⮜ Blog

⮜ List of tags

Showing all posts tagged bug-

📝 Posted:
🚚 Summary of:
P0168, P0169
Commits:
c2de6ab...8b046da, 8b046da...479b766
💰 Funded by:
rosenrose, Blue Bolt
🏷 Tags:
rec98+ th04+ th05+ boss+ yuuka-5+ blitting+ bug- master.lib+ waste+ mod+

EMS memory! The infamous stopgap measure between the 640 KiB ("ought to be enough for everyone") of conventional memory offered by DOS from the very beginning, and the later XMS standard for accessing all the rest of memory up to 4 GiB in the x86 Protected Mode. With an optionally active EMS driver, TH04 and TH05 will make use of EMS memory to preload a bunch of situational .CDG images at the beginning of MAIN.EXE:

  1. The "eye catch" game title image, shown while stages are loaded
  2. The character-specific background image, shown while bombing
  3. The player character dialog portraits
  4. TH05 additionally stores the boss portraits there, preloading them at the beginning of each stage. (TH04 instead keeps them in conventional memory during the entire stage.)

Once these images are needed, they can then be copied into conventional memory and accessed as usual.

Uh… wait, copied? It certainly would have been possible to map EMS memory to a regular 16-bit Real Mode segment for direct access, bank-switching out rarely used system or peripheral memory in exchange for the EMS data. However, master.lib doesn't expose this functionality, and only provides functions for copying data from EMS to regular memory and vice versa.
But even that still makes EMS an excellent fit for the large image files it's used for, as it's possible to directly copy their pixel data from EMS to VRAM. (Yes, I tried!) Well… would, because ZUN doesn't do that either, and always naively copies the images to newly allocated conventional memory first. In essence, this dumbs down EMS into just another layer of the memory hierarchy, inserted between conventional memory and disk: Not quite as slow as disk, but still requiring that memcpy() to retrieve the data. Most importantly though: Using EMS in this way does not increase the total amount of memory simultaneously accessible to the game. After all, some other data will have to be freed from conventional memory to make room for the newly loaded data.


The most idiomatic way to define the game-specific layout of the EMS area would be either a struct or an enum. Unfortunately, the total size of all these images exceeds the range of a 16-bit value, and Turbo C++ 4.0J supports neither 32-bit enums (which are silently degraded to 16-bit) nor 32-bit structs (which simply don't compile). That still leaves raw compile-time constants though, you only have to manually define the offset to each image in terms of the size of its predecessor. But instead of doing that, ZUN just placed each image at a nice round decimal offset, each slightly larger than the actual memory required by the previous image, just to make sure that everything fits. :tannedcirno: This results not only in quite a bit of unnecessary padding, but also in technically the single biggest amount of "wasted" memory in PC-98 Touhou: Out of the 180,000 (TH04) and 320,000 (TH05) EMS bytes requested, the game only uses 135,552 (TH04) and 175,904 (TH05) bytes. But hey, it's EMS, so who cares, right? Out of all the opportunities to take shortcuts during development, this is among the most acceptable ones. Any actual PC-98 model that could run these two games comes with plenty of memory for this to not turn into an actual issue.

On to the EMS-using functions themselves, which are the definition of "cross-cutting concerns". Most of these have a fallback path for the non-EMS case, and keep the loaded .CDG images in memory if they are immediately needed. Which totally makes sense, but also makes it difficult to find names that reflect all the global state changed by these functions. Every one of these is also just called from a single place, so inlining them would have saved me a lot of naming and documentation trouble there.
The TH04 version of the EMS allocation code was actually displayed on ZUN's monitor in the 2010 MAG・ネット documentary; WindowsTiger already transcribed the low-quality video image in 2019. By 2015 ReC98 standards, I would have just run with that, but the current project goal is to write better code than ZUN, so I didn't. 😛 We sure ain't going to use magic numbers for EMS offsets.

