⮜ Blog

⮜ List of tags

Showing all posts tagged input-

📝 Posted:
🚚 Summary of:
P0113, P0114
⌨ Commits:
150d2c6...6204fdd, 6204fdd...967bb8b
💰 Funded by:
Lmocinemod
🏷 Tags:
rec98+ th02+ th03+ th04+ build-process+ pipeline+ tasm+ blitting+ file-format+ input-

Alright, tooling and technical debt. Shouldn't be really much to talk about… oh, wait, this is still ReC98 :tannedcirno:

For the tooling part, I finished up the remaining ergonomics and error handling for the 📝 sprite converter that Jonathan Campbell contributed two months ago. While I familiarized myself with the tool, I've actually ran into some unreported errors myself, so this was sort of important to me. Still got no command-line help in there, but the error messages can now do that job probably even better, since we would have had to write them anyway.

So, what's up with the technical debt then? Well, by now we've accumulated quite a number of 📝 ASM code slices that need to be either decompiled or clearly marked as undecompilable. Since we define those slices as "already reverse-engineered", that decision won't affect the numbers on the front page at all. But for a complete decompilation, we'd still have to do this someday. So, rather than incorporating this work into pushes that were purchased with the expectation of measurable progress in a certain area, let's take the "anything goes" pushes, and focus entirely on that during them.

The second code segment seemed like the best place to start with this, since it affects the largest number of games simultaneously. Starting with TH02, this segment contains a set of random "core" functions needed by the binary. Image formats, sounds, input, math, it's all there in some capacity. You could maybe call it all "libzun" or something like that? But for the time being, I simply went with the obvious name, seg2. Maybe I'll come up with something more convincing in the future.


Oh, but wait, why were we assembling all the previous undecompilable ASM translation units in the 16-bit build part? By moving those to the 32-bit part, we don't even need a 16-bit TASM in our list of dependencies, as long as our build process is not fully 16-bit.
And with that, ReC98 now also builds on Windows 95, and thus, every 32-bit Windows version. 🎉 Which is certainly the most user-visible improvement in all of these two pushes. :onricdennat:


Back in 2015, I already decompiled all of TH02's seg2 functions. As suggested by the Borland compiler, I tried to follow a "one translation unit per segment" layout, bundling the binary-specific contents via #include. In the end, it required two translation units – and that was even after manually inserting the original padding bytes via #pragma codestring… yuck. But it worked, compiled, and kept the linker's job (and, by extension, segmentation worries) to a minimum. And as long as it all matched the original binaries, it still counted as a valid reconstruction of ZUN's code. :zunpet:

However, that idea ultimately falls apart once TH03 starts mixing undecompilable ASM code inbetween C functions. Now, we officially have no choice but to use multiple C and ASM translation units, with maybe only just one or two #includes in them…

…or we finally start reconstructing the actual seg2 library, turning every sequence of related functions into its own translation unit. This way, we can simply reuse the once-compiled .OBJ files for all the binaries those functions appear in, without requiring that additional layer of translation units mirroring the original segmentation.
The best example for this is TH03's almost undecompilable function that generates a lookup table for horizontally flipping 8 1bpp pixels. It's part of every binary since TH03, but only used in that game. With the previous approach, we would have had to add 9 C translation units, which would all have just #included that one file. Now, we simply put the .OBJ file into the correct place on the linker command line, as soon as we can.

💡 And suddenly, the linker just inserts the correct padding bytes itself.

The most immediate gains there also happened to come from TH03. Which is also where we did get some tiny RE% and PI% gains out of this after all, by reverse-engineering some of its sprite blitting setup code. Sure, I should have done even more RE here, to also cover those 5 functions at the end of code segment #2 in TH03's MAIN.EXE that were in front of a number of library functions I already covered in this push. But let's leave that to an actual RE push 😛


All in all though, I was just getting started with this; the real gains in terms of removed ASM files are still to come. But in the meantime, the funding situation has become even better in terms of allowing me to focus on things nobody asked for. 🙂 So here's a slightly better idea: Instead of spending two more pushes on this, let's shoot for TH05 MAINE.EXE position independence next. If I manage to get it done, we'll have a 100% position-independent TH05 by the time -Tom- finishes his MAIN.EXE PI demo, rather than the 94% we'd get from just MAIN.EXE. That's bound to make a much better impression on all the people who will then (re-)discover the project.

