiting for an advance key None ⏎⃣, past right edge of current row
Inexplicable delays None 1 frame before changing pictures and after rendering new text boxes
Additional delay per interpreter loop 614.4 µs None 614.4 µs
The 614.4 µs correspond to the necessary delay for working around the repeated key up and key down events sent by PC-98 keyboards when holding down a key. While the absence of this delay significantly speeds up TH04's interpreter, it's also the reason why that game will stop recognizing a held ESC key after a few seconds, requiring you to press it again.

It's when you get into the implementation that the combined three systems reveal themselves as a giant mess, with more like 56 differences between the games. :zunpet: Every single new weird line of code opened up another can of worms, which ultimately made all of this end up with 24 pieces of bloat and 14 bugs. The worst of these should be quite interesting for the general PC-98 homebrew developers among my audience:


That brings us to the individual script commands… and yes, I'm going to document every single one of them. Some of their interactions and edge cases are not clear at all from just looking at the code.

Almost all commands are preceded by… well, a 0x5C lead byte. :thonk: Which raises the question of whether we should document it as an ASCII-encoded \ backslash, or a Shift-JIS-encoded ¥ yen sign. From a gaijin perspective, it seems obvious that it's a backslash, as it's consistently displayed as one in most of the editors you would actually use nowadays. But interestingly, iconv -f shift-jis -t utf-8 does convert any 0x5C lead bytes to actual ¥ U+00A5 YEN SIGN code points :tannedcirno:.
Ultimately, the distinction comes down to the font. There are fonts that still render 0x5C as ¥, but mainly do so out of an obvious concern about backward compatibility to JIS X 0201, where this mapping originated. Unsurprisingly, this group includes MS Gothic/Mincho, the old Japanese fonts from Windows 3.1, but even Meiryo and Yu Gothic/Mincho, Microsoft's modern Japanese fonts. Meanwhile, pretty much every other modern font, and freely licensed ones in particular, render this code point as \, even if you set your editor to Shift-JIS. And while ZUN most definitely saw it as a ¥, documenting this code point as \ is less ambiguous in the long run. It can only possibly correspond to one specific code point in either Shift-JIS or UTF-8, and will remain correct even if we later mod the cutscene system to support full-blown Unicode.

Now we've only got to clarify the parameter syntax, and then we can look at the big table of commands:

