More than three months without any reverse-engineering progress! It's been
way too long. Coincidentally, we're at least back with a surprising 1.25% of
overall RE, achieved within just 3 pushes. The ending script system is not
only more or less the same in TH04 and TH05, but actually originated in
TH03, where it's also used for the cutscenes before stages 8 and 9. This
means that it was one of the final pieces of code shared between three of
the four remaining games, which I got to decompile at roughly 3× the usual
speed, or ⅓ of the price.
The only other bargains of this nature remain in OP.EXE. The
Music Room is largely equivalent in all three remaining games as well, and
the sound device selection, ZUN Soft logo screens, and main/option menus are
the same in TH04 and TH05. A lot of that code is in the "technically RE'd
but not yet decompiled" ASM form though, so it would shift Finalized% more
significantly than RE%. Therefore, make sure to order the new
Finalization option rather than Reverse-engineering if you
want to make number go up.
So, cutscenes. On the surface, the .TXT files look simple enough: You
directly write the text that should appear on the screen into the file
without any special markup, and add commands to define visuals, music, and
other effects at any place within the script. Let's start with the basics of
how text is rendered, which are the same in all three games:
First off, the text area has a size of 480×64 pixels. This means that it
does not correspond to the tiled area painted into TH05's
EDBK?.PI images:
The yellow area is designated for character names.
Since the font weight can be customized, all text is rendered to VRAM.
This also includes gaiji, despite them ignoring the font weight
setting.
The system supports automatic line breaks on a per-glyph basis, which
move the text cursor to the beginning of the red text area. This might seem like a piece of long-forgotten
ancient wisdom at first, considering the absence of automatic line breaks in
Windows Touhou. However, ZUN probably implemented it more out of pure
necessity: Text in VRAM needs to be unblitted when starting a new box, which
is way more straightforward and performant if you only need to worry
about a fixed area.
The system also automatically starts a new (key press-separated) text
box after the end of the 4th line. However, the text cursor is
also unconditionally moved to the top-left corner of the yellow name
area when this happens, which is almost certainly not what you expect, given
that automatic line breaks stay within the red area. A script author might
as well add the necessary text box change commands manually, if you're
forced to anticipate the automatic ones anyway…
Due to ZUN forgetting an unblitting call during the TH05 refactoring of the
box background buffer, this feature is even completely broken in that game,
as any new text will simply be blitted on top of the old one:
Wait, why are we already talking about game-specific differences after
all? Also, note how the ⏎ animation appears one line below where you'd
expect it.
Overall, the system is geared toward exclusively full-width text. As
exemplified by the 2014 static English patches and the screenshots in this
blog post, half-width text is possible, but comes with a lot of
asterisks attached:
Each loop of the script interpreter starts by looking at the next
byte to distinguish commands from text. However, this step also skips
over every ASCII space and control character, i.e., every byte
≤ 32. If you only intend to display full-width glyphs anyway, this
sort of makes sense: You gain complete freedom when it comes to the
physical layout of these script files, and it especially allows commands
to be freely separated with spaces and line breaks for improved
readability. Still, enforcing commands to be separated exclusively by
line breaks might have been even better for readability, and would have
freed up ASCII spaces for regular text…
Non-command text is blindly processed and rendered two bytes at a
time. The rendering function interprets these bytes as a Shift-JIS
string, so you can use half-width characters here. While the
second byte can even be an ASCII 0x20 space due to the
parser's blindness, all half-width characters must still occur in pairs
that can't be interrupted by commands:
As a workaround for at least the ASCII space issue, you can replace
them with any of the unassigned
Shift-JIS lead bytes – 0x80, 0xA0, or
anything between 0xF0 and 0xFF inclusive.
That's what you see in all screenshots of this post that display
half-width spaces.
Finally, did you know that you can hold ESC to fast-forward
through these cutscenes, which skips most frame delays and reduces the rest?
Due to the blocking nature of all commands, the ESC key state is
only updated between commands or 2-byte text groups though, so it can't
interrupt an ongoing delay.
Superficially, the list of game-specific differences doesn't look too long,
and can be summarized in a rather short table:
It's when you get into the implementation that the combined three systems
reveal themselves as a giant mess, with more like 56 differences between the
games. Every single new weird line of code opened up
another can of worms, which ultimately made all of this end up with 24
pieces of bloat and 14 bugs. The worst of these should be quite interesting
for the general PC-98 homebrew developers among my audience:
The final official 0.23 release of master.lib has a bug in
graph_gaiji_put*(). To calculate the JIS X 0208 code point for
a gaiji, it is enough to ADD 5680h onto the gaiji ID. However,
these functions accidentally use ADC instead, which incorrectly
adds the x86 carry flag on top, causing weird off-by-one errors based on the
previous program state. ZUN did fix this bug directly inside master.lib for
TH04 and TH05, but still needed to work around it in TH03 by subtracting 1
from the intended gaiji ID. Anyone up for maintaining a bug-fixed master.lib
repository?
The worst piece of bloat comes from TH03 and TH04 needlessly
switching the visibility of VRAM pages while blitting a new 320×200 picture.
This makes it much harder to understand the code, as the mere existence of
these page switches is enough to suggest a more complex interplay between
the two VRAM pages which doesn't actually exist. Outside this visibility
switch, page 0 is always supposed to be shown, and page 1 is always used
for temporarily storing pixels that are later crossfaded onto page 0. This
is also the only reason why TH03 has to render text and gaiji onto both VRAM
pages to begin with… and because TH04 doesn't, changing the picture in the
middle of a string of text is technically bugged in that game, even though
you only get to temporarily see the new text on very underclocked PC-98
systems.
These performance implications made me wonder why cutscenes even bother with
writing to the second VRAM page anyway, before copying each crossfade step
to the visible one.
📝 We learned in June how costly EGC-"accelerated" inter-page copies are;
shouldn't it be faster to just blit the image once rather than twice?
Well, master.lib decodes .PI images into a packed-pixel format, and
unpacking such a representation into bitplanes on the fly is just about the
worst way of blitting you could possibly imagine on a PC-98. EGC inter-page
copies are already fairly disappointing at 42 cycles for every 16 pixels, if
we look at the i486 and ignore VRAM latencies. But under the same
conditions, packed-pixel unpacking comes in at 81 cycles for every 8
pixels, or almost 4× slower. On lower-end systems, that can easily sum up to
more than one frame for a 320×200 image. While I'd argue that the resulting
tearing could have been an acceptable part of the transition between two
images, it's understandable why you'd want to avoid it in favor of the
pure effect on a slower framerate.