📝 Posted:
🚚 Summary of:
P0090, P0091
⌨ Commits:
90252cc...07dab29, 07dab29...29c5a73
💰 Funded by:
Yanga, Ember2528
🏷 Tags:
rec98+ th01+ file-format+ input- menu+ bug+

Back to TH01, and its high score menu… oh, wait, that one will eventually involve keyboard input. And thanks to the generous TH01 funding situation, there's really no reason not to cover that right now. After all, TH01 is the last game where input still hadn't been RE'd.
But first, let's also cover that one unused blitting function, together with REIIDEN.CFG loading and saving, which are in front of the input function in OP.EXE… (By now, we all know about the hidden start bomb configuration, right?)

Unsurprisingly, the earliest game also implements input in the messiest way, with a different function for each of the three executables. "Because they all react differently to keyboard inputs :zunpet:", apparently? OP.EXE even has two functions for it, one for the START / CONTINUE / OPTION / QUIT main menu, and one for both Option and Music Test menus, both of which directly perform the ring arithmetic on the menu cursor variable. A consistent separation of keyboard polling from input processing apparently wasn't all too obvious of a thought, since it's only truly done from TH02 on.

This lack of proper architecture becomes actually hilarious once you notice that it did in fact facilitate a recursion bug! :godzun: In case you've been living under a rock for the past 8 years, TH01 shipped with debugging features, which you can enter by running the game via game d from the DOS prompt. These features include a memory info screen, shown when pressing PgUp, implemented as one blocking function (test_mem()) called directly in response to the pressed key inside the polling function. test_mem() only returns once that screen is left by pressing PgDown. And in order to poll input… it directly calls back into the same polling function that called it in the first place, after a 3-frame delay.

Which means that this screen is actually re-entered for every 3 frames that the PgUp key is being held. And yes, you can, of course, also crash the system via a stack overflow this way by holding down PgUp for a few seconds, if that's your thing.
Edit (2020-09-17): Here's a video from spaztron64, showing off this exact stack overflow crash while running under the VEM486 memory manager, which displays additional information about these sorts of crashes:

What makes this even funnier is that the code actually tracks the last state of every polled key, to prevent exactly that sort of bug. But the copy-pasted assignment of the last input state is only done after test_mem() already returned, making it effectively pointless for PgUp. It does work as intended for PgDown… and that's why you have to actually press and release this key once for every call to test_mem() in order to actually get back into the game. Even though a single call to PgDown will already show the game screen again.

In maybe more relevant news though, this function also came with what can be considered the first piece of actual gameplay logic! Bombing via double-tapping the Z and X keys is also handled here, and now we know that both keys simply have to be tapped twice within a window of 20 frames. They are tracked independently from each other, so you don't necessarily have to press them simultaneously.
In debug mode, the bomb count tracks precisely this window of time. That's why it only resets back to 0 when pressing Z or X if it's ≥20.

Sure, TH01's code is expectedly terrible and messy. But compared to the micro-optimizations of TH04 and TH05, it's an absolute joy to work on, and opening all these ZUN bug loot boxes is just the icing on the cake. Looking forward to more of the high score menu in the next pushes!

📝 Posted:
🚚 Summary of:
P0019, P0020, P0021, P0022
⌨ Commits:
c592464, cbe8a37, 8dfc2cd, 79cc3ed
💰 Funded by:
zorg
🏷 Tags:
rec98+ th03+ th04+ th05+ pc98+ input-
> OK, let's do a quick ReC98 update before going back to thcrap, shouldn't take long > Hm, all that input code is kind of in the way, would be nice to cover that first to ease comparisons with uth05win's source code > What the hell, why does ZUN do this? Need to do more research > … > OK, research done, wait, what are those other functions doing? > Wha, everything about this is just ever so slightly awkward

Which ended up turning this one update into 2/10, 3/10, 4/10 and 5/10 of zorg's reverse-engineering commits. But at least we now got all shared input functions of TH02-TH05 covered and well understood.