The dialog init and exit code then is completely different in both games, yet equally cross-cutting. TH05 goes even further in saving conventional memory, loading each individual player or boss portrait into a single .CDG slot immediately before blitting it to VRAM and freeing the pixel data again. People who play TH05 without an active EMS driver are surely going to enjoy the hard drive access lag between each portrait change… :godzun: TH04, on the other hand, also abuses the dialog exit function to preload the Mugetsu defeat / Gengetsu entrance and Gengetsu defeat portraits, using a static variable to track how often the function has been called during the Extra Stage… who needs function parameters anyway, right? :zunpet:

This is also the function in which TH04 infamously crashes after the Stage 5 pre-boss dialog when playing with Reimu and without any active EMS driver. That crash is what motivated this look into the games' EMS usage… but the code looks perfectly fine? Oh well, guess the crash is not related to EMS then. Next u–

OK, of course I can't leave it like that. Everyone is expecting a fix now, and I still got half of a push left over after decompiling the regular EMS code. Also, I've now RE'd every function that could possibly be involved in the crash, and this is very likely to be the last time I'll be looking at them.


Turns out that the bug has little to do with EMS, and everything to do with ZUN limiting the amount of conventional RAM that TH04's MAIN.EXE is allowed to use, and then slightly miscalculating this upper limit. Playing Stage 5 with Reimu is the most asset-intensive configuration in this game, due to the combination of

Remove any single one of the above points, and this crash would have never occurred. But with all of them combined, the total amount of memory consumed by TH04's MAIN.EXE just barely exceeds ZUN's limit of 320,000 bytes, by no more than 3,840 bytes, the size of the star image.

But wait: As we established earlier, EMS does nothing to reduce the amount of conventional memory used by the game. In fact, if you disabled TH04's EMS handling, you'd still get this crash even if you are running an EMS driver and loaded DOS into the High Memory Area to free up as much conventional RAM as possible. How can EMS then prevent this crash in the first place?

The answer: It's only because ZUN's usage of EMS bypasses the need to load the cached images back out of the XOR-encrypted 東方幻想.郷 packfile. Leaving aside the general stupidity of any game data file encryption*, master.lib's decryption implementation is also quite wasteful: It uses a separate buffer that receives fixed-size chunks of the file, before decrypting every individual byte and copying it to its intended destination buffer. That really resembles the typical slowness of a C fread() implementation more than it does the highly optimized ASM code that master.lib purports to be… And how large is this well-hidden decryption buffer? 4 KiB. :onricdennat:

So, looking back at the game, here is what happens once the Stage 5 pre-battle dialog ends:

  1. Reimu's bomb background image, which was previously freed to make space for her dialog portraits, has to be loaded back into conventional memory from disk
  2. BB0.CDG is found inside the 東方幻想.郷 packfile
  3. file_ropen() ends up allocating a 4 KiB buffer for the encrypted packfile data, getting us the decisive ~4 KiB closer to the memory limit
  4. The .CDG loader tries to allocate 52 608 contiguous bytes for the pixel data of Reimu's bomb image
  5. This would exceed the memory limit, so hmem_allocbyte() fails and returns a nullptr
  6. ZUN doesn't check for this case (as usual)
  7. The pixel data is loaded to address 0000:0000, overwriting the Interrupt Vector Table and whatever comes after
  8. The game crashes

The 4 KiB encryption buffer would only be freed by the corresponding file_close() call, which of course never happens because the game crashes before it gets there. At one point, I really did suspect the cause to be some kind of memory leak or fragmentation inside master.lib, which would have been quite delightful to fix.
Instead, the most straightforward fix here is to bump up that memory limit by at least 4 KiB. Certainly easier than squeezing in a cdg_free() call for the star image before the pre-boss dialog without breaking position dependence.

Or, even better, let's nuke all these memory limits from orbit because they make little sense to begin with, and fix every other potential out-of-memory crash that modders would encounter when adding enough data to any of the 4 games that impose such limits on themselves. Unless you want to launch other binaries (which need to do their own memory allocations) after launching the game, there's really no reason to restrict the amount of memory available to a DOS process. Heck, whenever DOS creates a new one, it assigns all remaining free memory by default anyway.
Removing the memory limits also removes one of ZUN's few error checks, which end up quitting the game if there isn't at least a given maximum amount of conventional RAM available. While it might be tempting to reserve enough memory at the beginning of execution and then never check any allocation for a potential failure, that's exactly where something like TH04's crash comes from.
This game is also still running on DOS, where such an initial allocation failure is very unlikely to happen – no one fills close to half of conventional RAM with TSRs and then tries running one of these games. It might have been useful to detect systems with less than 640 KiB of actual, physical RAM, but none of the PC-98 models with that little amount of memory are fast enough to run these games to begin with. How ironic… a place where ZUN actually added an error check, and then it's mostly pointless.

