OK, let's decompile TH02's HUD code first, gain a solid understanding of how
increasing the score works, and then look at the item system of this game.
Should be no big deal, no surprises expected, let's go!
…Yeah, right, that's never how things end up in ReC98 land.
And so, we get the usual host of newly discovered
oddities in addition to the expected insights into the item mechanics. Let's
start with the latter:
Some regular stage enemies appear to randomly drop either or items. In reality, there is
very little randomness at play here: These items are picked from a
hardcoded, repeating ring of 10 items
(𝄆 𝄇), and the only source of
randomness is the initial position within this ring, which changes at
the beginning of every stage. ZUN further increased the illusion of
randomness by only dropping such a semi-random item for every
4th defeated enemy that is coded to drop one, and also having
enemies that drop fixed, non-random items. I'd say it's a decent way of
ensuring both randomness and balance.
There's a 1/512 chance for such a semi-random
item drop to turn into a item instead –
which translates to 1/2048 enemies due to the
fixed drop rate.
Edit (2023-06-11): These are the only ways that items can randomly drop in this game. All other drops, including
any items, are scripted and deterministic.
After using a continue (both after a Game Over, or after manually
choosing to do so through the Pause menu for whatever reason), the
next
(Stage number + 1) semi-random item
drops are turned into items instead.
Items can contribute up to 25 points to the skill value and subsequent
rating (あなたの腕前) on the final verdict
screen. Doing well at item collection first increases a separate
collect_skill value:
Item
Collection condition
collect_skill change
below max power
+1
at or above max power
+2
value == 51,200
+8
value ≥20,000 and <51,200
+4
value ≥10,000 and <20,000
+2
value <10,000
+1
with 5 bombs in stock
+16
Note, again, the lack of anything involving
items. At the maximum of 5 lives, the item spawn function transforms
them into bomb items anyway. It is possible though to gain
the 5th life by reaching one of the extend scores while a
item is still on screen; in that case,
collecting the 1-up has no effect at all.
Every 32 collect_skill points will then raise the
item_skill by 1, whereas every 16 dropped items will lower
it by 1. Before launching into the ending sequence,
item_skill is clamped to the [0; 25] range and
added to the other skill-relevant metrics we're going to look at in
future pushes.
When losing a life, the game will drop a single
and 4 randomly picked or items in a random order
around Reimu's position. Contrary to an
unsourced Touhou Wiki edit from 2009, each of the 4 does have an
equal and independent chance of being either a
or item.
Finally, and perhaps most
interestingly, item values! These are
determined by the top Y coordinate of an item during the frame it is
collected on. The maximum value of 51,200 points applies to the top 48
pixels of the playfield, and drops off as soon as an item falls below
that line. For the rest of the playfield, point items then use a formula
of (28,000 - (top Y coordinate of item in
screen space × 70)):
Point items and their collection value in TH02. The numbers
correspond to items that are collected while their top Y coordinate
matches the line they are directly placed on. The upper
item in the image would therefore give
23,450 points if the player collected it at that specific
position.
Reimu collects any item whose 16×16 bounding box lies fully within
the red 48×40 hitbox. Note that
the box isn't cut off in this specific case: At Reimu's lowest
possible position on the playfield, the lowest 8 pixels of her
sprite are clipped, but the item hitbox still happens to end exactly
at the bottom of the playfield. Since an item's Y velocity
accelerates on every frame, it's entirely possible to collect a
point item at the lowest value of 2,240 points, on the exact frame
before it falls below the collection hitbox.
Onto score tracking then, which only took a single commit to raise another
big research question. It's widely known that TH02 grants extra lives upon
reaching a score of 1, 2, 3, 5, or 8 million points. But what hasn't been
documented is the fact that the game does not stop at the end of the
hardcoded extend score array. ZUN merely ends it with a sentinel value of
999,999,990 points, but if the score ever increased beyond this value, the
game will interpret adjacent memory as signed 32-bit score values and
continue giving out extra lives based on whatever thresholds it ends up
finding there. Since the following bytes happen to turn into a negative
number, the next extra life would be awarded right after gaining another 10
points at exactly 1,000,000,000 points, and the threshold after that would
be 11,114,905,600 points. Without an explicit counterstop, the number of
score-based extra lives is theoretically unlimited, and would even continue
after the signed 32-bit value overflowed into the negative range. Although
we certainly have bigger problems once scores ever reach that point…
That said, it seems impossible that any of this could ever happen
legitimately. The current high scores of 42,942,800 points on
Lunatic and 42,603,800 points on
Extra don't even reach 1/20 of ZUN's sentinel
value. Without either a graze or a bullet cancel system, the scoring
potential in this game is fairly limited, making it unlikely for high scores
to ever increase by that additional order of magnitude to end up anywhere
near the 1 billion mark.