Really makes me wonder why master.lib didn't just directly decode .PI images
into bitplanes. The performance impact on load times should have been
negligible? It's such a good format for
the often dithered 16-color artwork you typically see on PC-98, and
deserves better than master.lib's implementation which is both slow to
decode and slow to blit.
That brings us to the individual script commands… and yes, I'm going to
document every single one of them. Some of their interactions and edge cases
are not clear at all from just looking at the code.
Almost all commands are preceded by… well, a 0x5C lead byte.
Which raises the question of whether we should
document it as an ASCII-encoded \ backslash, or a Shift-JIS-encoded
¥ yen sign. From a gaijin perspective, it seems obvious that it's a
backslash, as it's consistently displayed as one in most of the editors you
would actually use nowadays. But interestingly, iconv
-f shift-jis -t utf-8 does convert any 0x5C
lead bytes to actual ¥ U+00A5 YEN SIGN code points
.
Ultimately, the distinction comes down to the font. There are fonts
that still render 0x5C as ¥, but mainly do so out
of an obvious concern about backward compatibility to JIS X 0201, where this
mapping originated. Unsurprisingly, this group includes MS Gothic/Mincho,
the old Japanese fonts from Windows 3.1, but even Meiryo and Yu
Gothic/Mincho, Microsoft's modern Japanese fonts. Meanwhile, pretty much
every other modern font, and freely licensed ones in particular, render this
code point as \, even if you set your editor to Shift-JIS. And
while ZUN most definitely saw it as a ¥, documenting this code
point as \ is less ambiguous in the long run. It can only
possibly correspond to one specific code point in either Shift-JIS or UTF-8,
and will remain correct even if we later mod the cutscene system to support
full-blown Unicode.
Now we've only got to clarify the parameter syntax, and then we can look at
the big table of commands:
Numeric parameters are read as sequences of up to 3 ASCII digits. This
limits them to a range from 0 to 999 inclusive, with 000 and
0 being equivalent. Because there's no further sentinel
character, any further digit from the 4th one onwards is
interpreted as regular text.
Filename parameters must be terminated with a space or newline and are
limited to 12 characters, which translates to 8.3 basenames without any
directory component. Any further characters are ignored and displayed as
text as well.
Each .PI image can contain up to four 320×200 pictures ("quarters") for
the cutscene picture area. In the script commands, they are numbered like
this:
0
1
2
3
\@
Clears both VRAM pages by filling them with VRAM color 0. 🐞
In TH03 and TH04, this command does not update the internal text area
background used for unblitting. This bug effectively restricts usage of
this command to either the beginning of a script (before the first
background image is shown) or its end (after no more new text boxes are
started). See the image below for an
example of using it anywhere else.
\b2
Sets the font weight to a value between 0 (raw font ROM glyphs) to 3
(very thicc). Specifying any other value has no effect.
🐞 In TH04 and TH05, \b3 leads to glitched pixels when
rendering half-width glyphs due to a bug in the newly micro-optimized
ASM version of
📝 graph_putsa_fx(); see the image below for an example.
In these games, the parameter also directly corresponds to the
graph_putsa_fx() effect function, removing the sanity check
that was present in TH03. In exchange, you can also access the four
dissolve masks for the bold font (\b2) by specifying a
parameter between 4 (fewest pixels) to 7 (most
pixels). Demo video below.
\c15
Changes the text color to VRAM color 15.
\c=字,15
Adds a color map entry: If 字 is the first code point
inside the name area on a new line, the text color is automatically set
to 15. Up to 8 such entries can be registered
before overflowing the statically allocated buffer.
🐞 The comma is assumed to be present even if the color parameter is omitted.
\e0
Plays the sound effect with the given ID.
\f
(no-op)
\fi1
\fo1
Calls master.lib's palette_black_in() or
palette_black_out() to play a hardware palette fade
animation from or to black, spending roughly 1 frame on each of the 16 fade steps.
\fm1
Fades out BGM volume via PMD's AH=02h interrupt call,
in a non-blocking way. The fade speed can range from 1 (slowest) to 127 (fastest).
Values from 128 to 255 technically correspond to
AH=02h's fade-in feature, which can't be used from cutscene
scripts because it requires BGM volume to first be lowered via
AH=19h, and there is no command to do that.
\g8
Plays a blocking 8-frame screen shake
animation.
\ga0
Shows the gaiji with the given ID from 0 to 255
at the current cursor position. Even in TH03, gaiji always ignore the
text delay interval configured with \v.
@3
TH05's replacement for the \ga command from TH03 and
TH04. The default ID of 3 corresponds to the
gaiji. Not to be confused with \@, which starts with a backslash,
unlike this command.
@h
Shows the gaiji.
@t
Shows the gaiji.
@!
Shows the gaiji.
@?
Shows the gaiji.
@!!
Shows the gaiji.
@!?
Shows the gaiji.
\k0
Waits 0 frames (0 = forever) for an advance key to be pressed before
continuing script execution. Before waiting, TH05 crossfades in any new
text that was previously rendered to the invisible VRAM page…
🐞 …but TH04 doesn't, leaving the text invisible during the wait time.
As a workaround, \vp1 can be
used before \k to immediately display that text without a
fade-in animation.
\m$
Stops the currently playing BGM.
\m*
Restarts playback of the currently loaded BGM from the
beginning.
\m,filename
Stops the currently playing BGM, loads a new one from the given
file, and starts playback.
\n
Starts a new line at the leftmost X coordinate of the box, i.e., the
start of the name area. This is how scripts can "change" the name of the
currently speaking character, or use the entire 480×64 pixels without
being restricted to the non-name area.
Note that automatic line breaks already move the cursor into a new line.
Using this command at the "end" of a line with the maximum number of 30
full-width glyphs would therefore start a second new line and leave the
previously started line empty.
If this command moved the cursor into the 5th line of a box,
\s is executed afterward, with
any of \n's parameters passed to \s.
\p
(no-op)
\p-
Deallocates the loaded .PI image.
\p,filename
Loads the .PI image with the given file into the single .PI slot
available to cutscenes. TH04 and TH05 automatically deallocate any
previous image, 🐞 TH03 would leak memory without a manual prior call to
\p-.
\pp
Sets the hardware palette to the one of the loaded .PI image.