Here's an archive that contains both fix variants, just in case. These were compiled from the th04_noems_crash_fix and mem_assign_all branches, and contain as little code changes as possible: 2021-11-29-Memory-limit-fixes.zip

So yeah, quite a complex bug, leaving no time for the TH03 scorefile format research after all. Next up: Raising prices.

📝 Posted:
🚚 Summary of:
P0139
Commits:
864e864...d985811
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03+ th04+ th05+ kaja+ jank+ bug- contribution-ideas+

Technical debt, part 10… in which two of the PMD-related functions came with such complex ramifications that they required one full push after all, leaving no room for the additional decompilations I wanted to do. At least, this did end up being the final one, completing all SHARED segments for the time being.


The first one of these functions determines the BGM and sound effect modes, combining the resident type of the PMD driver with the Option menu setting. The TH04 and TH05 version is apparently coded quite smartly, as PC-98 Touhou only needs to distinguish "OPN- / PC-9801-26K-compatible sound sources handled by PMD.COM" from "everything else", since all other PMD varieties are OPNA- / PC-9801-86-compatible.
Therefore, I only documented those two results returned from PMD's AH=09h function. I'll leave a comprehensive, fully documented enum to interested contributors, since that would involve research into basically the entire history of the PC-9800 series, and even the clearly out-of-scope PC-88VA. After all, distinguishing between more versions of the PMD driver in the Option menu (and adding new sprites for them!) is strictly mod territory.


The honor of being the final decompiled function in any SHARED segment went to TH04's snd_load(). TH04 contains by far the sanest version of this function: Readable C code, no new ZUN bugs (and still missing file I/O error handling, of course)… but wait, what about that actual file read syscall, using the INT 21h, AH=3Fh DOS file read API? Reading up to a hardcoded number of bytes into PMD's or MMD's song or sound effect buffer, 20 KiB in TH02-TH04, 64 KiB in TH05… that's kind of weird. About time we looked closer into this. :thonk:

Turns out that no, KAJA's driver doesn't give you the full 64 KiB of one memory segment for these, as especially TH05's code might suggest to anyone unfamiliar with these drivers. :zunpet: Instead, you can customize the size of these buffers on its command line. In GAME.BAT, ZUN allocates 8 KiB for FM songs, 2 KiB for sound effects, and 12 KiB for MMD files in TH02… which means that the hardcoded sizes in snd_load() are completely wrong, no matter how you look at them. :onricdennat: Consequently, this read syscall will overflow PMD's or MMD's song or sound effect buffer if the given file is larger than the respective buffer size.
Now, ZUN could have simply hardcoded the sizes from GAME.BAT instead, and it would have been fine. As it also turns out though, PMD has an API function (AH=22h) to retrieve the actual buffer sizes, provided for exactly that purpose. There is little excuse not to use it, as it also gives you PMD's default sizes if you don't specify any yourself.
(Unless your build process enumerates all PMD files that are part of the game, and bakes the largest size into both snd_load() and GAME.BAT. That would even work with MMD, which doesn't have an equivalent for AH=22h.)

What'd be the consequence of loading a larger file then? Well, since we don't get a full segment, let's look at the theoretical limit first.
PMD prefers to keep both its driver code and the data buffers in a single memory segment. As a result, the limit for the combined size of the song, instrument, and sound effect buffer is determined by the amount of code in the driver itself. In PMD86 version 4.8o (bundled with TH04 and TH05) for example, the remaining size for these buffers is exactly 45,555 bytes. Being an actually good programmer who doesn't blindly trust user input, KAJA thankfully validates the sizes given via the /M, /V, and /E command-line options before letting the driver reside in memory, and shuts down with an error message if they exceed 40 KiB. Would have been even better if he calculated the exact size – even in the current PMD version 4.8s from January 2020, it's still a hardcoded value (see line 8581).
Either way: If the file is larger than this maximum, the concrete effect is down to the INT 21h, AH=3Fh implementation in the underlying DOS version. DOS 3.3 treats the destination address as linear and reads past the end of the segment, DOS 5.0 and DOSBox-X truncate the number of bytes to not exceed the remaining space in the segment, and maybe there's even a DOS that wraps around and ends up overwriting the PMD driver code. In any case: You will overwrite what's after the driver in memory – typically, the game .EXE and its master.lib functions.