But can we really be sure? Is this a landmine because it's impossible
to ever reach such high scores, or is it a quirk because these extends
could be observed under rare conditions, perhaps as the result of
other quirks? And if it's the latter, how many of these adjacent bytes do we
need to preserve in cleaned-up versions and ports? We'd pretty much need to
know the upper bound of high scores within the original stage and boss
scripts to tell. This value should be rather easy to calculate in a
game with such a simple scoring system, but doing that only makes sense
after we RE'd all scoring-related code and could efficiently run such
simulations. It's definitely something we'd need to look at before working
on this game's debloated version in the far future, which is
when the difference between quirks and landmines will become relevant.
Still, all that uncertainty just because ZUN didn't restrict a loop to the
size of the extend threshold array…
TH02 marks a pivotal point in how the PC-98 Touhou games handle the current
score. It's the last game to use a 32-bit variable before the later games
would regrettably start using arrays of binary-coded
decimals. More importantly though, TH02 is also the first game to
introduce the delayed score counting animation, where the displayed score
intentionally lags behind and gradually counts towards the real one over
multiple frames. This could be implemented in one of two ways:
Keep the displayed score as a separate variable inside the presentation
layer, and let it gradually count up to the real score value passed in from
the logic layer
Burden the game logic with this presentation detail, and split the score
into two variables: One for the displayed score, and another for the
delta between that score and the actual one. Newly gained points are
first added to the delta variable, and then gradually subtracted from there
and added to the real score before being displayed.
And by now, we can all tell which option ZUN picked for the rest of the
PC-98 games, even if you don't remember
📝 me mentioning this system last year.
📝 Once again, TH02 immortalized ZUN's initial
attempt at the concept, which lacks the abstraction boundaries you'd want
for managing this one piece of state across two variables, and messes up the
abstractions it does have. In addition to the regular score
transfer/render function, the codebase therefore has
a function that transfers the current delta to the score immediately,
but does not re-render the HUD, and
a function that adds the delta to the score and re-renders the HUD, but
does not reset the delta.
And – you guessed it – I wouldn't have mentioned any of this if it didn't
result in one bug and one quirk in TH02. The bug resulting from 1) is pretty
minor: The function is called when losing a life, and simply stops any
active score-counting animation at the value rendered on the frame where the
player got hit. This one is only a rendering issue – no points are lost, and
you just need to gain 10 more for the rendered value to jump back up to its
actual value. You'll probably never notice this one because you're likely
busy collecting the single spawned around Reimu
when losing a life, which always awards at least 10 points.
The quirk resulting from 2) is more intriguing though. Without a separate
reset of the score delta, the function effectively awards the current delta
value as a one-time point bonus, since the same delta will still be
regularly transferred to the score on further game frames.
This function is called at the start of every dialog sequence. However, TH02
stops running the regular game loop between the post-boss dialog and the
next stage where the delta is reset, so we can only observe this quirk for
the pre-boss sequences and the dialog before Mima's form change.
Unfortunately, it's not all too exploitable in either case: Each of the
pre-boss dialog sequences is preceded by an ungrazeable pellet pattern and
followed by multiple seconds of flying over an empty playfield with zero
scoring opportunities. By the time the sequence starts, the game will have
long transferred any big score delta from max-valued point items. It's
slightly better with Mima since you can at least shoot her and use a bomb to
keep the delta at a nonzero value, but without a health bar, there is little
indication of when the dialog starts, and it'd be long after Mima
gave out her last bonus items in any case.
But two of the bosses – that is, Rika, and the Five Magic Stones – are
scrolled onto the playfield as part of the stage script, and can also be hit
with player shots and bombs for a few seconds before their dialog starts.