\p@
Sets the loaded .PI image as the full-screen 640×400 background
image and overwrites both VRAM pages with its pixels, retaining the
current hardware palette.
\p=
Runs \pp followed by \p@.
\s0
\s-
Ends a text box and starts a new one. Fades in any text rendered to
the invisible VRAM page, then waits 0 frames
(0 = forever) for an advance key to be
pressed. Afterward, the new text box is started with the cursor moved to
the top-left corner of the name area. \s- skips the wait time and starts the new box
immediately.
\t100
Sets palette brightness via master.lib's
palette_settone() to any value from 0 (fully black) to 200
(fully white). 100 corresponds to the palette's original colors.
Preceded by a 1-frame delay unless ESC is held.
\v1
Sets the number of frames to wait between every 2 bytes of rendered
text.
Sets the number of frames to spend on each of the 4 fade
steps when crossfading between old and new text. The game-specific
default value is also used before the first use of this command.
\v2
\vp0
Shows VRAM page 0. Completely useless in
TH03 (this game always synchronizes both VRAM pages at a command
boundary), only of dubious use in TH04 (for working around a bug in \k), and the games always return to
their intended shown page before every blitting operation anyway. A
debloated mod of this game would just remove this command, as it exposes
an implementation detail that script authors should not need to worry
about. None of the original scripts use it anyway.
\w64
\w and \wk wait for the given number
of frames
\wm and \wmk wait until PMD has played
back the current BGM for the total number of measures, including
loops, given in the first parameter, and fall back on calling
\w and \wk with the second parameter as
the frame number if BGM is disabled.
🐞 Neither PMD nor MMD reset the internal measure when stopping
playback. If no BGM is playing and the previous BGM hasn't been
played back for at least the given number of measures, this command
will deadlock.
Since both TH04 and TH05 fade in any new text from the invisible VRAM
page, these commands can be used to simulate TH03's typing effect in
those games. Demo video below.
Contrary to \k and \s, specifying 0 frames would
simply remove any frame delay instead of waiting forever.
The TH03-exclusive k variants allow the delay to be
interrupted if ⏎ Return or Shot are held down.
TH04 and TH05 recognize the k as well, but removed its
functionality.
All of these commands have no effect if ESC is held.
\wm64,64
\wk64
\wmk64,64
\wi1
\wo1
Calls master.lib's palette_white_in() or
palette_white_out() to play a hardware palette fade
animation from or to white, spending roughly 1 frame on each of the 16 fade steps.
\=4
Immediately displays the given quarter of the loaded .PI image in
the picture area, with no fade effect. Any value ≥ 4 resets the picture area to black.
\==4,1
Crossfades the picture area between its current content and quarter
#4 of the loaded .PI image, spending 1 frame on each of the 4 fade steps unless
ESC is held. Any value ≥ 4 is
replaced with quarter #0.
\$
Stops script execution. Must be called at the end of each file;
otherwise, execution continues into whatever lies after the script
buffer in memory.
TH05 automatically deallocates the loaded .PI image, TH03 and TH04
require a separate manual call to \p- to not leak its memory.
Bold values signify the default if the parameter
is omitted; \c is therefore
equivalent to \c15.
The \@ bug. Yes, the ¥ is fake. It
was easier to GIMP it than to reword the sentences so that the backslashes
landed on the second byte of a 2-byte half-width character pair.
The font weights and effects available through \b, including the glitch with
\b3 in TH04 and TH05.
Font weight 3 is technically not rendered correctly in TH03 either; if
you compare 1️⃣ with 4️⃣, you notice a single missing column of pixels
at the left side of each glyph, which would extend into the previous
VRAM byte. Ironically, the TH04/TH05 version is more correct in
this regard: For half-width glyphs, it preserves any further pixel
columns generated by the weight functions in the high byte of the 16-dot
glyph variable. Unlike TH03, which still cuts them off when rendering
text to unaligned X positions (3️⃣), TH04 and TH05 do bit-rotate them
towards their correct place (4️⃣). It's only at byte-aligned X positions
(2️⃣) where they remain at their internally calculated place, and appear
on screen as these glitched pixel columns, 15 pixels away from the glyph
they belong to. It's easy to blame bugs like these on micro-optimized
ASM code, but in this instance, you really can't argue against it if the
original C++ version was equally incorrect.
Combining \b and s- into a partial dissolve
animation. The speed can be controlled with \v.
Simulating TH03's typing effect in TH04 and TH05 via \w. Even prettier in TH05 where we
also get an additional fade animation
after the box ends.
So yeah, that's the cutscene system. I'm dreading the moment I will have to
deal with the other command interpreter in these games, i.e., the
stage enemy system. Luckily, that one is completely disconnected from any
other system, so I won't have to deal with it until we're close to finishing
MAIN.EXE… that is, unless someone requests it before. And it
won't involve text encodings or unblitting…
The cutscene system got me thinking in greater detail about how I would
implement translations, being one of the main dependencies behind them. This
goal has been on the order form for a while and could soon be implemented
for these cutscenes, with 100% PI being right around the corner for the TH03
and TH04 cutscene executables.
Once we're there, the "Virgin" old-school way of static translation patching
for Latin-script languages could be implemented fairly quickly:
Establish basic UTF-8 parsing for less painful manual editing of the
source files
Procedurally generate glyphs for the few required additional letters
based on existing font ROM glyphs. For example, we'd generate ä
by painting two short lines on top of the font ROM's a glyph,
or generate ¿ by vertically flipping the question mark. This
way, the text retains a consistent look regardless of whether the translated
game is run with an NEC or EPSON font ROM, or the that Neko Project II auto-generates if you
don't provide either.
(Optional) Change automatic line breaks to work on a per-word
basis, rather than per-glyph
That's it – script editing and distribution would be handled by your local
translation group. It might seem as if this would also work for Greek and
Cyrillic scripts due to their presence in the PC-98 font ROM, but I'm not
sure if I want to attempt procedurally shrinking these glyphs from 16×16 to
8×16… For any more thorough solution, we'd need to go for a more "Chad" kind
of full-blown translation support:
Implement text subdivisions at a sensible granularity while retaining
automatic line and box breaks
Compile translatable text into a Japanese→target language dictionary
(I'm too old to develop any further translation systems that would overwrite
modded source text with translations of the original text)
Implement a custom Unicode font system (glyphs would be taken from GNU
Unifont unless translators provide a different 8×16 font for their
language)
Combine the text compiler with the font compiler to only store needed
glyphs as part of the translation's font file (dealing with a multi-MB font
file would be rather ugly in a Real Mode game)
Write a simple install/update/patch stacking tool that supports both
.HDI and raw-file DOSBox-X scenarios (it's different enough from thcrap to
warrant a separate tool – each patch stack would be statically compiled into
a single package file in the game's directory)
Add a nice language selection option to the main menu
(Optional) Support proportional fonts
Which sounds more like a separate project to be commissioned from
Touhou Patch Center's Open Collective funds, separate from the ReC98 cap.