:th03: :th04: :th05: \@ Clears both VRAM pages by filling them with VRAM color 0.
🐞 In TH03 and TH04, this command does not update the internal text area background used for unblitting. This bug effectively restricts usage of this command to either the beginning of a script (before the first background image is shown) or its end (after no more new text boxes are started). See the image below for an example of using it anywhere else.
:th03: :th04: :th05: \b2 Sets the font weight to a value between 0 (raw font ROM glyphs) to 3 (very thicc). Specifying any other value has no effect.
:th04: :th05: 🐞 In TH04 and TH05, \b3 leads to glitched pixels when rendering half-width glyphs due to a bug in the newly micro-optimized ASM version of 📝 graph_putsa_fx(); see the image below for an example.
In these games, the parameter also directly corresponds to the graph_putsa_fx() effect function, removing the sanity check that was present in TH03. In exchange, you can also access the four dissolve masks for the bold font (\b2) by specifying a parameter between 4 (fewest pixels) to 7 (most pixels). Demo video below.
:th03: :th04: :th05: \c15 Changes the text color to VRAM color 15.
:th05: \c=,15 Adds a color map entry: If is the first code point inside the name area on a new line, the text color is automatically set to 15. Up to 8 such entries can be registered before overflowing the statically allocated buffer.
🐞 The comma is assumed to be present even if the color parameter is omitted.
:th03: :th04: :th05: \e0 Plays the sound effect with the given ID.
:th03: :th04: :th05: \f (no-op)
:th03: :th04: :th05: \fi1
\fo1
Calls master.lib's palette_black_in() or palette_black_out() to play a hardware palette fade animation from or to black, spending roughly 1 frame on each of the 16 fade steps.
:th03: :th04: :th05: \fm1 Fades out BGM volume via PMD's AH=02h interrupt call, in a non-blocking way. The fade speed can range from 1 (slowest) to 127 (fastest).
Values from 128 to 255 technically correspond to AH=02h's fade-in feature, which can't be used from cutscene scripts because it requires BGM volume to first be lowered via AH=19h, and there is no command to do that.
:th03: :th04: :th05: \g8 Plays a blocking 8-frame screen shake animation.
:th03: :th04: \ga0 Shows the gaiji with the given ID from 0 to 255 at the current cursor position. Even in TH03, gaiji always ignore the text delay interval configured with \v.
:th05: @3 TH05's replacement for the \ga command from TH03 and TH04. The default ID of 3 corresponds to the ♫ gaiji. Not to be confused with \@, which starts with a backslash, unlike this command.
:th05: @h Shows the 🎔 gaiji.
:th05: @t Shows the 💦 gaiji.
:th05: @! Shows the ! gaiji.
:th05: @? Shows the ? gaiji.
:th05: @!! Shows the ‼ gaiji.
:th05: @!? Shows the ⁉ gaiji.
:th03: :th04: :th05: \k0 Waits 0 frames (0 = forever) for an advance key to be pressed before continuing script execution. Before waiting, TH05 crossfades in any new text that was previously rendered to the invisible VRAM page…
🐞 …but TH04 doesn't, leaving the text invisible during the wait time. As a workaround, \vp1 can be used before \k to immediately display that text without a fade-in animation.
:th03: :th04: :th05: \m$ Stops the currently playing BGM.
:th03: :th04: :th05: \m* Restarts playback of the currently loaded BGM from the beginning.
:th03: :th04: :th05: \m,filename Stops the currently playing BGM, loads a new one from the given file, and starts playback.
:th03: :th04: :th05: \n Starts a new line at the leftmost X coordinate of the box, i.e., the start of the name area. This is how scripts can "change" the name of the currently speaking character, or use the entire 480×64 pixels without being restricted to the non-name area.
Note that automatic line breaks already move the cursor into a new line. Using this command at the "end" of a line with the maximum number of 30 full-width glyphs would therefore start a second new line and leave the previously started line empty.
If this command moved the cursor into the 5th line of a box, \s is executed afterward, with any of \n's parameters passed to \s.
:th03: :th04: :th05: \p (no-op)
:th03: :th04: :th05: \p- Deallocates the loaded .PI image.
:th03: :th04: :th05: \p,filename Loads the .PI image with the given file into the single .PI slot available to cutscenes. TH04 and TH05 automatically deallocate any previous image, 🐞 TH03 would leak memory without a manual prior call to \p-.
:th03: :th04: :th05: \pp Sets the hardware palette to the one of the loaded .PI image.
:th03: :th04: :th05: \p@ Sets the loaded .PI image as the full-screen 640×400 background image and overwrites both VRAM pages with its pixels, retaining the current hardware palette.
:th03: :th04: :th05: \p= Runs \pp followed by \p@.
:th03: :th04: :th05: \s0
\s-
Ends a text box and starts a new one. Fades in any text rendered to the invisible VRAM page, then waits 0 frames (0 = forever) for an advance key to be pressed. Afterward, the new text box is started with the cursor moved to the top-left corner of the name area.
\s- skips the wait time and starts the new box immediately.
:th03: :th04: :th05: \t100 Sets palette brightness via master.lib's palette_settone() to any value from 0 (fully black) to 200 (fully white). 100 corresponds to the palette's original colors. Preceded by a 1-frame delay unless ESC is held.
:th03: \v1 Sets the number of frames to wait between every 2 bytes of rendered text.
:th04: Sets the number of frames to spend on each of the 4 fade steps when crossfading between old and new text. The game-specific default value is also used before the first use of this command.
:th05: \v2
:th03: :th04: :th05: \vp0 Shows VRAM page 0. Completely useless in TH03 (this game always synchronizes both VRAM pages at a command boundary), only of dubious use in TH04 (for working around a bug in \k), and the games always return to their intended shown page before every blitting operation anyway. A debloated mod of this game would just remove this command, as it exposes an implementation detail that script authors should not need to worry about. None of the original scripts use it anyway.
:th03: :th04: :th05: \w64
  • \w and \wk wait for the given number of frames
  • \wm and \wmk wait until PMD has played back the current BGM for the total number of measures, including loops, given in the first parameter, and fall back on calling \w and \wk with the second parameter as the frame number if BGM is disabled.
    🐞 Neither PMD nor MMD reset the internal measure when stopping playback. If no BGM is playing and the previous BGM hasn't been played back for at least the given number of measures, this command will deadlock.
Since both TH04 and TH05 fade in any new text from the invisible VRAM page, these commands can be used to simulate TH03's typing effect in those games. Demo video below.
Contrary to \k and \s, specifying 0 frames would simply remove any frame delay instead of waiting forever.
The TH03-exclusive k variants allow the delay to be interrupted if ⏎ Return or Shot are held down. TH04 and TH05 recognize the k as well, but removed its functionality.
All of these commands have no effect if ESC is held.
\wm64,64
:th03: \wk64
\wmk64,64
:th03: :th04: :th05: \wi1
\wo1
Calls master.lib's palette_white_in() or palette_white_out() to play a hardware palette fade animation from or to white, spending roughly 1 frame on each of the 16 fade steps.
:th03: :th04: :th05: \=4 Immediately displays the given quarter of the loaded .PI image in the picture area, with no fade effect. Any value ≥ 4 resets the picture area to black.
:th03: :th04: :th05: \==4,1 Crossfades the picture area between its current content and quarter #4 of the loaded .PI image, spending 1 frame on each of the 4 fade steps unless ESC is held. Any value ≥ 4 is replaced with quarter #0.
:th03: :th04: :th05: \$ Stops script execution. Must be called at the end of each file; otherwise, execution continues into whatever lies after the script buffer in memory.
TH05 automatically deallocates the loaded .PI image, TH03 and TH04 require a separate manual call to \p- to not leak its memory.
Bold values signify the default if the parameter is omitted; \c is therefore equivalent to \c15.
Using the \@ command in the middle of a TH03 or TH04 cutscene script
The \@ bug. Yes, the ¥ is fake. It was easier to GIMP it than to reword the sentences so that the backslashes landed on the second byte of a 2-byte half-width character pair. :onricdennat:
Cutscene font weights in TH03Cutscene font weights in TH05, demonstrating the <code>\b3</code> bug that also affects TH04Cutscene font weights in TH03, rendered at a hypothetical unaligned X positionCutscene font weights in TH05, rendered at a hypothetical unaligned X position
The font weights and effects available through \b, including the glitch with \b3 in TH04 and TH05.
Font weight 3 is technically not rendered correctly in TH03 either; if you compare 1️⃣ with 4️⃣, you notice a single missing column of pixels at the left side of each glyph, which would extend into the previous VRAM byte. Ironically, the TH04/TH05 version is more correct in this regard: For half-width glyphs, it preserves any further pixel columns generated by the weight functions in the high byte of the 16-dot glyph variable. Unlike TH03, which still cuts them off when rendering text to unaligned X positions (3️⃣), TH04 and TH05 do bit-rotate them towards their correct place (4️⃣). It's only at byte-aligned X positions (2️⃣) where they remain at their internally calculated place, and appear on screen as these glitched pixel columns, 15 pixels away from the glyph they belong to. It's easy to blame bugs like these on micro-optimized ASM code, but in this instance, you really can't argue against it if the original C++ version was equally incorrect.
Combining \b and s- into a partial dissolve animation. The speed can be controlled with \v.
Simulating TH03's typing effect in TH04 and TH05 via \w. Even prettier in TH05 where we also get an additional fade animation after the box ends.