While I'll only get to cover shot types and bomb damage within the next few
TH02 pushes, there is an obvious initial strategy for maximizing the effect
of this quirk: Spreading out the A-Type / Wide / High Mobility shot to land
as many hits as possible on all Five Magic Stones, while firing off a bomb.
Turns out that the infamous button-mashing mechanics of the
player shot are also more complicated than simply pressing and releasing the
Shot key at alternating frames. Even this result took way too many
takes.
Wow, a grand total of 1,750 extra points! Totally worth wasting a bomb for…
yeah, probably not. But at the very least, it's
something that a TAS score run would want to keep in mind. And all that just
because ZUN "forgot" a single score_delta = 0; assignment at
the end of one function…
And that brings TH02 over the 30% RE mark! Next up: 100% position
independence for TH04. If anyone wants to grab the
that have now been freed up in the cap: Any small Touhou-related task would
be perfect to round out that upcoming TH04 PI delivery.
Back after taking way too long to get Touhou Patch Center's MediaWiki
update feature complete… I'm still waiting for more translators to test and
review the new translation interface before delivering and deploying it
all, which will most likely lead to another break from ReC98 within the
next few months. For now though, I'm happy to have mostly addressed the
nagging responsibility I still had after willing that site into existence,
and to be back working on ReC98. 🙂
As announced, the next few pushes will focus on TH04's and TH05's bullet
spawning code, before I get to put all that accumulated TH01 money towards
finishing all of konngara's code in TH01. For a full
picture of what's happening with bullets, we'd really also like to
have the bullet update function as readable C code though.
Clearing all bullets on the playfield will trigger a Bonus!! popup,
displayed as 📝 gaiji in that proportional
font. Unfortunately, TLINK refused to link the code as soon as I referenced
the function for animating the popups at the top of the playfield? Which
can only mean that we have to decompile that function first…
So, let's turn that piece of technical debt into a full push, and first
decompile another random set of previously reverse-engineered TH04 and TH05
functions. Most of these are stored in a different place within the two
MAIN.EXE binaries, and the tried-and-true method of matching
segment names would therefore have introduced several unnecessary
translation units. So I resorted to a segment splitting technique I should
have started using way earlier: Simply creating new segments with names
derived from their functions, at the exact positions they're needed. All
the new segment start and end directives do bloat the ASM code somewhat,
and certainly contributed to this push barely removing any actual lines of
code. However, what we get in return is total freedom as far as
decompilation order is concerned,
📝 which should be the case for any ReC project, really.
And in the end, all these tiny code segments will cancel out anyway.
If only we could do the same with the data segment…
The popup function happened to be the final one I RE'd before my long break
in the spring of 2019. Back then, I didn't even bother looking into that
64-frame delay between changing popups, and what that meant for the game.
Each of these popups stays on screen for 128 frames, during which, of
course, another popup-worthy event might happen. Handling this cleanly
without removing previous popups too early would involve some sort of event
queue, whose size might even be meaningfully limited to the number of
distinct events that can happen. But still, that'd be a data structure, and
we're not gonna have that! Instead, ZUN
simply keeps two variables for the new and current popup ID. During an
active popup, any change to that ID will only be committed once the current
popup has been shown for at least 64 frames. And during that time,
that new ID can be freely overwritten with a different one, which drops any
previous, undisplayed event. But surely, there won't be more than two
events happening within 63 frames, right?
The rest was fairly uneventful – no newly RE'd functions in this push,
after all – until I reached the widely used helper function for applying
the current vertical scrolling offset to a Y coordinate. Its combination of
a function parameter, the pascal calling convention, and no
stack frame was previously thought to be undecompilable… except that it
isn't, and the decompilation didn't even require any new workarounds to be
developed? Good thing that I already forgot how impossible it was to
decompile the first function I looked at that fell into this category!
