⮜ Blog

⮜ List of tags

Showing all posts tagged blitting- and pc98-

📝 Posted:
🚚 Summary of:
P0130, P0131
Commits:
6d69ea8...576def5, 576def5...dc9e3ee
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ pc98- blitting- good-code+ jank+ gameplay+ boss+ rng+

50% hype! 🎉 But as usual for TH01, even that final set of functions shared between all bosses had to consume two pushes rather than one…

First up, in the ongoing series "Things that TH01 draws to the PC-98 graphics layer that really should have been drawn to the text layer instead": The boss HP bar. Oh well, using the graphics layer at least made it possible to have this half-red, half-white pattern for the middle section.
This one pattern is drawn by making surprisingly good use of the GRCG. So far, we've only seen it used for fast monochrome drawing:

// Setting up fast drawing using color #9 (1001 in binary)
grcg_setmode(GC_RMW);
outportb(0x7E, 0xFF); // Plane 0: (B): (********)
outportb(0x7E, 0x00); // Plane 1: (R): (        )
outportb(0x7E, 0x00); // Plane 2: (G): (        )
outportb(0x7E, 0xFF); // Plane 3: (E): (********)

// Write a checkerboard pattern (* * * * ) in color #9 to the top-left corner,
// with transparent blanks. Requires only 1 VRAM write to a single bitplane:
// The GRCG automatically writes to the correct bitplanes, as specified above
*(uint8_t *)(MK_FP(0xA800, 0)) = 0xAA;
But since this is actually an 8-pixel tile register, we can set any 8-pixel pattern for any bitplane. This way, we can get different colors for every one of the 8 pixels, with still just a single VRAM write of the alpha mask to a single bitplane:
grcg_setmode(GC_RMW); //  Final color: (A7A7A7A7)
outportb(0x7E, 0x55); // Plane 0: (B): ( * * * *)
outportb(0x7E, 0xFF); // Plane 1: (R): (********)
outportb(0x7E, 0x55); // Plane 2: (G): ( * * * *)
outportb(0x7E, 0xAA); // Plane 3: (E): (* * * * )
And I thought TH01 only suffered the drawbacks of PC-98 hardware, making so little use of its actual features that it's perhaps not fair to even call it "a PC-98 game"… Still, I'd say that "bad PC-98 port of an idea" describes it best.

However, after that tiny flash of brilliance, the surrounding HP rendering code goes right back to being the typical sort of confusing TH01 jank. There's only a single function for the three distinct jobs of

  • incrementing HP during the boss entrance animation,
  • decrementing HP if hit by the Orb, and
  • redrawing the entire bar, because it's still all in VRAM, and Sariel wants different backgrounds,
with magic numbers to select between all of these.

VRAM of course also means that the backgrounds behind the individual hit points have to be stored, so that they can be unblitted later as the boss is losing HP. That's no big deal though, right? Just allocate some memory, copy what's initially in VRAM, then blit it back later using your foundational set of blitting funct– oh, wait, TH01 doesn't have this sort of thing, right :tannedcirno: The closest thing, 📝 once again, are the .PTN functions. And so, the game ends up handling these 8×16 background sprites with 16×16 wrappers around functions for 32×32 sprites. :zunpet: That's quite the recipe for confusion, especially since ZUN preferred copy-pasting the necessary ridiculous arithmetic expressions for calculating positions, .PTN sprite IDs, and the ID of the 16×16 quarter inside the 32×32 sprite, instead of just writing simple helper functions. He did manage to make the result mostly bug-free this time around, though! There's one minor hit point discoloration bug if the red-white or white sections start at an odd number of hit points, but that's never the case for any of the original 7 bosses.
The remaining sloppiness is ultimately inconsequential as well: The game always backs up twice the number of hit point backgrounds, and thus uses twice the amount of memory actually required. Also, this self-restriction of only unblitting 16×16 pixels at a time requires any remaining odd hit point at the last position to, of course, be rendered again :onricdennat:


After stumbling over the weakest imaginable random number generator, we finally arrive at the shared boss↔orb collision handling function, the final blocker among the final blockers. This function takes a whopping 12 parameters, 3 of them being references to int values, some of which are duplicated for every one of the 7 bosses, with no generic boss struct anywhere. 📝 Previously, I speculated that YuugenMagan might have been the first boss to be programmed for TH01. With all these variables though, there is some new evidence that SinGyoku might have been the first one after all: It's the only boss to use its own HP and phase frame variables, with the other bosses sharing the same two globals.