So yeah, that's the cutscene system. I'm dreading the moment I will have to deal with the other command interpreter in these games, i.e., the stage enemy system. Luckily, that one is completely disconnected from any other system, so I won't have to deal with it until we're close to finishing MAIN.EXE… that is, unless someone requests it before. And it won't involve text encodings or unblitting…


The cutscene system got me thinking in greater detail about how I would implement translations, being one of the main dependencies behind them. This goal has been on the order form for a while and could soon be implemented for these cutscenes, with 100% PI being right around the corner for the TH03 and TH04 cutscene executables.
Once we're there, the "Virgin" old-school way of static translation patching for Latin-script languages could be implemented fairly quickly:

  1. Establish basic UTF-8 parsing for less painful manual editing of the source files
  2. Procedurally generate glyphs for the few required additional letters based on existing font ROM glyphs. For example, we'd generate ä by painting two short lines on top of the font ROM's a glyph, or generate ¿ by vertically flipping the question mark. This way, the text retains a consistent look regardless of whether the translated game is run with an NEC or EPSON font ROM, or the hideous abomination that Neko Project II auto-generates if you don't provide either.
  3. (Optional) Change automatic line breaks to work on a per-word basis, rather than per-glyph

That's it – script editing and distribution would be handled by your local translation group. It might seem as if this would also work for Greek and Cyrillic scripts due to their presence in the PC-98 font ROM, but I'm not sure if I want to attempt procedurally shrinking these glyphs from 16×16 to 8×16… For any more thorough solution, we'd need to go for a more "Chad" kind of full-blown translation support:

  1. Implement text subdivisions at a sensible granularity while retaining automatic line and box breaks
  2. Compile translatable text into a Japanese→target language dictionary (I'm too old to develop any further translation systems that would overwrite modded source text with translations of the original text)
  3. Implement a custom Unicode font system (glyphs would be taken from GNU Unifont unless translators provide a different 8×16 font for their language)
  4. Combine the text compiler with the font compiler to only store needed glyphs as part of the translation's font file (dealing with a multi-MB font file would be rather ugly in a Real Mode game)
  5. Write a simple install/update/patch stacking tool that supports both .HDI and raw-file DOSBox-X scenarios (it's different enough from thcrap to warrant a separate tool – each patch stack would be statically compiled into a single package file in the game's directory)
  6. Add a nice language selection option to the main menu
  7. (Optional) Support proportional fonts

Which sounds more like a separate project to be commissioned from Touhou Patch Center's Open Collective funds, separate from the ReC98 cap. This way, we can make sure that the feature is completely implemented, and I can talk with every interested translator to make sure that their language works.
It's still cheaper overall to do this on PC-98 than to first port the games to a modern system and then translate them. On the other hand, most of the tasks in the Chad variant (3, 4, 5, and half of 2) purely deal with the difficulty of getting arbitrary Unicode characters to work natively in a PC-98 DOS game at all, and would be either unnecessary or trivial if we had already ported the game. Depending on where the patrons' interests lie, it may not be worth it. So let's see what all of you think about which way we should go, or whether it's worth doing at all. (Edit (2022-12-01): With Splashman's order towards the stage dialogue system, we've pretty much confirmed that it is.) Maybe we want to meet in the middle – using e.g. procedural glyph generation for dynamic translations to keep text rendering consistent with the rest of the PC-98 system, and just not support non-Latin-script languages in the beginning? In any case, I've added both options to the order form.
Edit (2023-07-28): Touhou Patch Center has agreed to fund a basic feature set somewhere between the Virgin and Chad level. Check the 📝 dedicated announcement blog post for more details and ideas, and to find out how you can support this goal!


Surprisingly, there was still a bit of RE work left in the third push after all of this, which I filled with some small rendering boilerplate. Since I also wanted to include TH02's playfield overlay functions, 1/15 of that last push went towards getting a TH02-exclusive function out of the way, which also ended up including that game in this delivery. :tannedcirno:
The other small function pointed out how TH05's Stage 5 midboss pops into the playfield quite suddenly, since its clipping test thinks it's only 32 pixels tall rather than 64:

Good chance that the pop-in might have been intended.
Edit (2023-06-30): Actually, it's a 📝 systematic consequence of ZUN having to work around the lack of clipping in master.lib's sprite functions.
There's even another quirk here: The white flash during its first frame is actually carried over from the previous midboss, which the game still considers as actively getting hit by the player shot that defeated it. It's the regular boilerplate code for rendering a midboss that resets the responsible damage variable, and that code doesn't run during the defeat explosion animation.