Oh well, this discovery wasn't too groundbreaking. Looking back at
all the other functions with that combination only revealed a grand total
of 1 additional one where a decompilation made sense: TH05's version of
snd_kaja_interrupt(), which is now compiled from the same C++
file for all 4 games that use it. And well, looks like some quirks really
remain unnoticed and undocumented until you look at a function for the 11th
time: Its return value is undefined if BGM is inactive – that is, if the
user disabled it, or if no FM board is installed. Not that it matters for
the original code, which never uses this function to retrieve anything from
KAJA's drivers. But people apparently do copy ReC98 code into their own
projects, so it is something to keep in mind.
All in all, nothing quite at jank level in this one, but
we were surely grazing that tag. Next up, with that out of the way:
The bullet update/step function! Very soon in fact, since I've mostly got
it done already.
🎉 TH05 is finally fully position-independent! 🎉 To celebrate this
milestone, -Tom- coded a little demo, which we recorded on
both an emulator and on real PC-98 hardware:
You can now freely add or remove both data and code anywhere in TH05, by
editing the ReC98 codebase, writing your mod in ASM or C/C++, and
recompiling the code. Since all absolute memory addresses have now been
converted to labels, this will work without causing any instability. See
the position independence section in the FAQ
for a more thorough explanation about why this was a problem.
By extension, this also means that it's now theoretically possible
to use a different compiler on the source code. But:
What does this not mean?
The original ZUN code hasn't been completely reverse-engineered yet, let
alone decompiled. As the final PC-98 Touhou game, TH05 also happens to
have the largest amount of actual ZUN-written ASM that can't ever
be decompiled within ReC98's constraints of a legit source code
reconstruction. But a lot of the originally-in-C code is also still in
ASM, which might make modding a bit inconvenient right now. And while I
have decompiled a bunch of functions, I selected them largely
because they would help with PI (as requested by the backers), and not
because they are particularly relevant to typical modding interests.
As a result, the code might also be a bit confusingly organized. There's
quite a conflict between various goals there: On the one hand, I'd like to
only have a single instance of every function shared with earlier games,
as well as reduce ZUN's code duplication within a single game. On the
other hand, this leads to quite a lot of code being scattered all over the
place and then #include-pasted back together, except for the
places where
📝 this doesn't work, and you'd have to use multiple translation units anyway…
I'm only beginning to figure out the best structure here, and some more
reverse-engineering attention surely won't hurt.
Also, keep in mind that the code still targets x86 Real Mode. To work
effectively in this codebase, you'd need some familiarity with
memory
segmentation, and how to express it all in code. This tends to make
even regular C++ development about an order of magnitude harder,
especially once you want to interface with the remaining ASM code. That
part made -Tom- struggle quite a bit with implementing his
custom scripting language for the demo above. For now, he built that demo
on quite a limited foundation – which is why he also chose to release
neither the build nor the source publically for the time being.
So yeah, you're definitely going to need the TASM and Borland C++ manuals
there.
tl;dr: We now know everything about this game's data, but not quite
as much about this game's code.
So, how long until source ports become a realistic project?
You probably want to wait for 100% RE, which is when everything
that can be decompiled has been decompiled.
Unless your target system is 16-bit Windows, in which case you could
theoretically start right away. 📝 Again,
this would be the ideal first system to port PC-98 Touhou to: It would
require all the generic portability work to remove the dependency on PC-98
hardware, thus paving the way for a subsequent port to modern systems,
yet you could still just drop in any undecompiled ASM.
Porting to IBM-compatible DOS would only be a harder and less universally
useful version of that. You'd then simply exchange one architecture, with
its idiosyncrasies and limits, for another, with its own set of
idiosyncrasies and limits. (Unless, of course, you already happen to be
intimately familiar with that architecture.) The fact that master.lib
provides DOS/V support would have only mattered if ZUN consistently used
it to abstract away PC-98 hardware at every single place in the code,
which is definitely not the case.
The list of actually interesting findings in this push is,
📝 again, very short. Probably the most
notable discovery: The low-level part of the code that renders Marisa's
laser from her TH04 Illusion Laser shot type is still present in
TH05. Insert wild mass guessing about potential beta version shot types…
Oh, and did you know that the order of background images in the Extra
Stage staff roll differs by character?
Next up: Finally driving up the RE% bar again, by decompiling some TH05
main menu code.
It's vacation time! Which, for ReC98, means "relaxing by looking at
something boring and uninteresting that we'll ultimately have to cover
anyway"… like the TH01 HUD.