It almost feels like a happy accident that this doesn't cause issues in the original games. The largest PMD file in any of the 4 games, the -86 version of 幽夢 ~ Inanimate Dream, takes up 8,099 bytes, just under the 8,192 byte limit for BGM. For modders, I'd really recommend implementing this properly, with PMD's AH=22h function and error handling, once position independence has been reached.

Whew, didn't think I'd be doing more research into KAJA's drivers during regular ReC98 development! That's probably been the final time though, as all involved functions are now decompiled, and I'm unlikely to iterate over them again.


And that's it! Repaid the biggest chunk of technical debt, time for some actual progress again. Next up: Reopening the store tomorrow, and waiting for new priorities. If we got nothing by Sunday, I'm going to put the pending [Anonymous] pushes towards some work on the website.

📝 Posted:
🚚 Summary of:
P0135, P0136
Commits:
a6eed55...252c13d, 252c13d...07bfcf2
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03+ th04+ th05+ kaja+ menu+ micro-optimization+ bug- tcc+

Alright, no more big code maintenance tasks that absolutely need to be done right now. Time to really focus on parts 6 and 7 of repaying technical debt, right? Except that we don't get to speed up just yet, as TH05's barely decompilable PMD file loading function is rather… complicated.
Fun fact: Whenever I see an unusual sequence of x86 instructions in PC-98 Touhou, I first consult the disassembly of Wolfenstein 3D. That game was originally compiled with the quite similar Borland C++ 3.0, so it's quite helpful to compare its ASM to the officially released source code. If I find the instructions in question, they mostly come from that game's ASM code, leading to the amusing realization that "even John Carmack was unable to get these instructions out of this compiler" :onricdennat: This time though, Wolfenstein 3D did point me to Borland's intrinsics for common C functions like memcpy() and strchr(), available via #pragma intrinsic. Bu~t those unfortunately still generate worse code than what ZUN micro-optimized here. Commenting how these sequences of instructions should look in C is unfortunately all I could do here.
The conditional branches in this function did compile quite nicely though, clarifying the control flow, and clearly exposing a ZUN bug: TH05's snd_load() will hang in an infinite loop when trying to load a non-existing -86 BGM file (with a .M2 extension) if the corresponding -26 BGM file (with a .M extension) doesn't exist either.

Unsurprisingly, the PMD channel monitoring code in TH05's Music Room remains undecompilable outside the two most "high-level" initialization and rendering functions. And it's not because there's data in the middle of the code segment – that would have actually been possible with some #pragmas to ensure that the data and code segments have the same name. As soon as the SI and DI registers are referenced anywhere, Turbo C++ insists on emitting prolog code to save these on the stack at the beginning of the function, and epilog code to restore them from there before returning. Found that out in September 2019, and confirmed that there's no way around it. All the small helper functions here are quite simply too optimized, throwing away any concern for such safety measures. 🤷
Oh well, the two functions that were decompilable at least indicate that I do try.


Within that same 6th push though, we've finally reached the one function in TH05 that was blocking further progress in TH04, allowing that game to finally catch up with the others in terms of separated translation units. Feels good to finally delete more of those .ASM files we've decompiled a while ago… finally!

But since that was just getting started, the most satisfying development in both of these pushes actually came from some more experiments with macros and inline functions for near-ASM code. By adding "unused" dummy parameters for all relevant registers, the exact input registers are made more explicit, which might help future port authors who then maybe wouldn't have to look them up in an x86 instruction reference quite as often. At its best, this even allows us to declare certain functions with the __fastcall convention and express their parameter lists as regular C, with no additional pseudo-registers or macros required.
As for output registers, Turbo C++'s code generation turns out to be even more amazing than previously thought when it comes to returning pseudo-registers from inline functions. A nice example for how this can improve readability can be found in this piece of TH02 code for polling the PC-98 keyboard state using a BIOS interrupt:

inline uint8_t keygroup_sense(uint8_t group) {
	_AL = group;
	_AH = 0x04;
	geninterrupt(0x18);
	// This turns the output register of this BIOS call into the return value
	// of this function. Surprisingly enough, this does *not* naively generate
	// the `MOV AL, AH` instruction you might expect here!
	return _AH;
}

void input_sense(void)
{
	// As a result, this assignment becomes `_AH = _AH`, which Turbo C++
	// never emits as such, giving us only the three instructions we need.
	_AH = keygroup_sense(8);