While this function only handles the response to a boss↔orb collision, it still does way too much to describe it briefly. Took me quite a while to frame it in terms of invincibility (which is the main impact of all of this that can be observed in gameplay code). That made at least some sort of sense, considering the other usages of the variables passed as references to that function. Turns out that YuugenMagan, Kikuri, and Elis abuse what's meant to be the "invincibility frame" variable as a frame counter for some of their animations 🙄
Oh well, the game at least doesn't call the collision handling function during those, so "invincibility frame" is technically still a correct variable name there.


And that's it! We're finally ready to start with Konngara, in 2021. I've been waiting quite a while for this, as all this high-level boss code is very likely to speed up TH01 progress quite a bit. Next up though: Closing out 2020 with more of the technical debt in the other games.

📝 Posted:
🚚 Summary of:
P0120, P0121
Commits:
453dd3c...3c008b6, 3c008b6...5c42fcd
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ pc98- blitting- waste+ jank+ boss+ mima-th01+

Back to TH01, and its boss sprite format… with a separate class for storing animations that only differs minutely from the 📝 regular boss entity class I covered last time? Decompiling this class was almost free, and the main reason why the first of these pushes ended up looking pretty huge.

Next up were the remaining shape drawing functions from the code segment that started with the .GRC functions. P0105 already started these with the (surprisingly sanely implemented) 8×8 diamond, star, and… uh, snowflake (?) sprites , prominently seen in the Konngara, Elis, and Sariel fights, respectively. Now, we've also got:

  • ellipse arcs with a customizable angle distance between the individual dots – mostly just used for drawing full circles, though
  • line loops – which are only used for the rotating white squares around Mima, meaning that the white star in the YuugenMagan fight got a completely redundant reimplementation
  • and the surprisingly weirdest one, drawing the red invincibility sprites.
The weirdness becomes obvious with just a single screenshot:

First, we've got the obvious issue of the sprites not being clipped at the right edge of VRAM, with the rightmost pixels in each row of the sprite extending to the beginning of the next row. Well, that's just what you get if you insist on writing unique low-level blitting code for the majority of the individual sprites in the game… 🤷
More importantly though, the sprite sheet looks like this: So how do we even get these fully filled red diamonds?

Well, turns out that the sprites are never consistently unblitted during their 8 frames of animation. There is a function that looks like it unblits the sprite… except that it starts with by enabling the GRCG and… reading from the first bitplane on the background page? If this was the EGC, such a read would fill some internal registers with the contents of all 4 bitplanes, which can then subsequently be blitted to all 4 bitplanes of any VRAM page with a single memory write. But with the GRCG in RMW mode, reads do nothing special, and simply copy the memory contents of one bitplane to the read destination. Maybe ZUN thought that setting the RMW color to red also sets some internal 4-plane mask register to match that color? :zunpet:
Instead, the rather random pixels read from the first bitplane are then used as a mask for a second blit of the same red sprite. Effectively, this only really "unblits" the invincibility pixels that are drawn on top of Reimu's sprite. Since Reimu is drawn first, the invincibility sprites are overwritten anyway. But due to the palette color layout of Reimu's sprite, its pixels end up fully masking away any invincibility sprite pixels in that second blit, leaving VRAM untouched as a result. Anywhere else though, this animation quickly turns into the union of all animation frames.

Then again, if that 16-dot-aligned rectangular unblitting function is all you know about the EGC, and you can't be bothered to write a perfect unblitter for 8×8 sprites, it becomes obvious why you wouldn't want to use it:

Because Reimu would barely be visible under all that flicker. In comparison, those fully filled diamonds actually look pretty good.


After all that, the remaining time wouldn't have been enough for the next few essential classes, so I closed out the push with three more VRAM effects instead:

  • Single-bitplane pixel inversion inside a 32×32 square – the main effect behind the discoloration seen in the bomb animation, as well as the exploding squares at the end of Kikuri's and Sariel's entrance animation
  • EGC-accelerated VRAM row copies – the second half of smooth and fully hardware-accelerated scrolling for backgrounds that are twice the size of VRAM
  • And finally, the VRAM page content transition function using meshed 8×8 squares, used for the blocky transition to Sariel's first and second phases. Which is quite ridiculous in just how needlessly bloated it is. I'm positive that this sort of thing could have also been accelerated using the PC-98's EGC… although simply writing better C would have already gone a long way. The function also comes with three unused mesh patterns.