This way, we can make sure that the feature is completely implemented, and I
can talk with every interested translator to make sure that their language
works.
It's still cheaper overall to do this on PC-98 than to first port the games
to a modern system and then translate them. On the other hand, most
of the tasks in the Chad variant (3, 4, 5, and half of 2) purely deal with
the difficulty of getting arbitrary Unicode characters to work natively in a
PC-98 DOS game at all, and would be either unnecessary or trivial if we had
already ported the game. Depending on where the patrons' interests lie, it
may not be worth it. So let's see what all of you think about which
way we should go, or whether it's worth doing at all. (Edit
(2022-12-01): With Splashman's
order towards the stage dialogue system, we've pretty much confirmed that it
is.) Maybe we want to meet in the middle – using e.g. procedural glyph
generation for dynamic translations to keep text rendering consistent with
the rest of the PC-98 system, and just not support non-Latin-script
languages in the beginning? In any case, I've added both options to the
order form. Edit (2023-07-28):Touhou Patch Center has agreed to fund
a basic feature set somewhere between the Virgin and Chad level. Check the
📝 dedicated announcement blog post for more
details and ideas, and to find out how you can support this goal!
Surprisingly, there was still a bit of RE work left in the third push after
all of this, which I filled with some small rendering boilerplate. Since I
also wanted to include TH02's playfield overlay functions,
1/15 of that last push went towards getting a
TH02-exclusive function out of the way, which also ended up including that
game in this delivery.
The other small function pointed out how TH05's Stage 5 midboss pops into
the playfield quite suddenly, since its clipping test thinks it's only 32
pixels tall rather than 64:
Good chance that the pop-in might have been intended. Edit (2023-06-30): Actually, it's a
📝 systematic consequence of ZUN having to work around the lack of clipping in master.lib's sprite functions.
There's even another quirk here: The white flash during its first frame
is actually carried over from the previous midboss, which the
game still considers as actively getting hit by the player shot that
defeated it. It's the regular boilerplate code for rendering a
midboss that resets the responsible damage variable, and that code
doesn't run during the defeat explosion animation.
Next up: Staying with TH05 and looking at more of the pattern code of its
boss fights. Given the remaining TH05 budget, it makes the most sense to
continue in in-game order, with Sara and the Stage 2 midboss. If more money
comes in towards this goal, I could alternatively go for the Mai & Yuki
fight and immediately develop a pretty fix for the cheeto storage
glitch. Also, there's a rather intricate
pull request for direct ZMBV decoding on the website that I've still got
to review…
Wow, it's been 3 days and I'm already back with an unexpectedly long post
about TH01's bonus point screens? 3 days used to take much longer in my
previous projects…
Before I talk about graphics for the rest of this post, let's start with the
exact calculations for both bonuses. Touhou Wiki already got these right,
but it still makes sense to provide them here, in a format that allows you
to cross-reference them with the source code more easily. For the
card-flipping stage bonus:
Time
min((Stage timer * 3), 6553)
Continuous
min((Highest card combo * 100), 6553)
Bomb&Player
min(((Lives * 200) + (Bombs * 100)), 6553)
STAGE
min(((Stage number - 1) * 200), 6553)
BONUS Point
Sum of all above values * 10
The boss stage bonus is calculated from the exact same metrics, despite half
of them being labeled differently. The only actual differences are in the
higher multipliers and in the cap for the stage number bonus. Why remove it
if raising it high enough also effectively disables it?
Time
min((Stage timer * 5), 6553)
Continuous
min((Highest card combo * 200), 6553)
MIKOsan
min(((Lives * 500) + (Bombs * 200)), 6553)
Clear
min((Stage number * 1000), 65530)
TOTLE
Sum of all above values * 10
The transition between the gameplay and TOTLE screens is one of the more
impressive effects showcased in this game, especially due to how wavy it
often tends to look. Aside from the palette interpolation (which is, by the
way, the first time ZUN wrote a correct interpolation algorithm between two
4-bit palettes), the core of the effect is quite simple. With the TOTLE
image blitted to VRAM page 1:
Shift the contents of a line on VRAM page 0 by 32 pixels, alternating
the shift direction between right edge → left edge (even Y
values) and the other way round (odd Y values)
Keep a cursor for the destination pixels on VRAM page 1 for every line,
starting at the respective opposite edge
Blit the 32 pixels at the VRAM page 1 cursor to the newly freed 32
pixels on VRAM page 0, and advance the cursor towards the other edge
Successive line shifts will then include these newly blitted 32 pixels
as well
Repeat (640 / 32) = 20 times, after which all new pixels
will be in their intended place
So it's really more like two interlaced shift effects with opposite
directions, starting on different scanlines. No trigonometry involved at
all.
Horizontally scrolling pixels on a single VRAM page remains one of the few
📝 appropriate uses of the EGC in a fullscreen 640×400 PC-98 game,
regardless of the copied block size. The few inter-page copies in this
effect are also reasonable: With 8 new lines starting on each effect frame,
up to (8 × 20) = 160 lines are transferred at any given time, resulting
in a maximum of (160 × 2 × 2) = 640 VRAM page switches per frame for the newly
transferred pixels. Not that frame rate matters in this situation to begin
with though, as the game is doing nothing else while playing this effect.
What does sort of matter: Why 32 pixels every 2 frames, instead of 16
pixels on every frame? There's no performance difference between doing one
half of the work in one frame, or two halves of the work in two frames. It's
not like the overhead of another loop has a serious impact here,
especially with the PC-98 VRAM being said to have rather high
latencies. 32 pixels over 2 frames is also harder to code, so ZUN
must have done it on purpose. Guess he really wanted to go for that 📽
cinematic 30 FPS look 📽 here…
Removing the palette interpolation and transitioning from a black screen
to CLEAR3.GRP makes it a lot clearer how the effect works.
