⮜ Blog

⮜ List of tags

Showing all posts tagged mod-

📝 Posted:
🚚 Summary of:
P0168, P0169
Commits:
c2de6ab...8b046da, 8b046da...479b766
💰 Funded by:
rosenrose, Blue Bolt
🏷 Tags:
rec98+ th04+ th05+ boss+ yuuka-5+ blitting+ bug+ master.lib+ waste+ mod-

EMS memory! The infamous stopgap measure between the 640 KiB ("ought to be enough for everyone") of conventional memory offered by DOS from the very beginning, and the later XMS standard for accessing all the rest of memory up to 4 GiB in the x86 Protected Mode. With an optionally active EMS driver, TH04 and TH05 will make use of EMS memory to preload a bunch of situational .CDG images at the beginning of MAIN.EXE:

  1. The "eye catch" game title image, shown while stages are loaded
  2. The character-specific background image, shown while bombing
  3. The player character dialog portraits
  4. TH05 additionally stores the boss portraits there, preloading them at the beginning of each stage. (TH04 instead keeps them in conventional memory during the entire stage.)

Once these images are needed, they can then be copied into conventional memory and accessed as usual.

Uh… wait, copied? It certainly would have been possible to map EMS memory to a regular 16-bit Real Mode segment for direct access, bank-switching out rarely used system or peripheral memory in exchange for the EMS data. However, master.lib doesn't expose this functionality, and only provides functions for copying data from EMS to regular memory and vice versa.
But even that still makes EMS an excellent fit for the large image files it's used for, as it's possible to directly copy their pixel data from EMS to VRAM. (Yes, I tried!) Well… would, because ZUN doesn't do that either, and always naively copies the images to newly allocated conventional memory first. In essence, this dumbs down EMS into just another layer of the memory hierarchy, inserted between conventional memory and disk: Not quite as slow as disk, but still requiring that memcpy() to retrieve the data. Most importantly though: Using EMS in this way does not increase the total amount of memory simultaneously accessible to the game. After all, some other data will have to be freed from conventional memory to make room for the newly loaded data.


The most idiomatic way to define the game-specific layout of the EMS area would be either a struct or an enum. Unfortunately, the total size of all these images exceeds the range of a 16-bit value, and Turbo C++ 4.0J supports neither 32-bit enums (which are silently degraded to 16-bit) nor 32-bit structs (which simply don't compile). That still leaves raw compile-time constants though, you only have to manually define the offset to each image in terms of the size of its predecessor. But instead of doing that, ZUN just placed each image at a nice round decimal offset, each slightly larger than the actual memory required by the previous image, just to make sure that everything fits. :tannedcirno: This results not only in quite a bit of unnecessary padding, but also in technically the single biggest amount of "wasted" memory in PC-98 Touhou: Out of the 180,000 (TH04) and 320,000 (TH05) EMS bytes requested, the game only uses 135,552 (TH04) and 175,904 (TH05) bytes. But hey, it's EMS, so who cares, right? Out of all the opportunities to take shortcuts during development, this is among the most acceptable ones. Any actual PC-98 model that could run these two games comes with plenty of memory for this to not turn into an actual issue.

On to the EMS-using functions themselves, which are the definition of "cross-cutting concerns". Most of these have a fallback path for the non-EMS case, and keep the loaded .CDG images in memory if they are immediately needed. Which totally makes sense, but also makes it difficult to find names that reflect all the global state changed by these functions. Every one of these is also just called from a single place, so inlining them would have saved me a lot of naming and documentation trouble there.
The TH04 version of the EMS allocation code was actually displayed on ZUN's monitor in the 2010 MAG・ネット documentary; WindowsTiger already transcribed the low-quality video image in 2019. By 2015 ReC98 standards, I would have just run with that, but the current project goal is to write better code than ZUN, so I didn't. 😛 We sure ain't going to use magic numbers for EMS offsets.