	// Whereas this one gives us the one additional `MOV BH, AH` instruction
	// we'd expect, and nothing more.
	_BH = keygroup_sense(7);

	// And now it's obvious what both of these registers contain, from just
	// the assignments above.
	if(_BH & K7_ARROW_UP || _AH & K8_NUM_8) {
		key_det |= INPUT_UP;
	}
	// […]
}

I love it. No inline assembly, as close to idiomatic C code as something like this is going to get, yet still compiling into the minimum possible number of x86 instructions on even a 1994 compiler. This is how I keep this project interesting for myself during chores like these. :tannedcirno: We might have even reached peak inline already?

And that's 65% of technical debt in the SHARED segment repaid so far. Next up: Two more of these, which might already complete that segment? Finally!

📝 Posted:
🚚 Summary of:
P0128, P0129
Commits:
dc65b59...dde36f7, dde36f7...f4c2e45
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ file-format+ gameplay+ card-flipping+ waste+ hidden-content+ bug-

So, only one card-flipping function missing, and then we can start decompiling TH01's two final bosses? Unfortunately, that had to be the one big function that initializes and renders all gameplay objects. #17 on the list of longest functions in all of PC-98 Touhou, requiring two pushes to fully understand what's going on there… and then it immediately returns for all "boss" stages whose number is divisible by 5, yet is still called during Sariel's and Konngara's initialization 🤦

Oh well. This also involved the final file format we hadn't looked at yet – the STAGE?.DAT files that describe the layout for all stages within a single 5-stage scene. Which, for a change is a very well-designed form– no, of course it's completely weird, what did you expect? Development must have looked somewhat like this:

With all that, it's almost not worth mentioning how there are 12 turret types, which only differ in which hardcoded pellet group they fire at a hardcoded interval of either 100 or 200 frames, and that they're all explicitly spelled out in every single switch statement. Or how the layout of the internal card and obstacle SoA classes is quite disjointed. So here's the new ZUN bugs you've probably already been expecting!


Cards and obstacles are blitted to both VRAM pages. This way, any other entities moving on top of them can simply be unblitted by restoring pixels from VRAM page 1, without requiring the stationary objects to be redrawn from main memory. Obviously, the backgrounds behind the cards have to be stored somewhere, since the player can remove them. For faster transitions between stages of a scene, ZUN chose to store the backgrounds behind obstacles as well. This way, the background image really only needs to be blitted for the first stage in a scene.

All that memory for the object backgrounds adds up quite a bit though. ZUN actually made the correct choice here and picked a memory allocation function that can return more than the 64 KiB of a single x86 Real Mode segment. He then accesses the individual backgrounds via regular array subscripts… and that's where the bug lies, because he stores the returned address in a regular far pointer rather than a huge one. This way, the game still can only display a total of 102 objects (i. e., cards and obstacles combined) per stage, without any unblitting glitches.
What a shame, that limit could have been 127 if ZUN didn't needlessly allocate memory for alpha planes when backing up VRAM content. :onricdennat:

And since array subscripts on far pointers wrap around after 64 KiB, trying to save the background of the 103rd object is guaranteed to corrupt the memory block header at the beginning of the returned segment. :zunpet:. When TH01 runs in test mode, it correctly reports a corrupted heap in this case.


Finally, some unused content! Upon discovering TH01's debug mode, probably everyone tried to access Stage 21, just to see what happens, and indeed landed in an actual stage, with a black background and a weird color palette. Turns out that ZUN did ship an unused scene in SCENE7.DAT, which is exactly was loaded there.
Unfortunately, it's easy to believe that this is just garbage data (as I initially did): At the beginning of "Stage 22", the game seems to enter an infinite loop somewhere during the flip-in animation.

Well, we've had a heap overflow above, and the cause here is nothing but a stack buffer overflow – a perhaps more modern kind of classic C bug, given its prevalence in the Windows Touhou games. Explained in a few lines of code:

void stageobjs_init_and_render()
{
	int card_animation_frames[50]; // even though there can be up to 200?!
	int total_frames = 0;

	(code that would end up resetting total_frames if it ever tried to reset
	card_animation_frames[50]…)
}

The number of cards in "Stage 22"? 76. There you have it.