Once all the metrics have been calculated, ZUN animates each value with a
rather fancy left-to-right typing effect. As 16×16 images that use a single
bright-red color, these numbers would be
perfect candidates for gaiji… except that ZUN wanted to render them at the
more natural Y positions of the labels inside CLEAR3.GRP that
are far from aligned to the 8×16 text RAM grid. Not having been in the mood
for hardcoding another set of monochrome sprites as C arrays that day, ZUN
made the still reasonable choice of storing the image data for these numbers
in the single-color .GRC form– yeah, no, of course he once again
chose the .PTN hammer, and its
📝 16×16 "quarter" wrapper functions around nominal 32×32 sprites.
The three 32×32 TOTLE metric digit sprites inside
NUMB.PTN.
Why do I bring up such a detail? What's actually going on there is that ZUN
loops through and blits each digit from 0 to 9, and then continues the loop
with "digit" numbers from 10 to 19, stopping before the number whose ones
digit equals the one that should stay on screen. No problem with that in
theory, and the .PTN sprite selection is correct… but the .PTN
quarter selection isn't, as ZUN wrote (digit % 4)
instead of the correct ((digit % 10) % 4).
Since .PTN quarters are indexed in a row-major
way, the 10-19 part of the loop thus ends up blitting
2 →
3 →
0 →
1 →
6 →
7 →
4 →
5 →
(nothing):
This footage was slowed down to show one sprite blitting operation per
frame. The actual game waits a hardcoded 4 milliseconds between each
sprite, so even theoretically, you would only see roughly every
4th digit. And yes, we can also observe the empty quarter
here, only blitted if one of the digits is a 9.
Seriously though? If the deadline is looming and you've got to rush
some part of your game, a standalone screen that doesn't affect
anything is the best place to pick. At 4 milliseconds per digit, the
animation goes by so fast that this quirk might even add to its
perceived fanciness. It's exactly the reason why I've always been rather
careful with labeling such quirks as "bugs". And in the end, the code does
perform one more blitting call after the loop to make sure that the correct
digit remains on screen.
The remaining ¾ of the second push went towards transferring the final data
definitions from ASM to C land. Most of the details there paint a rather
depressing picture about ZUN's original code layout and the bloat that came
with it, but it did end on a real highlight. There was some unused data
between ZUN's non-master.lib VSync and text RAM code that I just moved away
in September 2015 without taking a closer look at it. Those bytes kind of
look like another hardcoded 1bpp image though… wait, what?!
Lovely! With no mouse-related code left in the game otherwise, this cursor
sprite provides some great fuel for wild fan theories about TH01's
development history:
Could ZUN have 📝 stolen the basic PC-98
VSync or text RAM function code from a source that also implemented mouse
support?
Or was this game actually meant to have mouse-controllable portions at
some point during development? Even if it would have just been the
menus.
… Actually, you know what, with all shared data moved to C land, I might as
well finish FUUIN.EXE right now. The last secret hidden in its
main() function: Just like GAME.BAT supports
launching the game in various debug modes from the DOS command line,
FUUIN.EXE can directly launch one of the game's endings. As
long as the MDRV2 driver is installed, you can enter
fuuin t1 for the 魔界/Makai Good Ending, or
fuuin t for 地獄/Jigoku Good Ending.
Unfortunately, the command-line parameter can only control the route.
Choosing between a Good or Bad Ending is still done exclusively through
TH01's resident structure, and the continues_per_scene array in
particular. But if you pre-allocate that structure somehow and set one of
the members to a nonzero value, it would work. Trainers, anyone?
Alright, gotta get back to the code if I want to have any chance of
finishing this game before the 15th… Next up: The final 17
functions in REIIDEN.EXE that tie everything together and add
some more debug features on top.
Oh look, it's another rather short and straightforward boss with a rather
small number of bugs and quirks. Yup, contrary to the character's
popularity, Mima's premiere is really not all that special in terms of code,
and continues the trend established with
📝 Kikuri and
📝 SinGyoku. I've already covered
📝 the initial sprite-related bugs last November,
so this post focuses on the main code of the fight itself. The overview:
The TH01 Mima fight consists of 3 phases, with phases 1 and 3 each
corresponding to one half of the 12-HP bar.
📝 Just like with SinGyoku, the distinction
between the red-white and red parts is purely visual once again, and doesn't
reflect anything about the boss script. As usual, all of the phases have to
be completed in order.
Phases 1 and 3 cycle through 4 danmaku patterns each, for a total of 8.
The cycles always start on a fixed pattern.
3 of the patterns in each phase feature rotating white squares, thus
introducing a new sprite in need of being unblitted.
Phase 1 additionally features the "hop pattern" as the last one in its
cycle. This is the only pattern where Mima leaves the seal in the center of
the playfield to hop from one edge of the playfield towards the other, while
also moving slightly higher up on the Y axis, and staying on the final
position for the next pattern cycle. For the first time, Mima selects a
random starting edge, which is then alternated on successive cycles.
Since the square entities are local to the respective pattern function,
Phase 1 can only end once the current pattern is done, even if Mima's HP are
already below 6. This makes Mima susceptible to the
📝 test/debug mode HP bar heap corruption bug.
Phase 2 simply consists of a spread-in teleport back to Mima's initial
position in the center of the playfield. This would only have been strictly
necessary if phase 1 ended on the hop pattern, but is done regardless of the
previous pattern, and does provide a nice visual separation between the two
main phases.
That's it – nothing special in Phase 3.
And there aren't even any weird hitboxes this time. What is maybe
special about Mima, however, is how there's something to cover about all of
her patterns. Since this is TH01, it's won't surprise anyone that the
rotating square patterns are one giant copy-pasta of unblitting, updating,
and rendering code. At least ZUN placed the core polar→Cartesian
transformation in a separate function for creating regular polygons
with an arbitrary number of sides, which might hint toward some more varied
shapes having been planned at one point?
5 of the 6 patterns even follow the exact same steps during square update
frames:
Calculate square corner coordinates
Unblit the square
Update the square angle and radius
Use the square corner coordinates for spawning pellets or missiles
Recalculate square corner coordinates
Render the square
Notice something? Bullets are spawned before the corner coordinates
are updated. That's why their initial positions seem to be a bit off – they
are spawned exactly in the corners of the square, it's just that it's
the square from 8 frames ago.
Mima's first pattern on Normal difficulty.