📝 As noted earlier, all the score, card
combo, stage, and time numbers are drawn into VRAM. Which turns TH01's HUD
rendering from the trivial, gaiji-assisted text RAM writes we see in later
games to something that, once again, requires blitting and unblitting
steps. For some reason though, everything on there is blitted to both
VRAM pages? And that's why the HUD chose to allocate a bunch of .PTN
sprite slots to store the background behind all "animated" elements at the
beginning of a 4-stage scene or boss battle… separately for every
affected 16×16 area. (Looking forward to the completely unnecessary
code in the Sariel fight that updates these slots after the backgrounds
were animated!) And without any separation into helper functions, we end
up with the same blitting calls separately copy-pasted for every single
HUD element. That's why something as seemingly trivial as this isn't even
done after 2 pushes, as we're still missing the stage timer.
Thankfully, the .PTN function signatures come with none of ZUN's little
inconsistencies, so I was able to mostly reduce this copy-pasta to a bunch
of small inline functions and macros. Those interfaces still remain a bit
annoying, though. As a 32×32 format, .PTN merely supports 16×16 sprites
with a separate bunch of functions that take an additional
quarter parameter from 0 to 3, to select one of the 4 16×16
quarters in a such a sprite…
For life and bomb counts, there was no way around VRAM though, since ZUN
wanted to use more than a single color for those. This is where we find at
least somewhat of a mildly interesting quirk in all of this: Any life
counts greater than the intended 6 will wrap into new rows, with the bombs
in the second row overlapping those excess lives. With the way the rest of
the HUD rendering works, that wrapping code code had to be explicitly
written… which means that ZUN did in fact accomodate (his own?) cheating
there.
Now, I promised image formats, and in the middle of this copy-pasta, we
did get one… sort of. MASK.GRF, the red HUD
background, is entirely handled with two small bespoke functions… and
that's all the code we have for this format. Basically, it's a variation
on the 📝 .GRZ format we've seen earlier. It
uses the exact same RLE algorithm, but only has a single byte stream for
both RLE commands and pixel data… as you would expect from an RLE format.
.GRF actually stores 4 separately encoded RLE streams, which suggests that
it was intended for full 16-color images. Unfortunately,
MASK.GRF only contains 4 copies of the same HUD background
, so no unused beta data for us there. The only
thing we could derive from 4 identical bitplanes would be that the
background was originally meant to be drawn using color #15, rather than
the red seen in the final game. Color
#15 is a stage-specific background color that would have made the
HUD blend in quite nicely – in the YuugenMagan fight, it's the changing
color of the 邪 in the background, for example. But
really, with no generic implementation of this format, that's all just
speculation.
Oh, and in case you were looking for a rip of that image:
So yeah, more of the usual TH01 code, with the usual small quirks, but
nothing all too horrible – as expected. Next up: The image formats that
didn't make it into this push.
As expected, we've now got the TH04 and TH05 stage enemy structure,
finishing position independence for all big entity types. This one was
quite straightfoward, as the .STD scripting system is pretty simple.
Its most interesting aspect can be found in the way timing is handled. In
Windows Touhou, all .ECL script instructions come with a frame field that
defines when they are executed. In TH04's and TH05's .STD scripts, on the
other hand, it's up to each individual instruction to add a frame time
parameter, anywhere in its parameter list. This frame time defines for how
long this instruction should be repeatedly executed, before it manually
advances the instruction pointer to the next one. From what I've seen so
far, these instruction typically apply their effect on the first frame
they run on, and then do nothing for the remaining frames.
Oh, and you can't nest the LOOP instruction, since the enemy
structure only stores one single counter for the current loop iteration.
Just from the structure, the only innovation introduced by TH05 seems to
have been enemy subtypes. These can be used to parametrize scripts via
conditional jumps based on this value, as a first attempt at cutting down
the need to duplicate entire scripts for similar enemy behavior. And
thanks to TH05's favorable segment layout, this game's version of the
.STD enemy script interpreter is even immediately ready for decompilation,
in one single future push.
As far as I can tell, that now only leaves
.MPN file loading
player bomb animations
some structures specific to the Shinki and EX-Alice battles
plus some smaller things I've missed over the years
until TH05's MAIN.EXE is completely position-independent.