But of course, it's trivial to disable this animation and fix these stage transitions. So here they are, Stages 21 to 24, as shipped with the game in STAGE7.DAT:


Wow, what a mess. All that was just a bit too much to be covered in two pushes… Next up, assuming the current subscriptions: Taking a vacation with one smaller TH01 push, covering some smaller functions here and there to ensure some uninterrupted Konngara progress later on.

📝 Posted:
🚚 Summary of:
P0099, P0100, P0101, P0102
Commits:
1799d67...1b25830, 1b25830...ceb81db, ceb81db...c11a956, c11a956...b60f38d
💰 Funded by:
Ember2528, Yanga
🏷 Tags:
rec98+ th01+ gameplay+ bullet+ jank+ contribution-ideas+ bug- boss+ elis+ kikuri+ sariel+ konngara+

Well, make that three days. Trying to figure out all the details behind the sprite flickering was absolutely dreadful…
It started out easy enough, though. Unsurprisingly, TH01 had a quite limited pellet system compared to TH04 and TH05:

As expected from TH01, the code comes with its fair share of smaller, insignificant ZUN bugs and oversights. As you would also expect though, the sprite flickering points to the biggest and most consequential flaw in all of this.


Apparently, it started with ZUN getting the impression that it's only possible to use the PC-98 EGC for fast blitting of all 4 bitplanes in one CPU instruction if you blit 16 horizontal pixels (= 2 bytes) at a time. Consequently, he only wrote one function for EGC-accelerated sprite unblitting, which can only operate on a "grid" of 16×1 tiles in VRAM. But wait, pellets are not only just 8×8, but can also be placed at any unaligned X position…

… yet the game still insists on using this 16-dot-aligned function to unblit pellets, forcing itself into using a super sloppy 16×8 rectangle for the job. 🤦 ZUN then tried to mitigate the resulting flickering in two hilarious ways that just make it worse:

  1. An… "interlaced rendering" mode? This one's activated for all Stage 15 and 20 fights, and separates pellets into two halves that are rendered on alternating frames. Collision detection with the Yin-Yang Orb and the player is only done for the visible half, but collision detection with player shots is still done for all pellets every frame, as are motion updates – so that pellets don't end up moving half as fast as they should.
    So yeah, your eyes weren't deceiving you. The game does effectively drop its perceived frame rate in the Elis, Kikuri, Sariel, and Konngara fights, and it does so deliberately.
  2. 📝 Just like player shots, pellets are also unblitted, moved, and rendered in a single function. Thanks to the 16×8 rectangle, there's now the (completely unnecessary) possibility of accidentally unblitting parts of a sprite that was previously drawn into the 8 pixels right of a pellet. And this is where ZUN went full :tannedcirno: and went "oh, I know, let's test the entire 16 pixels, and in case we got an entity there, we simply make the pellet invisible for this frame! Then we don't even have to unblit it later!" :zunpet:

    Except that this is only done for the first 3 elements of the player shot array…?! Which don't even necessarily have to contain the 3 shots fired last. It's not done for the player sprite, the Orb, or, heck, other pellets that come earlier in the pellet array. (At least we avoided going 𝑂(𝑛²) there?)

    Actually, and I'm only realizing this now as I type this blog post: This test is done even if the shots at those array elements aren't active. So, pellets tend to be made invisible based on comparisons with garbage data. :onricdennat:

    And then you notice that the player shot unblit​/​move​/​render function is actually only ever called from the pellet unblit​/​move​/​render function on the one global instance of the player shot manager class, after pellets were unblitted. So, we end up with a sequence of

    Pellet unblit → Pellet move → Shot unblit → Shot move → Shot render → Pellet render

    which means that we can't ever unblit a previously rendered shot with a pellet. Sure, as terrible as this one function call is from a software architecture perspective, it was enough to fix this issue. Yet we don't even get the intended positive effect, and walk away with pellets that are made temporarily invisible for no reason at all. So, uh, maybe it all just was an attempt at increasing the ramerate on lower spec PC-98 models?

Yup, that's it, we've found the most stupid piece of code in this game, period. It'll be hard to top this.