Once ZUN reached the final laser pattern though, he must have noticed that
there's something wrong there… or maybe he just wanted to fire those
lasers independently from the square unblit/update/render timer for a
change. Spending an additional 16 bytes of the data segment for conveniently
remembering the square corner coordinates across frames was definitely a
decent investment.
When Mima isn't shooting bullets from the corners of a square or hopping
across the playfield, she's raising flame pillars from the bottom of the playfield within very specifically calculated
random ranges… which are then rendered at byte-aligned VRAM positions, while
collision detection still uses their actual pixel position. Since I don't
want to sound like a broken record all too much, I'll just direct you to
📝 Kikuri, where we've seen the exact same issue with the teardrop ripple sprites.
The conclusions are identical as well.
Mima's flame pillar pattern. This video was recorded on a particularly
unlucky seed that resulted in great disparities between a pillar's
internal X coordinate and its byte-aligned on-screen appearance, leading
to lots of right-shifted hitboxes.
Also note how the change from the meteor animation to the three-arm 🚫
casting sprite doesn't unblit the meteor, and leaves that job to
any sprite that happens to fly over those pixels.
However, I'd say that the saddest part about this pattern is how choppy it
is, with the circle/pillar entities updating and rendering at a meager 7
FPS. Why go that low on purpose when you can just make the game render ✨
smoothly ✨ instead?
So smooth it's almost uncanny.
The reason quickly becomes obvious: With TH01's lack of optimization, going
for the full 56.4 FPS would have significantly slowed down the game on its
intended 33 MHz CPUs, requiring more than cheap surface-level ASM
optimization for a stable frame rate. That might very well have been ZUN's
reason for only ever rendering one circle per frame to VRAM, and designing
the pattern with these time offsets in mind. It's always been typical for
PC-98 developers to target the lowest-spec models that could possibly still
run a game, and implementing dynamic frame rates into such an engine-less
game is nothing I would wish on anybody. And it's not like TH01 is
particularly unique in its choppiness anyway; low frame rates are actually a
rather typical part of the PC-98 game aesthetic.
The final piece of weirdness in this fight can be found in phase 1's hop
pattern, and specifically its palette manipulation. Just from looking at the
pattern code itself, each of the 4 hops is supposed to darken the hardware
palette by subtracting #444 from every color. At the last hop,
every color should have therefore been reduced to a pitch-black
#000, leaving the player completely blind to the movement of
the chasing pellets for 30 frames and making the pattern quite ghostly
indeed. However, that's not what we see in the actual game:
Nothing in the pattern's code would cause the hardware palette to get
brighter before the end of the pattern, and yet…
The expected version doesn't look all too unfair, even on Lunatic…
well, at least at the default rank pellet speed shown in this
video. At maximum pellet speed, it is in fact rather brutal.
Looking at the frame counter, it appears that something outside the
pattern resets the palette every 40 frames. The only known constant with a
value of 40 would be the invincibility frames after hitting a boss with the
Orb, but we're not hitting Mima here…
But as it turns out, that's exactly where the palette reset comes from: The
hop animation darkens the hardware palette directly, while the
📝 infamous 12-parameter boss collision handler function
unconditionally resets the hardware palette to the "default boss palette"
every 40 frames, regardless of whether the boss was hit or not. I'd classify
this as a bug: That function has no business doing periodic hardware palette
resets outside the invincibility flash effect, and it completely defies
common sense that it does.
That explains one unexpected palette change, but could this function
possibly also explain the other infamous one, namely, the temporary green
discoloration in the Konngara fight? That glitch comes down to how the game
actually uses two global "default" palettes: a default boss
palette for undoing the invincibility flash effect, and a default
stage palette for returning the colors back to normal at the end of
the bomb animation or when leaving the Pause menu. And sure enough, the
stage palette is the one with the green color, while the boss
palette contains the intended colors used throughout the fight. Sending the
latter palette to the graphics chip every 40 frames is what corrects
the discoloration, which would otherwise be permanent.
The green color comes from BOSS7_D1.GRP, the scrolling
background of the entrance animation. That's what turns this into a clear
bug: The stage palette is only set a single time in the entire fight,
at the beginning of the entrance animation, to the palette of this image.
Apart from consistency reasons, it doesn't even make sense to set the stage
palette there, as you can't enter the Pause menu or bomb during a blocking
animation function.
And just 3 lines of code later, ZUN loads BOSS8_A1.GRP, the
main background image of the fight. Moving the stage palette assignment
there would have easily prevented the discoloration.
But yeah, as you can tell, palette manipulation is complete jank in this
game. Why differentiate between a stage and a boss palette to begin with?
The blocking Pause menu function could have easily copied the original
palette to a local variable before darkening it, and then restored it after
closing the menu. It's not so easy for bombs as the intended palette could
change between the start and end of the animation, but the code could have
still been simplified a lot if there was just one global "default palette"
variable instead of two. Heck, even the other bosses who manipulate their
palettes correctly only do so because they manually synchronize the two
after every change. The proper defense against bugs that result from wild
mutation of global state is to get rid of global state, and not to put up
safety nets hidden in the middle of existing effect code.
The easiest way of reproducing the green discoloration bug in
the TH01 Konngara fight, timed to show the maximum amount of time the
discoloration can possibly last.
In any case, that's Mima done! 7th PC-98 Touhou boss fully
decompiled, 24 bosses remaining, and 59 functions left in all of TH01.
In other thrilling news, my call for secondary funding priorities in new
TH01 contributions has given us three different priorities so far. This
raises an interesting question though: Which of these contributions should I
now put towards TH01 immediately, and which ones should I leave in the
backlog for the time being? Since I've never liked deciding on priorities,
let's turn this into a popularity contest instead: The contributions with
the least popular secondary priorities will go towards TH01 first, giving
the most popular priorities a higher chance to still be left over after TH01
is done. As of this delivery, we'd have the following popularity order:
TH05 (1.67 pushes), from T0182
Seihou (1 push), from T0184
TH03 (0.67 pushes), from T0146
Which means that T0146 will be consumed for TH01 next, followed by T0184 and
then T0182. I only assign transactions immediately before a delivery though,
so you all still have the chance to change up these priorities before the
next one.
Next up: The final boss of TH01 decompilation, YuugenMagan… if the current
or newly incoming TH01 funds happen to be enough to cover the entire fight.
If they don't turn out to be, I will have to pass the time with some Seihou
work instead, missing the TH01 anniversary deadline as a result.Edit (2022-07-18): Thanks to Yanga for
securing the funding for YuugenMagan after all! That fight will feature
slightly more than half of all remaining code in TH01's
REIIDEN.EXE and the single biggest function in all of PC-98
Touhou, let's go!