Next up: Staying with TH05 and looking at more of the pattern code of its boss fights. Given the remaining TH05 budget, it makes the most sense to continue in in-game order, with Sara and the Stage 2 midboss. If more money comes in towards this goal, I could alternatively go for the Mai & Yuki fight and immediately develop a pretty fix for the cheeto storage glitch. Also, there's a rather intricate pull request for direct ZMBV decoding on the website that I've still got to review…

📝 Posted:
🚚 Summary of:
P0190, P0191, P0192
Commits:
5734815...293e16a, 293e16a...71cb7b5, 71cb7b5...e1f3f9f
💰 Funded by:
nrook, -Tom-, [Anonymous]
🏷 Tags:

The important things first:

So, Shinki! As far as final boss code is concerned, she's surprisingly economical, with 📝 her background animations making up more than ⅓ of her entire code. Going straight from TH01's 📝 final 📝 bosses to TH05's final boss definitely showed how much ZUN had streamlined danmaku pattern code by the end of PC-98 Touhou. Don't get me wrong, there is still room for improvement: TH05 not only 📝 reuses the same 16 bytes of generic boss state we saw in TH04 last month, but also uses them 4× as often, and even for midbosses. Most importantly though, defining danmaku patterns using a single global instance of the group template structure is just bad no matter how you look at it:

Declaring a separate structure instance with the static data for every pattern would be both safer and more space-efficient, and there's more than enough space left for that in the game's data segment.
But all in all, the pattern functions are short, sweet, and easy to follow. The "devil" pattern is significantly more complex than the others, but still far from TH01's final bosses at their worst. I especially like the clear architectural separation between "one-shot pattern" functions that return true once they're done, and "looping pattern" functions that run as long as they're being called from a boss's main function. Not many all too interesting things in these pattern functions for the most part, except for two pieces of evidence that Shinki was coded after Yumeko:


Speaking about that wing sprite: If you look at ST05.BB2 (or any other file with a large sprite, for that matter), you notice a rather weird file layout:

Raw file layout of TH05's ST05.BB2, demonstrating master.lib's supposed BFNT width limit of 64 pixels
A large sprite split into multiple smaller ones with a width of 64 pixels each? What's this, hardware sprite limitations? On my PC-98?!

And it's not a limitation of the sprite width field in the BFNT+ header either. Instead, it's master.lib's BFNT functions which are limited to sprite widths up to 64 pixels… or at least that's what MASTER.MAN claims. Whatever the restriction was, it seems to be completely nonexistent as of master.lib version 0.23, and none of the master.lib functions used by the games have any issues with larger sprites.
Since ZUN stuck to the supposed 64-pixel width limit though, it's now the game that expects Shinki's winged form to consist of 4 physical sprites, not just 1. Any conversion from another, more logical sprite sheet layout back into BFNT+ must therefore replicate the original number of sprites. Otherwise, the sequential IDs ("patnums") assigned to every newly loaded sprite no longer match ZUN's hardcoded IDs, causing the game to crash. This is exactly what used to happen with -Tom-'s MysticTK automation scripts, which combined these exact sprites into a single large one. This issue has now been fixed – just in case there are some underground modders out there who used these scripts and wonder why their game crashed as soon as the Shinki fight started.


And then the code quality takes a nosedive with Shinki's main function. :onricdennat: Even in TH05, these boss and midboss update functions are still very imperative:

The biggest WTF in there, however, goes to using one of the 16 state bytes as a "relative phase" variable for differentiating between boss phases that share the same branch within the switch(boss.phase) statement. While it's commendable that ZUN tried to reduce code duplication for once, he could have just branched depending on the actual boss.phase variable? The same state byte is then reused in the "devil" pattern to track the activity state of the big jerky lasers in the second half of the pattern. If you somehow managed to end the phase after the first few bullets of the pattern, but before these lasers are up, Shinki's update function would think that you're still in the phase before the "devil" pattern. The main function then sequence-breaks right to the defeat phase, skipping the final pattern with the burning Makai background. Luckily, the HP boundaries are far away enough to make this impossible in practice.
The takeaway here: If you want to use the state bytes for your custom boss script mods, alias them to your own 16-byte structure, and limit each of the bytes to a clearly defined meaning across your entire boss script.

One final discovery that doesn't seem to be documented anywhere yet: Shinki actually has a hidden bomb shield during her two purple-wing phases. uth05win got this part slightly wrong though: It's not a complete shield, and hitting Shinki will still deal 1 point of chip damage per frame. For comparison, the first phase lasts for 3,000 HP, and the "devil" pattern phase lasts for 5,800 HP.

And there we go, 3rd PC-98 Touhou boss script* decompiled, 28 to go! 🎉 In case you were expecting a fix for the Shinki death glitch: That one is more appropriately fixed as part of the Mai & Yuki script. It also requires new code, should ideally look a bit prettier than just removing cheetos between one frame and the next, and I'd still like it to fit within the original position-dependent code layout… Let's do that some other time.
Not much to say about the Stage 1 midboss, or midbosses in general even, except that their update functions have to imperatively handle even more subsystems, due to the relative lack of helper functions.