The dialog init and exit code then is completely different in both games, yet equally cross-cutting. TH05 goes even further in saving conventional memory, loading each individual player or boss portrait into a single .CDG slot immediately before blitting it to VRAM and freeing the pixel data again. People who play TH05 without an active EMS driver are surely going to enjoy the hard drive access lag between each portrait change… :godzun: TH04, on the other hand, also abuses the dialog exit function to preload the Mugetsu defeat / Gengetsu entrance and Gengetsu defeat portraits, using a static variable to track how often the function has been called during the Extra Stage… who needs function parameters anyway, right? :zunpet:

This is also the function in which TH04 infamously crashes after the Stage 5 pre-boss dialog when playing with Reimu and without any active EMS driver. That crash is what motivated this look into the games' EMS usage… but the code looks perfectly fine? Oh well, guess the crash is not related to EMS then. Next u–

OK, of course I can't leave it like that. Everyone is expecting a fix now, and I still got half of a push left over after decompiling the regular EMS code. Also, I've now RE'd every function that could possibly be involved in the crash, and this is very likely to be the last time I'll be looking at them.


Turns out that the bug has little to do with EMS, and everything to do with ZUN limiting the amount of conventional RAM that TH04's MAIN.EXE is allowed to use, and then slightly miscalculating this upper limit. Playing Stage 5 with Reimu is the most asset-intensive configuration in this game, due to the combination of

Remove any single one of the above points, and this crash would have never occurred. But with all of them combined, the total amount of memory consumed by TH04's MAIN.EXE just barely exceeds ZUN's limit of 320,000 bytes, by no more than 3,840 bytes, the size of the star image.

But wait: As we established earlier, EMS does nothing to reduce the amount of conventional memory used by the game. In fact, if you disabled TH04's EMS handling, you'd still get this crash even if you are running an EMS driver and loaded DOS into the High Memory Area to free up as much conventional RAM as possible. How can EMS then prevent this crash in the first place?

The answer: It's only because ZUN's usage of EMS bypasses the need to load the cached images back out of the XOR-encrypted 東方幻想.郷 packfile. Leaving aside the general stupidity of any game data file encryption*, master.lib's decryption implementation is also quite wasteful: It uses a separate buffer that receives fixed-size chunks of the file, before decrypting every individual byte and copying it to its intended destination buffer. That really resembles the typical slowness of a C fread() implementation more than it does the highly optimized ASM code that master.lib purports to be… And how large is this well-hidden decryption buffer? 4 KiB. :onricdennat:

So, looking back at the game, here is what happens once the Stage 5 pre-battle dialog ends:

  1. Reimu's bomb background image, which was previously freed to make space for her dialog portraits, has to be loaded back into conventional memory from disk
  2. BB0.CDG is found inside the 東方幻想.郷 packfile
  3. file_ropen() ends up allocating a 4 KiB buffer for the encrypted packfile data, getting us the decisive ~4 KiB closer to the memory limit
  4. The .CDG loader tries to allocate 52 608 contiguous bytes for the pixel data of Reimu's bomb image
  5. This would exceed the memory limit, so hmem_allocbyte() fails and returns a nullptr
  6. ZUN doesn't check for this case (as usual)
  7. The pixel data is loaded to address 0000:0000, overwriting the Interrupt Vector Table and whatever comes after
  8. The game crashes

The 4 KiB encryption buffer would only be freed by the corresponding file_close() call, which of course never happens because the game crashes before it gets there. At one point, I really did suspect the cause to be some kind of memory leak or fragmentation inside master.lib, which would have been quite delightful to fix.
Instead, the most straightforward fix here is to bump up that memory limit by at least 4 KiB. Certainly easier than squeezing in a cdg_free() call for the star image before the pre-boss dialog without breaking position dependence.