Which, however, won't be all it needs for that 100% PI rating on the front
page. And with that many false positives, it's quite easy to get lost with
immediately reverse-engineering everything around them. This time, the
rendering of the text dissolve circles, used for the stage and BGM title
popups, caught my eye… and since the high-level code to handle all of
that was near the end of a segment in both TH04 and TH05, I just decided
to immediately decompile it all. Like, how hard could it possibly be?
Sure, it needed another segment split, which was a bit harder due
to all the existing ASM referencing code in that segment, but certainly
not impossible…
Oh wait, this code depends on 9 other sets of identifiers that haven't
been declared in C land before, some of which require vast reorganizations
to bring them up to current consistency standards. Whoops! Good thing that
this is the part of the project I'm still offering for free…
Among the referenced functions was tiles_invalidate_around(),
which marks the stage background tiles within a rectangular area to be
redrawn this frame. And this one must have had the hardest function
signature to figure out in all of PC-98 Touhou, because it actually
seems impossible. Looking at all the ways the game passes the center
coordinate to this function, we have
X and Y as 16-bit integer literals, merged into a single
PUSH of a 32-bit immediate
X and Y calculated and pushed independently from each other
by-value copies of entire Point instances
Any single declaration would only lead to at most two of the three cases
generating the original instructions. No way around separately declaring
the function in every translation unit then, with the correct parameter
list for the respective calls. That's how ZUN must have also written it.
Oh well, we would have needed to do all of this some time. At least
there were quite a bit of insights to be gained from the actual
decompilation, where using const references actually made it
possible to turn quite a number of potentially ugly macros into wholesome
inline functions.
But still, TH04 and TH05 will come out of ReC98's decompilation as one big
mess. A lot of further manual decompilation and refactoring, beyond the
limits of the original binary, would be needed to make these games
portable to any non-PC-98, non-x86 architecture.
And yes, that includes IBM-compatible DOS – which, for some reason, a
number of people see as the obvious choice for a first system to port
PC-98 Touhou to. This will barely be easier. Sure, you'll save the effort
of decompiling all the remaining original ASM. But even with
master.lib's MASTER_DOSV setting, these games still very much
rely on PC-98 hardware, with corresponding assumptions all over ZUN's
code. You will need to provide abstractions for the PC-98's
superimposed text mode, the gaiji, and planar 4-bit color access in
general, exchanging the use of the PC-98's GRCG and EGC blitter chips with
something else. At that point, you might as well port the game to one
generic 640×400 framebuffer and away from the constraints of DOS,
resulting in that Doom source code-like situation which made that
game easily portable to every architecture to begin with. But ZUN just
wasn't a John Carmack, sorry.
Or what do I know. I've never programmed for IBM-compatible DOS, but maybe
ReC98's audience does include someone who is intimately familiar
with IBM-compatible DOS so that the constraints aren't much of an issue
for them? But even then, 16-bit Windows would make much more sense
as a first porting target if you don't want to bother with that
undecompilable ASM.
At least I won't have to look at TH04 and TH05 for quite a while now.
The delivery delays have made it obvious that
my life has become pretty busy again, probably until September. With a
total of 9 TH01 pushes from monthly subscriptions now waiting in the
backlog, the shop will stay closed until I've caught up with most of
these. Which I'm quite hyped for!
Alright, the score popup numbers shown when collecting items or defeating
(mid)bosses. The second-to-last remaining big entity type in TH05… with
quite some PI false positives in the memory range occupied by its data.
Good thing I still got some outstanding generic RE pushes that haven't
been claimed for anything more specific in over a month! These
conveniently allowed me to RE most of these functions right away, the
right way.
Most of the false positives were boss HP values, passed to a "boss phase
end" function which sets the HP value at which the next phase should end.
Stage 6 Yuuka, Mugetsu, and EX-Alice have their own copies of this
function, in which they also reset certain boss-specific global variables.
Since I always like to cover all varieties of such duplicated functions at
once, it made sense to reverse-engineer all the involved variables while I
was at it… and that's why this was exactly the right time to cover the
implementation details of Stage 6 Yuuka's parasol and vanishing animations
in TH04.
