⮜ Blog

⮜ List of tags

Showing all posts tagged hidden-content-, rec98- and waste-

📝 Posted:
🚚 Summary of:
P0128, P0129
Commits:
dc65b59...dde36f7, dde36f7...f4c2e45
💰 Funded by:
Yanga
🏷 Tags:
rec98- th01+ file-format+ gameplay+ card-flipping+ waste- debug+ hidden-content- bug+

So, only one card-flipping function missing, and then we can start decompiling TH01's two final bosses? Unfortunately, that had to be the one big function that initializes and renders all gameplay objects. #17 on the list of longest functions in all of PC-98 Touhou, requiring two pushes to fully understand what's going on there… and then it immediately returns for all "boss" stages whose number is divisible by 5, yet is still called during Sariel's and Konngara's initialization 🤦

Oh well. This also involved the final file format we hadn't looked at yet – the STAGE?.DAT files that describe the layout for all stages within a single 5-stage scene. Which, for a change is a very well-designed form– no, of course it's completely weird, what did you expect? Development must have looked somewhat like this:

With all that, it's almost not worth mentioning how there are 12 turret types, which only differ in which hardcoded pellet group they fire at a hardcoded interval of either 100 or 200 frames, and that they're all explicitly spelled out in every single switch statement. Or how the layout of the internal card and obstacle SoA classes is quite disjointed. So here's the new ZUN bugs you've probably already been expecting!


Cards and obstacles are blitted to both VRAM pages. This way, any other entities moving on top of them can simply be unblitted by restoring pixels from VRAM page 1, without requiring the stationary objects to be redrawn from main memory. Obviously, the backgrounds behind the cards have to be stored somewhere, since the player can remove them. For faster transitions between stages of a scene, ZUN chose to store the backgrounds behind obstacles as well. This way, the background image really only needs to be blitted for the first stage in a scene.

All that memory for the object backgrounds adds up quite a bit though. ZUN actually made the correct choice here and picked a memory allocation function that can return more than the 64 KiB of a single x86 Real Mode segment. He then accesses the individual backgrounds via regular array subscripts… and that's where the bug lies, because he stores the returned address in a regular far pointer rather than a huge one. This way, the game still can only display a total of 102 objects (i. e., cards and obstacles combined) per stage, without any unblitting glitches.
What a shame, that limit could have been 127 if ZUN didn't needlessly allocate memory for alpha planes when backing up VRAM content. :onricdennat:

And since array subscripts on far pointers wrap around after 64 KiB, trying to save the background of the 103rd object is guaranteed to corrupt the memory block header at the beginning of the returned segment. :zunpet: When TH01 runs in debug mode, it correctly reports a corrupted heap in this case.
After detecting such a corruption, the game loudly reports it by playing the "player hit" sound effect and locking up, freezing any further gameplay or rendering. The locking loop can be left by pressing ↵ Return, but the game will simply re-enter it if the corruption is still present during the next heapcheck(), in the next frame. And since heap corruptions don't tend to repair themselves, you'd have to constantly hold ↵ Return to resume gameplay. Doing that could actually get you safely to the next boss, since the game doesn't allocate or free any further heap memory during a 5-stage card-flipping scene, and just throws away its C heap when restarting the process for a boss. But then again, holding ↵ Return will also auto-flip all cards on the way there… 🤨


Finally, some unused content! Upon discovering TH01's stage selection debug feature, probably everyone tried to access Stage 21, just to see what happens, and indeed landed in an actual stage, with a black background and a weird color palette. Turns out that ZUN did ship an unused scene in SCENE7.DAT, which is exactly what's loaded there.
However, it's easy to believe that this is just garbage data (as I initially did): At the beginning of "Stage 22", the game seems to enter an infinite loop somewhere during the flip-in animation.

Well, we've had a heap overflow above, and the cause here is nothing but a stack buffer overflow – a perhaps more modern kind of classic C bug, given its prevalence in the Windows Touhou games. Explained in a few lines of code:

void stageobjs_init_and_render()
{
	int card_animation_frames[50]; // even though there can be up to 200?!
	int total_frames = 0;

	(code that would end up resetting total_frames if it ever tried to reset
	card_animation_frames[50]…)
}

The number of cards in "Stage 22"? 76. There you have it.

But of course, it's trivial to disable this animation and fix these stage transitions. So here they are, Stages 21 to 24, as shipped with the game in STAGE7.DAT:

TH01 stage 21, loaded from <code>STAGE7.DAT</code>TH01 stage 22, loaded from <code>STAGE7.DAT</code>TH01 stage 23, loaded from <code>STAGE7.DAT</code>TH01 stage 24, loaded from <code>STAGE7.DAT</code>

Wow, what a mess. All that was just a bit too much to be covered in two pushes… Next up, assuming the current subscriptions: Taking a vacation with one smaller TH01 push, covering some smaller functions here and there to ensure some uninterrupted Konngara progress later on.

📝 Posted:
🚚 Summary of:
P0124, P0125
Commits:
72dfa09...056b1c7, 056b1c7...f6a3246
💰 Funded by:
Blue Bolt, [Anonymous]
🏷 Tags:
rec98- th02+ th04+ pc98+ menu+ waste- master.lib+ waste-

Turns out that TH04's player selection menu is exactly three times as complicated as TH05's. Two screens for character and shot type rather than one, and a way more intricate implementation for saving and restoring the background behind the raised top and left edges of a character picture when moving the cursor between Reimu and Marisa. TH04 decides to backup precisely only the two 256×8 (top) and 8×244 (left) strips behind the edges, indicated in red in the picture below.

Backed-up VRAM area in TH04's player character selection

These take up just 4 KB of heap memory… but require custom blitting functions, and expanding this explicitly hardcoded approach to TH05's 4 characters would have been pretty annoying. So, rather than, uh, not explicitly hardcoding it all, ZUN decided to just be lazy with the backup area in TH05, saving the entire 640×400 screen, and thus spending 128 KB of heap memory on this rather simple selection shadow effect. :zunpet:


So, this really wasn't something to quickly get done during the first half of a push, even after already having done TH05's equivalent of this menu. But since life is very busy right now, I also used the occasion to start addressing another code organization annoyance: master.lib's single master.h header file.

So, time to start a new master.hpp header that would contain just the declarations from master.h that PC-98 Touhou actually needs, plus some semantic (yes, semantic) sugar. Comparing just the old master.h to just the new master.hpp after roughly 60% of the transition has been completed, we get median build times of 319 ms for master.h, and 144 ms for master.hpp on my (admittedly rather slow) DOSBox setup. Nice!
As of this push, ReC98 consists of 107 translation units that have to be compiled with Turbo C++ 4.0J. Fully rebuilding all of these currently takes roughly 37.5 seconds in DOSBox. After the transition to master.hpp is done, we could therefore shave some 10 to 15 seconds off this time, simply by switching header files. And that's just the beginning, as this will also pave the way for further #include optimizations. Life in this codebase will be great!


Unfortunately, there wasn't enough time to repay some of the actual technical debt I was looking forward to, after all of this. Oh well, at least we now also have nice identifiers for the three different boldface options that are used when rendering text to VRAM, after procrastinating that issue for almost 11 months. Next up, assuming the existing subscriptions: More ridiculous decompilations of things that definitely weren't originally written in C, and a big blocker in TH03's MAIN.EXE.