I'm confident that it's possible to turn TH01 into a well-written, fluid PC-98 game, with no flickering, and no perceived lag, once it's position-independent. With some more in-depth knowledge and documentation on the EGC (remember, there's still 📝 this one TH03 push waiting to be funded), you might even be able to continue using that piece of blitter hardware. And no, you certainly won't need ASM micro-optimizations – just a bit of knowledge about which optimizations Turbo C++ does on its own, and what you'd have to improve in your own code. It'd be very hard to write worse code than what you find in TH01 itself.

(Godbolt for Turbo C++ 4.0J when? Seriously though, that would 📝 also be a great project for outside contributors!)


Oh well. In contrast to TH04 and TH05, where 4 pushes only covered all the involved data types, they were enough to completely cover all of the pellet code in TH01. Everything's already decompiled, and we never have to look at it again. 😌 And with that, TH01 has also gone from by far the least RE'd to the most RE'd game within ReC98, in just half a year! 🎉
Still, that was enough TH01 game logic for a while. :tannedcirno: Next up: Making up for the delay with some more relaxing and easy pieces of TH01 code, that hopefully make just a bit more sense than all this garbage. More image formats, mainly.

📝 Posted:
🚚 Summary of:
P0090, P0091
Commits:
90252cc...07dab29, 07dab29...29c5a73
💰 Funded by:
Yanga, Ember2528
🏷 Tags:
rec98+ th01+ file-format+ bomb+ input+ menu+ bug-

Back to TH01, and its high score menu… oh, wait, that one will eventually involve keyboard input. And thanks to the generous TH01 funding situation, there's really no reason not to cover that right now. After all, TH01 is the last game where input still hadn't been RE'd.
But first, let's also cover that one unused blitting function, together with REIIDEN.CFG loading and saving, which are in front of the input function in OP.EXE… (By now, we all know about the hidden start bomb configuration, right?)

Unsurprisingly, the earliest game also implements input in the messiest way, with a different function for each of the three executables. "Because they all react differently to keyboard inputs :zunpet:", apparently? OP.EXE even has two functions for it, one for the START / CONTINUE / OPTION / QUIT main menu, and one for both Option and Music Test menus, both of which directly perform the ring arithmetic on the menu cursor variable. A consistent separation of keyboard polling from input processing apparently wasn't all too obvious of a thought, since it's only truly done from TH02 on.

This lack of proper architecture becomes actually hilarious once you notice that it did in fact facilitate a recursion bug! :godzun: In case you've been living under a rock for the past 8 years, TH01 shipped with debugging features, which you can enter by running the game via game d from the DOS prompt. These features include a memory info screen, shown when pressing PgUp, implemented as one blocking function (test_mem()) called directly in response to the pressed key inside the polling function. test_mem() only returns once that screen is left by pressing PgDown. And in order to poll input… it directly calls back into the same polling function that called it in the first place, after a 3-frame delay.

Which means that this screen is actually re-entered for every 3 frames that the PgUp key is being held. And yes, you can, of course, also crash the system via a stack overflow this way by holding down PgUp for a few seconds, if that's your thing.
Edit (2020-09-17): Here's a video from spaztron64, showing off this exact stack overflow crash while running under the VEM486 memory manager, which displays additional information about these sorts of crashes:

What makes this even funnier is that the code actually tracks the last state of every polled key, to prevent exactly that sort of bug. But the copy-pasted assignment of the last input state is only done after test_mem() already returned, making it effectively pointless for PgUp. It does work as intended for PgDown… and that's why you have to actually press and release this key once for every call to test_mem() in order to actually get back into the game. Even though a single call to PgDown will already show the game screen again.

In maybe more relevant news though, this function also came with what can be considered the first piece of actual gameplay logic! Bombing via double-tapping the Z and X keys is also handled here, and now we know that both keys simply have to be tapped twice within a window of 20 frames. They are tracked independently from each other, so you don't necessarily have to press them simultaneously.
In debug mode, the bomb count tracks precisely this window of time. That's why it only resets back to 0 when pressing Z or X if it's ≥20.

Sure, TH01's code is expectedly terrible and messy. But compared to the micro-optimizations of TH04 and TH05, it's an absolute joy to work on, and opening all these ZUN bug loot boxes is just the icing on the cake. Looking forward to more of the high score menu in the next pushes!