With still a bit of time left in that RE push afterwards, I could also
start looking into some of the smaller functions that didn't quite fit
into other pushes. The most notable one there was a simple function that
aims from any point to the current player position. Which actually only
became a separate function in TH05, probably since it's called 27 times in
total. That's 27 places no longer being blocked from further RE progress.
WindowsTiger already
did most of the work for the score popup numbers in January, which meant
that I only had to review it and bring it up to ReC98's current coding
styles and standards. This one turned out to be one of those rare features
whose TH05 implementation is significantly less insane than the
TH04 one. Both games lazily redraw only the tiles of the stage background
that were drawn over in the previous frame, and try their best to minimize
the amount of tiles to be redrawn in this way. For these popup numbers,
this involves calculating the on-screen width, based on the exact number
of digits in the point value. TH04 calculates this width every frame
during the rendering function, and even resorts to setting that field
through the digit iteration pointer via self-modifying code… yup. TH05, on
the other hand, simply calculates the width once when spawning a new popup
number, during the conversion of the point value to
binary-coded
decimal. The "×2" multiplier suffix being removed in TH05 certainly
also helped in simplifying that feature in this game.
And that's ⅓ of TH05 reverse-engineered! Next up, one more TH05 PI push,
in which the stage enemies hopefully finish all the big entity types.
Maybe it will also be accompanied by another RE push? In any case, that
will be the last piece of TH05 progress for quite some time. The next TH01
stretch will consist of 6 pushes at the very least, and I currently have
no idea of how much time I can spend on ReC98 a month from now…
The glacial pace continues, with TH05's unnecessarily, inappropriately
micro-optimized, and hence, un-decompilable code for rendering the current
and high score, as well as the enemy health / dream / power bars. While
the latter might still pass as well-written ASM, the former goes to such
ridiculous levels that it ends up being technically buggy. If you
enjoy quality ZUN code, it's
definitely worth a read.
In TH05, this all still is at the end of code segment #1, but in TH04,
the same code lies all over the same segment. And since I really
wanted to move that code into its final form now, I finally did the
research into decompiling from anywhere else in a segment.
Turns out we actually can! It's kinda annoying, though: After splitting
the segment after the function we want to decompile, we then need to group
the two new segments back together into one "virtual segment" matching the
original one. But since all ASM in ReC98 heavily relies on being
assembled in MASM mode, we then start to suffer from MASM's group
addressing quirk. Which then forces us to manually prefix every single
function call
from inside the group
to anywhere else within the newly created segment
with the group name. It's stupidly boring busywork, because of all the
function calls you mustn't prefix. Special tooling might make this
easier, but I don't have it, and I'm not getting crowdfunded for it.
So while you now definitely can request any specific thing in any
of the 5 games to be decompiled right now, it will take slightly
longer, and cost slightly more.
(Except for that one big segment in TH04, of course.)
Only one function away from the TH05 shot type control functions now!
Boss explosions! And… urgh, I really also had to wade through that overly complicated HUD rendering code. Even though I had to pick -Tom-'s 7th push here as well, the worst of that is still to come. TH04 and TH05 exclusively store the current and high score internally as unpacked little-endian BCD, with some pretty dense ASM code involving the venerable x86 BCD instructions to update it.
So, what's actually the goal here. Since I was given no priorities , I still haven't had to (potentially) waste time researching whether we really can decompile from anywhere else inside a segment other than backwards from the end. So, the most efficient place for decompilation right now still is the end of TH05's main_01_TEXT segment. With maybe 1 or 2 more reverse-engineering commits, we'd have everything for an efficient decompilation up to sub_123AD. And that mass of code just happens to include all the shot type control functions, and makes up 3,007 instructions in total, or 12% of the entire remaining unknown code in MAIN.EXE.
So, the most reasonable thing would be to actually put some of the upcoming decompilation pushes towards reverse-engineering that missing part. I don't think that's a bad deal since it will allow us to mod TH05 shot types in C sooner, but zorg and qp might disagree
Next up: thcrap TL notes, followed by finally finishing GhostPhanom's old ReC98 future-proofing pushes. I really don't want to decompile without a proper build system.