And with that, ReC98, as a whole, is not only ⅓ done, but I've also fully caught up with the feature backlog for the first time in the history of this crowdfunding! Time to go into maintenance mode then, while we wait for the next pushes to be funded. Got a huge backlog of tiny maintenance issues to address at a leisurely pace, and of course there's also the 📝 16-bit build system waiting to be finished.

📝 Posted:
🚚 Summary of:
P0096, P0097, P0098
Commits:
8ddb778...8283c5e, 8283c5e...600f036, 600f036...ad06748
💰 Funded by:
Ember2528, Yanga
🏷 Tags:
rec98+ th01+ file-format+ pc98- blitting- gameplay+ player+ shot+ jank+ mod+ tcc+

So, let's finally look at some TH01 gameplay structures! The obvious choices here are player shots and pellets, which are conveniently located in the last code segment. Covering these would therefore also help in transferring some first bits of data in REIIDEN.EXE from ASM land to C land. (Splitting the data segment would still be quite annoying.) Player shots are immediately at the beginning…

…but wait, these are drawn as transparent sprites loaded from .PTN files. Guess we first have to spend a push on 📝 Part 2 of this format.
Hm, 4 functions for alpha-masked blitting and unblitting of both 16×16 and 32×32 .PTN sprites that align the X coordinate to a multiple of 8 (remember, the PC-98 uses a planar VRAM memory layout, where 8 pixels correspond to a byte), but only one function that supports unaligned blitting to any X coordinate, and only for 16×16 sprites? Which is only called twice? And doesn't come with a corresponding unblitting function? :thonk:

Yeah, "unblitting". TH01 isn't double-buffered, and uses the PC-98's second VRAM page exclusively to store a stage's background and static sprites. Since the PC-98 has no hardware sprites, all you can do is write pixels into VRAM, and any animated sprite needs to be manually removed from VRAM at the beginning of each frame. Not using double-buffering theoretically allows TH01 to simply copy back all 128 KB of VRAM once per frame to do this. :tannedcirno: But that would be pretty wasteful, so TH01 just looks at all animated sprites, and selectively copies only their occupied pixels from the second to the first VRAM page.


Alright, player shot class methods… oh, wait, the collision functions directly act on the Yin-Yang Orb, so we first have to spend a push on that one. And that's where the impression we got from the .PTN functions is confirmed: The orb is, in fact, only ever displayed at byte-aligned X coordinates, divisible by 8. It's only thanks to the constant spinning that its movement appears at least somewhat smooth.
This is purely a rendering issue; internally, its position is tracked at pixel precision. Sadly, smooth orb rendering at any unaligned X coordinate wouldn't be that trivial of a mod, because well, the necessary functions for unaligned blitting and unblitting of 32×32 sprites don't exist in TH01's code. Then again, there's so much potential for optimization in this code, so it might be very possible to squeeze those additional two functions into the same C++ translation unit, even without position independence…

More importantly though, this was the right time to decompile the core functions controlling the orb physics – probably the highlight in these three pushes for most people.
Well, "physics". The X velocity is restricted to the 5 discrete states of -8, -4, 0, 4, and 8, and gravity is applied by simply adding 1 to the Y velocity every 5 frames :zunpet: No wonder that this can easily lead to situations in which the orb infinitely bounces from the ground.
At least fangame authors now have a reference of how ZUN did it originally, because really, this bad approximation of physics had to have been written that way on purpose. But hey, it uses 64-bit floating-point variables! :onricdennat:

…sometimes at least, and quite randomly. This was also where I had to learn about Turbo C++'s floating-point code generation, and how rigorously it defines the order of instructions when mixing double and float variables in arithmetic or conditional expressions. This meant that I could only get ZUN's original instruction order by using literal constants instead of variables, which is impossible right now without somehow splitting the data segment. In the end, I had to resort to spelling out ⅔ of one function, and one conditional branch of another, in inline ASM. 😕 If ZUN had just written 16.0 instead of 16.0f there, I would have saved quite some hours of my life trying to decompile this correctly…

To sort of make up for the slowdown in progress, here's the TH01 orb physics debug mod I made to properly understand them: 2020-06-13-TH01OrbPhysicsDebug.zip To use it, simply replace REIIDEN.EXE, and run the game in debug mode, via game d on the DOS prompt.
Its code might also serve as an example of how to achieve this sort of thing without position independence.