Or, even better, let's nuke all these memory limits from orbit because they make little sense to begin with, and fix every other potential out-of-memory crash that modders would encounter when adding enough data to any of the 4 games that impose such limits on themselves. Unless you want to launch other binaries (which need to do their own memory allocations) after launching the game, there's really no reason to restrict the amount of memory available to a DOS process. Heck, whenever DOS creates a new one, it assigns all remaining free memory by default anyway.
Removing the memory limits also removes one of ZUN's few error checks, which end up quitting the game if there isn't at least a given maximum amount of conventional RAM available. While it might be tempting to reserve enough memory at the beginning of execution and then never check any allocation for a potential failure, that's exactly where something like TH04's crash comes from.
This game is also still running on DOS, where such an initial allocation failure is very unlikely to happen – no one fills close to half of conventional RAM with TSRs and then tries running one of these games. It might have been useful to detect systems with less than 640 KiB of actual, physical RAM, but none of the PC-98 models with that little amount of memory are fast enough to run these games to begin with. How ironic… a place where ZUN actually added an error check, and then it's mostly pointless.

Here's an archive that contains both fix variants, just in case. These were compiled from the th04_noems_crash_fix and mem_assign_all branches, and contain as little code changes as possible: 2021-11-29-Memory-limit-fixes.zip

So yeah, quite a complex bug, leaving no time for the TH03 scorefile format research after all. Next up: Raising prices.

📝 Posted:
🚚 Summary of:
P0137
Commits:
07bfcf2...8d953dc
💰 Funded by:
[Anonymous]
🏷 Tags:
rec98+ th02+ th03+ th04+ th05+ build-process+ meta+ contribution-ideas+ mod- tasm+ tcc+

Whoops, the build was broken again? Since P0127 from mid-November 2020, on TASM32 version 5.3, which also happens to be the one in the DevKit… That version changed the alignment for the default segments of certain memory models when requesting .386 support. And since redefining segment alignment apparently is highly illegal and absolutely has to be a build error, some of the stand-alone .ASM translation units didn't assemble anymore on this version. I've only spotted this on my own because I casually compiled ReC98 somewhere else – on my development system, I happened to have TASM32 version 5.0 in the PATH during all this time.
At least this was a good occasion to get rid of some weird segment alignment workarounds from 2015, and replace them with the superior convention of using the USE16 modifier for the .MODEL directive.

ReC98 would highly benefit from a build server – both in order to immediately spot issues like this one, and as a service for modders. Even more so than the usual open-source project of its size, I would say. But that might be exactly because it doesn't seem like something you can trivially outsource to one of the big CI providers for open-source projects, and quickly set it up with a few lines of YAML.
That might still work in the beginning, and we might get by with a regular 64-bit Windows 10 and DOSBox running the exact build tools from the DevKit. Ideally, though, such a server should really run the optimal configuration of a 32-bit Windows 10, allowing both the 32-bit and the 16-bit build step to run natively, which already is something that no popular CI service out there offers. Then, we'd optimally expand to Linux, every other Windows version down to 95, emulated PC-98 systems, other TASM versions… yeah, it'd be a lot. An experimental project all on its own, with additional hosting costs and probably diminishing returns, the more it expands…
I've added it as a category to the order form, let's see how much interest there is once the store reopens (which will be at the beginning of May, at the latest). That aside, it would 📝 also be a great project for outside contributors!


So, technical debt, part 8… and right away, we're faced with TH03's low-level input function, which 📝 once 📝 again 📝 insists on being word-aligned in a way we can't fake without duplicating translation units. Being undecompilable isn't exactly the best property for a function that has been interesting to modders in the past: In 2018, spaztron64 created an ASM-level mod that hardcoded more ergonomic key bindings for human-vs-human multiplayer mode: 2021-04-04-TH03-WASD-2player.zip However, this remapping attempt remained quite limited, since we hadn't (and still haven't) reached full position independence for TH03 yet. There's quite some potential for size optimizations in this function, which would allow more BIOS key groups to already be used right now, but it's not all that obvious to modders who aren't intimately familiar with x86 ASM. Therefore, I really wouldn't want to keep such a long and important function in ASM if we don't absolutely have to…

… and apparently, that's all the motivation I needed? So I took the risk, and spent the first half of this push on reverse-engineering TCC.EXE, to hopefully find a way to get word-aligned code segments out of Turbo C++ after all.