The remaining ¾ of the third push went to a bunch of smaller RE and finalization work that would have hardly got any attention otherwise, to help secure that 50% RE mark. The nicest piece of code in there shows off what looks like the optimal way of setting up the 📝 GRCG tile register for monochrome blitting in a variable color:

mov ah, palette_index ; Any other non-AL 8-bit register works too.
                      ; (x86 only supports AL as the source operand for OUTs.)

rept 4                ; For all 4 bitplanes…
    shr ah,  1        ; Shift the next color bit into the x86 carry flag
    sbb al,  al       ; Extend the carry flag to a full byte
                      ; (CF=0 → 0x00, CF=1 → 0xFF)
    out 7Eh, al       ; Write AL to the GRCG tile register
endm

Thanks to Turbo C++'s inlining capabilities, the loop body even decompiles into a surprisingly nice one-liner. What a beautiful micro-optimization, at a place where micro-optimization doesn't hurt and is almost expected.
Unfortunately, the micro-optimizations went all downhill from there, becoming increasingly dumb and undecompilable. Was it really necessary to save 4 x86 instructions in the highly unlikely case of a new spark sprite being spawned outside the playfield? That one 2D polar→Cartesian conversion function then pointed out Turbo C++ 4.0J's woefully limited support for 32-bit micro-optimizations. The code generation for 32-bit 📝 pseudo-registers is so bad that they almost aren't worth using for arithmetic operations, and the inline assembler just flat out doesn't support anything 32-bit. No use in decompiling a function that you'd have to entirely spell out in machine code, especially if the same function already exists in multiple other, more idiomatic C++ variations.
Rounding out the third push, we got the TH04/TH05 DEMO?.REC replay file reading code, which should finally prove that nothing about the game's original replay system could serve as even just the foundation for community-usable replays. Just in case anyone was still thinking that.


Next up: Back to TH01, with the Elis fight! Got a bit of room left in the cap again, and there are a lot of things that would make a lot of sense now:

📝 Posted:
🚚 Summary of:
P0186, P0187, P0188
Commits:
a21ab3d...bab5634, bab5634...426a531, 426a531...e881f95
💰 Funded by:
Blue Bolt, [Anonymous], nrook
🏷 Tags:

Did you know that moving on top of a boss sprite doesn't kill the player in TH04, only in TH05?

Screenshot of Reimu moving on top of Stage 6 Yuuka, demonstrating the lack of boss↔player collision in TH04
Yup, Reimu is not getting hit… yet.

That's the first of only three interesting discoveries in these 3 pushes, all of which concern TH04. But yeah, 3 for something as seemingly simple as these shared boss functions… that's still not quite the speed-up I had hoped for. While most of this can be blamed, again, on TH04 and all of its hardcoded complexities, there still was a lot of work to be done on the maintenance front as well. These functions reference a bunch of code I RE'd years ago and that still had to be brought up to current standards, with the dependencies reaching from 📝 boss explosions over 📝 text RAM overlay functionality up to in-game dialog loading.

The latter provides a good opportunity to talk a bit about x86 memory segmentation. Many aspiring PC-98 developers these days are very scared of it, with some even going as far as to rather mess with Protected Mode and DOS extenders just so that they don't have to deal with it. I wonder where that fear comes from… Could it be because every modern programming language I know of assumes memory to be flat, and lacks any standard language-level features to even express something like segments and offsets? That's why compilers have a hard time targeting 16-bit x86 these days: Doing anything interesting on the architecture requires giving the programmer full control over segmentation, which always comes down to adding the typical non-standard language extensions of compilers from back in the day. And as soon as DOS stopped being used, these extensions no longer made sense and were subsequently removed from newer tools. A good example for this can be found in an old version of the NASM manual: The project started as an attempt to make x86 assemblers simple again by throwing out most of the segmentation features from MASM-style assemblers, which made complete sense in 1996 when 16-bit DOS and Windows were already on their way out. But there was a point to all those features, and that's why ReC98 still has to use the supposedly inferior TASM.

Not that this fear of segmentation is completely unfounded: All the segmentation-related keywords, directives, and #pragmas provided by Borland C++ and TASM absolutely can be the cause of many weird runtime bugs. Even if the compiler or linker catches them, you are often left with confusing error messages that aged just as poorly as memory segmentation itself.
However, embracing the concept does provide quite the opportunity for optimizations. While it definitely was a very crazy idea, there is a small bit of brilliance to be gained from making proper use of all these segmentation features. Case in point: The buffer for the in-game dialog scripts in TH04 and TH05.

// Thanks to the semantics of `far` pointers, we only need a single 32-bit
// pointer variable for the following code.
extern unsigned char far *dialog_p;

// This master.lib function returns a `void __seg *`, which is a 16-bit
// segment-only pointer. Converting to a `far *` yields a full segment:offset
// pointer to offset 0000h of that segment.
dialog_p = (unsigned char far *)hmem_allocbyte(/* … */);

// Running the dialog script involves pointer arithmetic. On a far pointer,
// this only affects the 16-bit offset part, complete with overflow at 64 KiB,
// from FFFFh back to 0000h.
dialog_p += /* … */;
dialog_p += /* … */;
dialog_p += /* … */;

// Since the segment part of the pointer is still identical to the one we
// allocated above, we can later correctly free the buffer by pulling the
// segment back out of the pointer.
hmem_free((void __seg *)dialog_p);

If dialog_p was a huge pointer, any pointer arithmetic would have also adjusted the segment part, requiring a second pointer to store the base address for the hmem_free call. Doing that will also be necessary for any port to a flat memory model. Depending on how you look at it, this compression of two logical pointers into a single variable is either quite nice, or really, really dumb in its reliance on the precise memory model of one single architecture. :tannedcirno:


Why look at dialog loading though, wasn't this supposed to be all about shared boss functions? Well, TH04 unnecessarily puts certain stage-specific code into the boss defeat function, such as loading the alternate Stage 5 Yuuka defeat dialog before a Bad Ending, or initializing Gengetsu after Mugetsu's defeat in the Extra Stage.
That's TH04's second core function with an explicit conditional branch for Gengetsu, after the 📝 dialog exit code we found last year during EMS research. And I've heard people say that Shinki was the most hardcoded fight in PC-98 Touhou… Really, Shinki is a perfectly regular boss, who makes proper use of all internal mechanics in the way they were intended, and doesn't blast holes into the architecture of the game. Even within TH05, it's Mai and Yuki who rely on hacks and duplicated code, not Shinki.