Alright, now it's time for player shots though. Yeah, sure, they don't move horizontally, so it's not too bad that those are also always rendered at byte-aligned positions. But, uh… why does this code only use the 16×16 alpha-masked unblitting function for decaying shots, and just sloppily unblits an entire 16×16 square everywhere else?

The worst part though: Unblitting, moving, and rendering player shots is done in a single function, in that order. And that's exactly where TH01's sprite flickering comes from. Since different types of sprites are free to overlap each other, you'd have to first unblit all types, then move all types, and then render all types, as done in later PC-98 Touhou games. If you do these three steps per-type instead, you will unblit sprites of other types that have been rendered before… and therefore end up with flicker.
Oh, and finally, ZUN also added an additional sloppy 16×16 square unblit call if a shot collides with a pellet or a boss, for some guaranteed flicker. Sigh.


And that's ⅓ of all ZUN code in TH01 decompiled! Next up: Pellets!

📝 Posted:
🚚 Summary of:
P0067, P0068, P0069
Commits:
e55a48b...ebb30ce, ebb30ce...2ac00d4, e0d0dcd...0f18dbc
💰 Funded by:
Splashman, Yanga, [Anonymous]
🏷 Tags:
rec98+ th01+ pc98- blitting- glitch+ boss+ mima-th01+ yuugenmagan+

Now that's more like the speed I was expecting! After a few more unused functions for palette fading and rectangle blitting, we've reached the big line drawing functions. And the biggest one among them, drawing a straight line at any angle between two points using Bresenham's algorithm, actually happens to be the single longest function present in more than one binary in all of PC-98 Touhou, and #23 on the list of individual longest functions.

And it technically has a ZUN bug! If you pass a point outside the (0, 0) - (639, 399) screen range, the function will calculate a new point at the edge of the screen, so that the resulting line will retain the angle intended by the points given. Except that it does so by calculating the line slope using an integer division rather than a floating-point one :zunpet: Doesn't seem like it actually causes any weirdly skewed lines to be drawn in-game, though; that case is only hit in the Mima boss fight, which draws a few lines with a bottom coordinate of 400 rather than the maximum of 399. It might also cause the wrong background pixels to be restored during parts of the YuugenMagan fight, leading to flickering sprites, but seriously, that's an issue everywhere you look in this game.

Together with the rendering-text-to-VRAM function we've mostly already known from TH02, this pushed the total RE percentage well over 20%, and almost doubled the TH01 RE percentage, all within three pushes. And comparatively, it went really smoothly, to the point (ha) where I even had enough time left to also include the single-point functions that come next in that code segment. Since about half of the remaining functions in OP.EXE are present in more than just itself, I'll be able to at least keep up this speed until OP.EXE hits the 70% RE mark. That is, as long as the backers' priorities continue to be generic RE or "giving some love to TH01"… we don't have a precedent for TH01's actual game code yet.

And that's all the TH01 progress funded for January! Next up, we actually do have a focus on TH03's game and scoring mechanics… or at least the foundation for that.

📝 Posted:
🚚 Summary of:
P0043, P0044, P0045
Commits:
261d503...612beb8
💰 Funded by:
-Tom-
🏷 Tags:
rec98+ th02+ th03+ th04+ th05+ pc98- blitting- uth05win+

Turns out I had only been about half done with the drawing routines. The rest was all related to redrawing the scrolling stage backgrounds after other sprites were drawn on top. Since the PC-98 does have hardware-accelerated scrolling, but no hardware-accelerated sprites, everything that draws animated sprites into a scrolling VRAM must then also make sure that the background tiles covered by the sprite are redrawn in the next frame, which required a bit of ZUN code. And that are the functions that have been in the way of the expected rapid reverse-engineering progress that uth05win was supposed to bring. So, looks like everything's going to go really fast now?

📝 Posted:
🚚 Summary of:
P0025, P0026, P0027
Commits:
0cde4b7...261d503
💰 Funded by:
zorg
🏷 Tags:
rec98+ th02+ th03+ th04+ th05+ pc98- blitting- file-format+ mod+

… yeah, no, we won't get very far without figuring out these drawing routines.
Which process data that comes from the .STD files. Which has various arrays related to the background… including one to specify the scrolling speed. And wait, setting that to 0 actually is what starts a boss battle?

So, have a TH05 Boss Rush patch: 2018-12-26-TH05BossRush.zip Theoretically, this should have also worked for TH04, but for some reason, the Stage 3 boss gets stuck on the first phase if we do this?

Here's the diff for the Boss Rush. Turning it into a thcrap-style Skipgame patch is left as an exercise for the reader.