And there is! The -WX option, used for creating DPMI applications, messes up all sorts of code generation aspects in weird ways, but does in fact mark the code segment as word-aligned. We can consider ourselves quite lucky that we get to use Turbo C++ 4.0, because this feature isn't available in any previous version of Borland's C++ compilers.
That allowed us to restore all the decompilations I previously threw away… well, two of the three, that lookup table generator was too much of a mess in C. :tannedcirno: But what an abuse this is. The subtly different code generation has basically required one creative workaround per usage of -WX. For example, enabling that option causes the regular PUSH BP and POP BP prolog and epilog instructions to be wrapped with INC BP and DEC BP, for some reason:

a_function_compiled_with_wx proc
	inc 	bp    	; ???
	push	bp
	mov 	bp, sp
	    	      	; [… function code …]
	pop 	bp
	dec 	bp    	; ???
	ret
a_function_compiled_with_wx endp

Luckily again, all the functions that currently require -WX don't set up a stack frame and don't take any parameters.
While this hasn't directly been an issue so far, it's been pretty close: snd_se_reset(void) is one of the functions that require word alignment. Previously, it shared a translation unit with the immediately following snd_se_play(int new_se), which does take a parameter, and therefore would have had its prolog and epilog code messed up by -WX. Since the latter function has a consistent (and thus, fakeable) alignment, I simply split that code segment into two, with a new -WX translation unit for just snd_se_reset(void). Problem solved – after all, two C++ translation units are still better than one ASM translation unit. :onricdennat: Especially with all the previous #include improvements.

The rest was more of the usual, getting us 74% done with repaying the technical debt in the SHARED segment. A lot of the remaining 26% is TH04 needing to catch up with TH03 and TH05, which takes comparatively little time. With some good luck, we might get this done within the next push… that is, if we aren't confronted with all too many more disgusting decompilations, like the two functions that ended this push. If we are, we might be needing 10 pushes to complete this after all, but that piece of research was definitely worth the delay. Next up: One more of these.

📝 Posted:
🚚 Summary of:
P0096, P0097, P0098
Commits:
8ddb778...8283c5e, 8283c5e...600f036, 600f036...ad06748
💰 Funded by:
Ember2528, Yanga
🏷 Tags:
rec98+ th01+ file-format+ pc98+ blitting+ gameplay+ player+ shot+ jank+ mod- tcc+

So, let's finally look at some TH01 gameplay structures! The obvious choices here are player shots and pellets, which are conveniently located in the last code segment. Covering these would therefore also help in transferring some first bits of data in REIIDEN.EXE from ASM land to C land. (Splitting the data segment would still be quite annoying.) Player shots are immediately at the beginning…

…but wait, these are drawn as transparent sprites loaded from .PTN files. Guess we first have to spend a push on 📝 Part 2 of this format.
Hm, 4 functions for alpha-masked blitting and unblitting of both 16×16 and 32×32 .PTN sprites that align the X coordinate to a multiple of 8 (remember, the PC-98 uses a planar VRAM memory layout, where 8 pixels correspond to a byte), but only one function that supports unaligned blitting to any X coordinate, and only for 16×16 sprites? Which is only called twice? And doesn't come with a corresponding unblitting function? :thonk:

Yeah, "unblitting". TH01 isn't double-buffered, and uses the PC-98's second VRAM page exclusively to store a stage's background and static sprites. Since the PC-98 has no hardware sprites, all you can do is write pixels into VRAM, and any animated sprite needs to be manually removed from VRAM at the beginning of each frame. Not using double-buffering theoretically allows TH01 to simply copy back all 128 KB of VRAM once per frame to do this. :tannedcirno: But that would be pretty wasteful, so TH01 just looks at all animated sprites, and selectively copies only their occupied pixels from the second to the first VRAM page.