What's this? A simple, straightforward, easy-to-decompile TH01 boss with
just a few minor quirks and only two rendering-related ZUN bugs? Yup, 2½
pushes, and Kikuri was done. Let's get right into the overview:
Just like 📝 Elis, Kikuri's fight consists
of 5 phases, excluding the entrance animation. For some reason though, they
are numbered from 2 to 6 this time, skipping phase 1? For consistency, I'll
use the original phase numbers from the source code in this blog post.
The main phases (2, 5, and 6) also share Elis' HP boundaries of 10, 6,
and 0, respectively, and are once again indicated by different colors in the
HP bar. They immediately end upon reaching the given number of HP, making
Kikuri immune to the
📝 heap corruption in test or debug mode that can happen with Elis and Konngara.
Phase 2 solely consists of the infamous big symmetric spiral
pattern.
Phase 3 fades Kikuri's ball of light from its default bluish color to bronze over 100 frames. Collision detection is deactivated
during this phase.
In Phase 4, Kikuri activates her two souls while shooting the spinning
8-pellet circles from the previously activated ball. The phase ends shortly
after the souls fired their third spread pellet group.
Note that this is a timed phase without an HP boundary, which makes
it possible to reduce Kikuri's HP below the boundaries of the next
phases, effectively skipping them. Take this video for example,
where Kikuri has 6 HP by the end of Phase 4, and therefore directly
starts Phase 6.
(Obviously, Kikuri's HP can also be reduced to 0 or below, which will
end the fight immediately after this phase.)
Phase 5 combines the teardrop/ripple "pattern" from the souls with the
"two crossed eye laser" pattern, on independent cycles.
Finally, Kikuri cycles through her remaining 4 patterns in Phase 6,
while the souls contribute single aimed pellets every 200 frames.
Interestingly, all HP-bounded phases come with an additional hidden
timeout condition:
Phase 2 automatically ends after 6 cycles of the spiral pattern, or
5,400 frames in total.
Phase 5 ends after 1,600 frames, or the first frame of the
7th cycle of the two crossed red lasers.
If you manage to keep Kikuri alive for 29 of her Phase 6 patterns,
her HP are automatically set to 1. The HP bar isn't redrawn when this
happens, so there is no visual indication of this timeout condition even
existing – apart from the next Orb hit ending the fight regardless of
the displayed HP. Due to the deterministic order of patterns, this
always happens on the 8th cycle of the "symmetric gravity
pellet lines from both souls" pattern, or 11,800 frames. If dodging and
avoiding orb hits for 3½ minutes sounds tiring, you can always watch the
byte at DS:0x1376 in your emulator's memory viewer. Once
it's at 0x1E, you've reached this timeout.
So yeah, there's your new timeout challenge.
The few issues in this fight all relate to hitboxes, starting with the main
one of Kikuri against the Orb. The coordinates in the code clearly describe
a hitbox in the upper center of the disc, but then ZUN wrote a < sign
instead of a > sign, resulting in an in-game hitbox that's not
quite where it was intended to be…
Kikuri's actual hitbox.
Since the Orb sprite doesn't change its shape, we can visualize the
hitbox in a pixel-perfect way here. The Orb must be completely within
the red area for a hit to be registered.
Much worse, however, are the teardrop ripples. It already starts with their
rendering routine, which places the sprites from TAMAYEN.PTN at byte-aligned VRAM positions in the ultimate piece of if(…) {…}
else if(…) {…} else if(…) {…} meme code. Rather than
tracking the position of each of the five ripple sprites, ZUN suddenly went
purely functional and manually hardcoded the exact rendering and collision
detection calls for each frame of the animation, based on nothing but its
total frame counter.
Each of the (up to) 5 columns is also unblitted and blitted individually
before moving to the next column, starting at the center and then
symmetrically moving out to the left and right edges. This wouldn't be a
problem if ZUN's EGC-powered unblitting function didn't word-align its X
coordinates to a 16×1 grid. If the ripple sprites happen to start at an
odd VRAM byte position, their unblitting coordinates get rounded both down
and up to the nearest 16 pixels, thus touching the adjacent 8 pixels of the
previously blitted columns and leaving the well-known black vertical bars in
their place.
OK, so where's the hitbox issue here? If you just look at the raw
calculation, it's a slightly confusingly expressed, but perfectly logical 17
pixels. But this is where byte-aligned blitting has a direct effect on
gameplay: These ripples can be spawned at any arbitrary, non-byte-aligned
VRAM position, and collisions are calculated relative to this internal
position. Therefore, the actual hitbox is shifted up to 7 pixels to the
right, compared to where you would expect it from a ripple sprite's
on-screen position:
Due to the deterministic nature of this part of the fight, it's
always 5 pixels for this first set of ripples. These visualizations are
obviously not pixel-perfect due to the different potential shapes of
Reimu's sprite, so they instead relate to her 32×32 bounding box, which
needs to be entirely inside the red
area.
We've previously seen the same issue with the
📝 shot hitbox of Elis' bat form, where
pixel-perfect collision detection against a byte-aligned sprite was merely a
sidenote compared to the more serious X=Y coordinate bug. So why do I
elevate it to bug status here? Because it directly affects dodging: Reimu's
regular movement speed is 4 pixels per frame, and with the internal position
of an on-screen ripple sprite varying by up to 7 pixels, any micrododging
(or "grazing") attempt turns into a coin flip. It's sort of mitigated
by the fact that Reimu is also only ever rendered at byte-aligned
VRAM positions, but I wouldn't say that these two bugs cancel out each
other.
Oh well, another set of rendering issues to be fixed in the hypothetical
Anniversary Edition – obviously, the hitboxes should remain unchanged. Until
then, you can always memorize the exact internal positions. The sequence of
teardrop spawn points is completely deterministic and only controlled by the
fixed per-difficulty spawn interval.
Aside from more minor coordinate inaccuracies, there's not much of interest
in the rest of the pattern code. In another parallel to Elis though, the
first soul pattern in phase 4 is aimed on every difficulty except
Lunatic, where the pellets are once again statically fired downwards. This
time, however, the pattern's difficulty is much more appropriately
distributed across the four levels, with the simultaneous spinning circle
pellets adding a constant aimed component to every difficulty level.
Kikuri's phase 4 patterns, on every difficulty.