The worst part about this though? How the function distinguishes Mugetsu from Gengetsu. Once again, it uses its own global variable to track whether it is called the first or the second time within TH04's Extra Stage, unrelated to the same variable used in the dialog exit function. But this time, it's not just any newly created, single-use variable, oh no. In a misguided attempt to micro-optimize away a few bytes of conventional memory, TH04 reserves 16 bytes of "generic boss state", which can (and are) freely used for anything a boss doesn't want to store in a more dedicated variable.
It might have been worth it if the bosses actually used most of these 16 bytes, but the majority just use (the same) two, with only Stage 4 Reimu using a whopping seven different ones. To reverse-engineer the various uses of these variables, I pretty much had to map out which of the undecompiled danmaku-pattern functions corresponds to which boss fight. In the end, I assigned 29 different variable names for each of the semantically different use cases, which made up another full push on its own.

Now, 16 bytes of wildly shared state, isn't that the perfect recipe for bugs? At least during this cursory look, I haven't found any obvious ones yet. If they do exist, it's more likely that they involve reused state from earlier bosses – just how the Shinki death glitch in TH05 is caused by reusing cheeto data from way back in Stage 4 – and hence require much more boss-specific progress.
And yes, it might have been way too early to look into all these tiny details of specific boss scripts… but then, this happened:

TH04 crashing to the DOS prompt in the Stage 4 Marisa fight, right as the last of her bits is destroyed

Looks similar to another screenshot of a crash in the same fight that was reported in December, doesn't it? I was too much in a hurry to figure it out exactly, but notice how both crashes happen right as the last of Marisa's four bits is destroyed. KirbyComment has suspected this to be the cause for a while, and now I can pretty much confirm it to be an unguarded division by the number of on-screen bits in Marisa-specific pattern code. But what's the cause for Kurumi then? :thonk:
As for fixing it, I can go for either a fast or a slow option:

  1. Superficially fixing only this crash will probably just take a fraction of a push.
  2. But I could also go for a deeper understanding by looking at TH04's version of the 📝 custom entity structure. It not only stores the data of Marisa's bits, but is also very likely to be involved in Kurumi's crash, and would get TH04 a lot closer to 100% PI. Taking that look will probably need at least 2 pushes, and might require another 3-4 to completely decompile Marisa's fight, and 2-3 to decompile Kurumi's.

OK, now that that's out of the way, time to finish the boss defeat function… but not without stumbling over the third of TH04's quirks, relating to the Clear Bonus for the main game or the Extra Stage:

And after another few collision-related functions, we're now truly, finally ready to decompile bosses in both TH04 and TH05! Just as the anything funds were running out… :onricdennat: The remaining ¼ of the third push then went to Shinki's 32×32 ball bullets, rounding out this delivery with a small self-contained piece of the first TH05 boss we're probably going to look at.

Next up, though: I'm not sure, actually. Both Shinki and Elis seem just a little bit larger than the 2¼ or 4 pushes purchased so far, respectively. Now that there's a bunch of room left in the cap again, I'll just let the next contribution decide – with a preference for Shinki in case of a tie. And if it will take longer than usual for the store to sell out again this time (heh), there's still the 📝 PC-98 text RAM JIS trail word rendering research waiting to be documented.

📝 Posted:
🚚 Summary of:
P0168, P0169
Commits:
c2de6ab...8b046da, 8b046da...479b766
💰 Funded by:
rosenrose, Blue Bolt
🏷 Tags:

EMS memory! The infamous stopgap measure between the 640 KiB ("ought to be enough for everyone") of conventional memory offered by DOS from the very beginning, and the later XMS standard for accessing all the rest of memory up to 4 GiB in the x86 Protected Mode. With an optionally active EMS driver, TH04 and TH05 will make use of EMS memory to preload a bunch of situational .CDG images at the beginning of MAIN.EXE:

  1. The "eye catch" game title image, shown while stages are loaded
  2. The character-specific background image, shown while bombing
  3. The player character dialog portraits
  4. TH05 additionally stores the boss portraits there, preloading them at the beginning of each stage. (TH04 instead keeps them in conventional memory during the entire stage.)

Once these images are needed, they can then be copied into conventional memory and accessed as usual.

Uh… wait, copied? It certainly would have been possible to map EMS memory to a regular 16-bit Real Mode segment for direct access, bank-switching out rarely used system or peripheral memory in exchange for the EMS data. However, master.lib doesn't expose this functionality, and only provides functions for copying data from EMS to regular memory and vice versa.
But even that still makes EMS an excellent fit for the large image files it's used for, as it's possible to directly copy their pixel data from EMS to VRAM. (Yes, I tried!) Well… would, because ZUN doesn't do that either, and always naively copies the images to newly allocated conventional memory first. In essence, this dumbs down EMS into just another layer of the memory hierarchy, inserted between conventional memory and disk: Not quite as slow as disk, but still requiring that memcpy() to retrieve the data. Most importantly though: Using EMS in this way does not increase the total amount of memory simultaneously accessible to the game. After all, some other data will have to be freed from conventional memory to make room for the newly loaded data.