Alright, player shot class methods… oh, wait, the collision functions directly act on the Yin-Yang Orb, so we first have to spend a push on that one. And that's where the impression we got from the .PTN functions is confirmed: The orb is, in fact, only ever displayed at byte-aligned X coordinates, divisible by 8. It's only thanks to the constant spinning that its movement appears at least somewhat smooth.
This is purely a rendering issue; internally, its position is tracked at pixel precision. Sadly, smooth orb rendering at any unaligned X coordinate wouldn't be that trivial of a mod, because well, the necessary functions for unaligned blitting and unblitting of 32×32 sprites don't exist in TH01's code. Then again, there's so much potential for optimization in this code, so it might be very possible to squeeze those additional two functions into the same C++ translation unit, even without position independence…

More importantly though, this was the right time to decompile the core functions controlling the orb physics – probably the highlight in these three pushes for most people.
Well, "physics". The X velocity is restricted to the 5 discrete states of -8, -4, 0, 4, and 8, and gravity is applied by simply adding 1 to the Y velocity every 5 frames :zunpet: No wonder that this can easily lead to situations in which the orb infinitely bounces from the ground.
At least fangame authors now have a reference of how ZUN did it originally, because really, this bad approximation of physics had to have been written that way on purpose. But hey, it uses 64-bit floating-point variables! :onricdennat:

…sometimes at least, and quite randomly. This was also where I had to learn about Turbo C++'s floating-point code generation, and how rigorously it defines the order of instructions when mixing double and float variables in arithmetic or conditional expressions. This meant that I could only get ZUN's original instruction order by using literal constants instead of variables, which is impossible right now without somehow splitting the data segment. In the end, I had to resort to spelling out ⅔ of one function, and one conditional branch of another, in inline ASM. 😕 If ZUN had just written 16.0 instead of 16.0f there, I would have saved quite some hours of my life trying to decompile this correctly…

To sort of make up for the slowdown in progress, here's the TH01 orb physics debug mod I made to properly understand them: 2020-06-13-TH01OrbPhysicsDebug.zip To use it, simply replace REIIDEN.EXE, and run the game in debug mode, via game d on the DOS prompt.
Its code might also serve as an example of how to achieve this sort of thing without position independence.


Alright, now it's time for player shots though. Yeah, sure, they don't move horizontally, so it's not too bad that those are also always rendered at byte-aligned positions. But, uh… why does this code only use the 16×16 alpha-masked unblitting function for decaying shots, and just sloppily unblits an entire 16×16 square everywhere else?

The worst part though: Unblitting, moving, and rendering player shots is done in a single function, in that order. And that's exactly where TH01's sprite flickering comes from. Since different types of sprites are free to overlap each other, you'd have to first unblit all types, then move all types, and then render all types, as done in later PC-98 Touhou games. If you do these three steps per-type instead, you will unblit sprites of other types that have been rendered before… and therefore end up with flicker.
Oh, and finally, ZUN also added an additional sloppy 16×16 square unblit call if a shot collides with a pellet or a boss, for some guaranteed flicker. Sigh.


And that's ⅓ of all ZUN code in TH01 decompiled! Next up: Pellets!

📝 Posted:
🚚 Summary of:
P0025, P0026, P0027
Commits:
0cde4b7...261d503
💰 Funded by:
zorg
🏷 Tags:
rec98+ th02+ th03+ th04+ th05+ pc98+ blitting+ file-format+ mod-

… yeah, no, we won't get very far without figuring out these drawing routines.
Which process data that comes from the .STD files. Which has various arrays related to the background… including one to specify the scrolling speed. And wait, setting that to 0 actually is what starts a boss battle?

So, have a TH05 Boss Rush patch: 2018-12-26-TH05BossRush.zip Theoretically, this should have also worked for TH04, but for some reason, the Stage 3 boss gets stuck on the first phase if we do this?

Here's the diff for the Boss Rush. Turning it into a thcrap-style Skipgame patch is left as an exercise for the reader.