That brings us to 5 fully decompiled PC-98 Touhou bosses, with 26 remaining…
and another ½ of a push going to the cutscene code in
FUUIN.EXE.
You wouldn't expect something as mundane as the boss slideshow code to
contain anything interesting, but there is in fact a slight bit of
speculation fuel there. The text typing functions take explicit string
lengths, which precisely match the corresponding strings… for the most part.
For the "Gatekeeper 'SinGyoku'" string though, ZUN passed 23
characters, not 22. Could that have been the "h" from the Hepburn
romanization of 神玉?!
Also, come on, if this text is already blitted to VRAM for no reason,
you could have gone for perfect centering at unaligned byte positions; the
rendering function would have perfectly supported it. Instead, the X
coordinates are still rounded up to the nearest byte.
The hardcoded ending cutscene functions should be even less interesting –
don't they just show a bunch of images followed by frame delays? Until they
don't, and we reach the 地獄/Jigoku Bad Ending with
its special shake/"boom" effect, and this picture:
Picture #2 from ED2A.GRP.
Which is rendered by the following code:
for(int i = 0; i <= boom_duration; i++) { // (yes, off-by-one)
if((i & 3) == 0) {
graph_scrollup(8);
} else {
graph_scrollup(0);
}
end_pic_show(1); // ← different picture is rendered
frame_delay(2); // ← blocks until 2 VSync interrupts have occurred
if(i & 1) {
end_pic_show(2); // ← picture above is rendered
} else {
end_pic_show(1);
}
}
Notice something? You should never see this picture because it's
immediately overwritten before the frame is supposed to end. And yet
it's clearly flickering up for about one frame with common emulation
settings as well as on my real PC-9821 Nw133, clocked at 133 MHz.
master.lib's graph_scrollup() doesn't block until VSync either,
and removing these calls doesn't change anything about the blitted images.
end_pic_show() uses the EGC to blit the given 320×200 quarter
of VRAM from page 1 to the visible page 0, so the bottleneck shouldn't be
there either…
…or should it? After setting it up via a few I/O port writes, the common
method of EGC-powered blitting works like this:
Read 16 bits from the source VRAM position on any single
bitplane. This fills the EGC's 4 16-bit tile registers with the VRAM
contents at that specific position on every bitplane. You do not care
about the value the CPU returns from the read – in optimized code, you would
make sure to just read into a register to avoid useless additional stores
into local variables.
Write any 16 bits
to the target VRAM position on any single bitplane. This copies the
contents of the EGC's tile registers to that specific position on
every bitplane.
To transfer pixels from one VRAM page to another, you insert an additional
write to I/O port 0xA6 before 1) and 2) to set your source and
destination page… and that's where we find the bottleneck. Taking a look at
the i486 CPU and its cycle
counts, a single one of these page switches costs 17 cycles – 1 for
MOVing the page number into AL, and 16 for the
OUT instruction itself. Therefore, the 8,000 page switches
required for EGC-copying a 320×200-pixel image require 136,000 cycles in
total.
And that's the optimal case of using only those two
instructions. 📝 As I implied last time, TH01
uses a function call for VRAM page switches, complete with creating
and destroying a useless stack frame and unnecessarily updating a global
variable in main memory. I tried optimizing ZUN's code by throwing out
unnecessary code and using 📝 pseudo-registers
to generate probably optimal assembly code, and that did speed up the
blitting to almost exactly 50% of the original version's run time. However,
it did little about the flickering itself. Here's a comparison of the first
loop with boom_duration = 16, recorded in DOSBox-X with
cputype=auto and cycles=max, and with
i overlaid using the text chip. Caution, flashing lights:
The original animation, completing in 50 frames instead of the expected
34, thanks to slow blitting. Combined with the lack of
double-buffering, this results in noticeable tearing as the screen
refreshes while blitting is still in progress.
(Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
This optimized version completes in the expected 34 frames. No tearing
happens to be visible in this recording, but the ドカーン image is still visible on every
second loop iteration. (Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic
#1.)
I pushed the optimized code to the th01_end_pic_optimize
branch, to also serve as an example of how to get close to optimal code out
of Turbo C++ 4.0J without writing a single ASM instruction.
And if you really want to use the EGC for this, that's the best you can do.
It really sucks that it merely expanded the GRCG's 4×8-bit tile register to
4×16 bits. With 32 bits, ≥386 CPUs could have taken advantage of their wider
registers and instructions to double the blitting performance. Instead, we
now know the reason why
📝 Promisence Soft's EGC-powered sprite driver that ZUN later stole for TH03
is called SPRITE16 and not SPRITE32. What a massive disappointment.
But what's perhaps a bigger surprise: Blitting planar
images from main memory is much faster than EGC-powered inter-page
VRAM copies, despite the required manual access to all 4 bitplanes. In
fact, the blitting functions for the .CDG/.CD2 format, used from TH03
onwards, would later demonstrate the optimal method of using REP
MOVSD for blitting every line in 32-pixel chunks. If that was also
used for these ending images, the core blitting operation would have taken
((12 + (3 × (320 / 32))) × 200 × 4) =
33,600 cycles, with not much more overhead for the surrounding row
and bitplane loops. Sure, this doesn't factor in the whole infamous issue of
VRAM being slow on PC-98, but the aforementioned 136,000 cycles don't even
include any actual blitting either. And as you move up to later PC-98
models with Pentium CPUs, the gap between OUT and REP
MOVSD only becomes larger. (Note that the page I linked above has a
typo in the cycle count of REP MOVSD on Pentium CPUs: According
to the original Intel Architecture and Programming Manual, it's
13+𝑛, not 3+𝑛.)
This difference explains why later games rarely use EGC-"accelerated"
inter-page VRAM copies, and keep all of their larger images in main memory.
It especially explains why TH04 and TH05 can get away with naively redrawing
boss backdrop images on every frame.
In the end, the whole fact that ZUN did not define how long this image
should be visible is enough for me to increment the game's overall bug
counter. Who would have thought that looking at endings of all things
would teach us a PC-98 performance lesson… Sure, optimizing TH01 already
seemed promising just by looking at its bloated code, but I had no idea that
its performance issues extended so far past that level.
That only leaves the common beginning part of all endings and a short
main() function before we're done with FUUIN.EXE,
and 98 functions until all of TH01 is decompiled! Next up: SinGyoku, who not
only is the quickest boss to defeat in-game, but also comes with the least
amount of code. See you very soon!