The most idiomatic way to define the game-specific layout of the EMS area would be either a struct or an enum. Unfortunately, the total size of all these images exceeds the range of a 16-bit value, and Turbo C++ 4.0J supports neither 32-bit enums (which are silently degraded to 16-bit) nor 32-bit structs (which simply don't compile). That still leaves raw compile-time constants though, you only have to manually define the offset to each image in terms of the size of its predecessor. But instead of doing that, ZUN just placed each image at a nice round decimal offset, each slightly larger than the actual memory required by the previous image, just to make sure that everything fits. :tannedcirno: This results not only in quite a bit of unnecessary padding, but also in technically the single biggest amount of "wasted" memory in PC-98 Touhou: Out of the 180,000 (TH04) and 320,000 (TH05) EMS bytes requested, the game only uses 135,552 (TH04) and 175,904 (TH05) bytes. But hey, it's EMS, so who cares, right? Out of all the opportunities to take shortcuts during development, this is among the most acceptable ones. Any actual PC-98 model that could run these two games comes with plenty of memory for this to not turn into an actual issue.

On to the EMS-using functions themselves, which are the definition of "cross-cutting concerns". Most of these have a fallback path for the non-EMS case, and keep the loaded .CDG images in memory if they are immediately needed. Which totally makes sense, but also makes it difficult to find names that reflect all the global state changed by these functions. Every one of these is also just called from a single place, so inlining them would have saved me a lot of naming and documentation trouble there.
The TH04 version of the EMS allocation code was actually displayed on ZUN's monitor in the 2010 MAG・ネット documentary; WindowsTiger already transcribed the low-quality video image in 2019. By 2015 ReC98 standards, I would have just run with that, but the current project goal is to write better code than ZUN, so I didn't. 😛 We sure ain't going to use magic numbers for EMS offsets.

The dialog init and exit code then is completely different in both games, yet equally cross-cutting. TH05 goes even further in saving conventional memory, loading each individual player or boss portrait into a single .CDG slot immediately before blitting it to VRAM and freeing the pixel data again. People who play TH05 without an active EMS driver are surely going to enjoy the hard drive access lag between each portrait change… :godzun: TH04, on the other hand, also abuses the dialog exit function to preload the Mugetsu defeat / Gengetsu entrance and Gengetsu defeat portraits, using a static variable to track how often the function has been called during the Extra Stage… who needs function parameters anyway, right? :zunpet:

This is also the function in which TH04 infamously crashes after the Stage 5 pre-boss dialog when playing with Reimu and without any active EMS driver. That crash is what motivated this look into the games' EMS usage… but the code looks perfectly fine? Oh well, guess the crash is not related to EMS then. Next u–

OK, of course I can't leave it like that. Everyone is expecting a fix now, and I still got half of a push left over after decompiling the regular EMS code. Also, I've now RE'd every function that could possibly be involved in the crash, and this is very likely to be the last time I'll be looking at them.


Turns out that the bug has little to do with EMS, and everything to do with ZUN limiting the amount of conventional RAM that TH04's MAIN.EXE is allowed to use, and then slightly miscalculating this upper limit. Playing Stage 5 with Reimu is the most asset-intensive configuration in this game, due to the combination of

The star image used in TH04's Stage 5.
The star image used in TH04's Stage 5.

Remove any single one of the above points, and this crash would have never occurred. But with all of them combined, the total amount of memory consumed by TH04's MAIN.EXE just barely exceeds ZUN's limit of 320,000 bytes, by no more than 3,840 bytes, the size of the star image.

But wait: As we established earlier, EMS does nothing to reduce the amount of conventional memory used by the game. In fact, if you disabled TH04's EMS handling, you'd still get this crash even if you are running an EMS driver and loaded DOS into the High Memory Area to free up as much conventional RAM as possible. How can EMS then prevent this crash in the first place?

The answer: It's only because ZUN's usage of EMS bypasses the need to load the cached images back out of the XOR-encrypted 東方幻想.郷 packfile. Leaving aside the general stupidity of any game data file encryption*, master.lib's decryption implementation is also quite wasteful: It uses a separate buffer that receives fixed-size chunks of the file, before decrypting every individual byte and copying it to its intended destination buffer. That really resembles the typical slowness of a C fread() implementation more than it does the highly optimized ASM code that master.lib purports to be… And how large is this well-hidden decryption buffer? 4 KiB. :onricdennat:

So, looking back at the game, here is what happens once the Stage 5 pre-battle dialog ends:

  1. Reimu's bomb background image, which was previously freed to make space for her dialog portraits, has to be loaded back into conventional memory from disk
  2. BB0.CDG is found inside the 東方幻想.郷 packfile
  3. file_ropen() ends up allocating a 4 KiB buffer for the encrypted packfile data, getting us the decisive ~4 KiB closer to the memory limit
  4. The .CDG loader tries to allocate 52 608 contiguous bytes for the pixel data of Reimu's bomb image
  5. This would exceed the memory limit, so hmem_allocbyte() fails and returns a nullptr
  6. ZUN doesn't check for this case (as usual)
  7. The pixel data is loaded to address 0000:0000, overwriting the Interrupt Vector Table and whatever comes after
  8. The game crashes
The final frame rendered before the TH04 Stage 5 Reimu No-EMS crash
The final frame rendered by a crashing TH04.

The 4 KiB encryption buffer would only be freed by the corresponding file_close() call, which of course never happens because the game crashes before it gets there. At one point, I really did suspect the cause to be some kind of memory leak or fragmentation inside master.lib, which would have been quite delightful to fix.
Instead, the most straightforward fix here is to bump up that memory limit by at least 4 KiB. Certainly easier than squeezing in a cdg_free() call for the star image before the pre-boss dialog without breaking position dependence.

Or, even better, let's nuke all these memory limits from orbit because they make little sense to begin with, and fix every other potential out-of-memory crash that modders would encounter when adding enough data to any of the 4 games that impose such limits on themselves. Unless you want to launch other binaries (which need to do their own memory allocations) after launching the game, there's really no reason to restrict the amount of memory available to a DOS process. Heck, whenever DOS creates a new one, it assigns all remaining free memory by default anyway.
Removing the memory limits also removes one of ZUN's few error checks, which end up quitting the game if there isn't at least a given maximum amount of conventional RAM available. While it might be tempting to reserve enough memory at the beginning of execution and then never check any allocation for a potential failure, that's exactly where something like TH04's crash comes from.
This game is also still running on DOS, where such an initial allocation failure is very unlikely to happen – no one fills close to half of conventional RAM with TSRs and then tries running one of these games. It might have been useful to detect systems with less than 640 KiB of actual, physical RAM, but none of the PC-98 models with that little amount of memory are fast enough to run these games to begin with. How ironic… a place where ZUN actually added an error check, and then it's mostly pointless.

Here's an archive that contains both fix variants, just in case. These were compiled from the th04_noems_crash_fix and mem_assign_all branches, and contain as little code changes as possible.
Edit (2022-04-18): For TH04, you probably want to download the 📝 community choice fix package instead, which contains this fix along with other workarounds for the Divide error crashes. 2021-11-29-Memory-limit-fixes.zip

So yeah, quite a complex bug, leaving no time for the TH03 scorefile format research after all. Next up: Raising prices.

📝 Posted:
🚚 Summary of:
P0133
Commits:
045450c...1d5db71
💰 Funded by:
[Anonymous]
🏷 Tags:

Wow, 31 commits in a single push? Well, what the last push had in progress, this one had in maintenance. The 📝 master.lib header transition absolutely had to be completed in this one, for my own sanity. And indeed, it reduced the build time for the entirety of ReC98 to about 27 seconds on my system, just as expected in the original announcement. Looking forward to even faster build times with the upcoming #include improvements I've got up my sleeve! The port authors of the future are going to appreciate those quite a bit.

As for the new translation units, the funniest one is probably TH05's function for blitting the 1-color .CDG images used for the main menu options. Which is so optimized that it becomes decompilable again, by ditching the self-modifying code of its TH04 counterpart in favor of simply making better use of CPU registers. The resulting C code is still a mess, but what can you do. :tannedcirno:
This was followed by even more TH05 functions that clearly weren't compiled from C, as evidenced by their padding bytes. It's about time I've documented my lack of ideas of how to get those out of Turbo C++. :onricdennat:

And just like in the previous push, I also had to 📝 throw away a decompiled TH02 function purely due to alignment issues. Couldn't have been a better one though, no one's going to miss a residency check for the MMD driver that is largely identical to the corresponding (and indeed decompilable) function for the PMD driver. Both of those should have been merged into a single function anyway, given how they also mutate the game's sound configuration flags…

In the end, I've slightly slowed down with this one, with only 37% of technical debt done after this 4th dedicated push. Next up: One more of these, centered around TH05's stupidly optimized .PI functions. Maybe also with some more reverse-engineering, after not having done any for 1½ months?

📝 Posted:
🚚 Summary of:
P0124, P0125
Commits:
72dfa09...056b1c7, 056b1c7...f6a3246
💰 Funded by:
Blue Bolt, [Anonymous]
🏷 Tags:

Turns out that TH04's player selection menu is exactly three times as complicated as TH05's. Two screens for character and shot type rather than one, and a way more intricate implementation for saving and restoring the background behind the raised top and left edges of a character picture when moving the cursor between Reimu and Marisa. TH04 decides to backup precisely only the two 256×8 (top) and 8×244 (left) strips behind the edges, indicated in red in the picture below.

Backed-up VRAM area in TH04's player character selection

These take up just 4 KB of heap memory… but require custom blitting functions, and expanding this explicitly hardcoded approach to TH05's 4 characters would have been pretty annoying. So, rather than, uh, not explicitly hardcoding it all, ZUN decided to just be lazy with the backup area in TH05, saving the entire 640×400 screen, and thus spending 128 KB of heap memory on this rather simple selection shadow effect. :zunpet:


So, this really wasn't something to quickly get done during the first half of a push, even after already having done TH05's equivalent of this menu. But since life is very busy right now, I also used the occasion to start addressing another code organization annoyance: master.lib's single master.h header file.

So, time to start a new master.hpp header that would contain just the declarations from master.h that PC-98 Touhou actually needs, plus some semantic (yes, semantic) sugar. Comparing just the old master.h to just the new master.hpp after roughly 60% of the transition has been completed, we get median build times of 319 ms for master.h, and 144 ms for master.hpp on my (admittedly rather slow) DOSBox setup. Nice!
As of this push, ReC98 consists of 107 translation units that have to be compiled with Turbo C++ 4.0J. Fully rebuilding all of these currently takes roughly 37.5 seconds in DOSBox. After the transition to master.hpp is done, we could therefore shave some 10 to 15 seconds off this time, simply by switching header files. And that's just the beginning, as this will also pave the way for further #include optimizations. Life in this codebase will be great!


Unfortunately, there wasn't enough time to repay some of the actual technical debt I was looking forward to, after all of this. Oh well, at least we now also have nice identifiers for the three different boldface options that are used when rendering text to VRAM, after procrastinating that issue for almost 11 months. Next up, assuming the existing subscriptions: More ridiculous decompilations of things that definitely weren't originally written in C, and a big blocker in TH03's MAIN.EXE.