⮜ Blog

⮜ List of tags

Showing all posts tagged
and

📝 Posted:
🚚 Summary of:
P0264, P0265
Commits:
46cd6e7...78728f6, 78728f6...ff19bed
💰 Funded by:
Blue Bolt, [Anonymous], iruleatgames
🏷 Tags:

Oh, it's 2024 already and I didn't even have a delivery for December or January? Yeah… I can only repeat what I said at the end of November, although the finish line is actually in sight now. With 10 pushes across 4 repositories and a blog post that has already reached a word count of 9,240, the Shuusou Gyoku SC-88Pro BGM release is going to break 📝 both the push record set by TH01 Sariel two years ago, and 📝 the blog post length record set by the last Shuusou Gyoku delivery. Until that's done though, let's clear some more PC-98 Touhou pushes out of the backlog, and continue the preparation work for the non-ASCII translation project starting later this year.

But first, we got another free bugfix according to my policy! 📝 Back in April 2022 when I researched the Divide Error crash that can occur in TH04's Stage 4 Marisa fight, I proposed and implemented four possible workarounds and let the community pick one of them for the generally recommended small bugfix mod. I still pushed the others onto individual branches in case the gameplay community ever wants to look more closely into them and maybe pick a different one… except that I accidentally pushed the wrong code for the warp workaround, probably because I got confused with the second warp variant I developed later on.
Fortunately, I still had the intended code for both variants lying around, and used the occasion to merge the current master branch into all of these mod branches. Thanks to wyatt8740 for spotting and reporting this oversight!

  1. The Music Room background masking effect
  2. The GRCG's plane disabling flags
  3. Text color restrictions
  4. The entire messy rest of the Music Room code
  5. TH04's partially consistent congratulation picture on Easy Mode
  6. TH02's boss position and damage variables

As the final piece of code shared in largely identical form between 4 of the 5 games, the Music Rooms were the biggest remaining piece of low-hanging fruit that guaranteed big finalization% gains for comparatively little effort. They seemed to be especially easy because I already decompiled TH02's Music Room together with the rest of that game's OP.EXE back in early 2015, when this project focused on just raw decompilation with little to no research. 9 years of increased standards later though, it turns out that I missed a lot of details, and ended up renaming most variables and functions. Combined with larger-than-expected changes in later games and the usual quality level of ZUN's menu code, this ended up taking noticeably longer than the single push I expected.

The undoubtedly most interesting part about this screen is the animation in the background, with the spinning and falling polygons cutting into a single-color background to reveal a spacey image below. However, the only background image loaded in the Music Room is OP3.PI (TH02/TH03) or MUSIC3.PI (TH04/TH05), which looks like this in a .PI viewer or when converted into another image format with the usual tools:

TH02's Music Room background in its on-disk state TH03's Music Room background in its on-disk state TH04's Music Room background in its on-disk state TH05's Music Room background in its on-disk state
Let's call this "the blank image".

That is definitely the color that appears on top of the polygons, but where is the spacey background? If there is no other .PI file where it could come from, it has to be somewhere in that same file, right? :thonk:
And indeed: This effect is another bitplane/color palette trick, exactly like the 📝 three falling stars in the background of TH04's Stage 5. If we set every bit on the first bitplane and thus change any of the resulting even hardware palette color indices to odd ones, we reveal a full second 8-color sub-image hiding in the same .PI file:

TH02's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom TH03's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom TH04's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom TH05's Music Room background, with all bits in the first bitplane set to reveal the spacey background image, and the full color palette at the bottom
The spacey sub-image. Never before seen!1!! …OK, touhou-memories beat me by a month. Let's add each image's full 16-color palette to deliver some additional value.

On a high level, the first bitplane therefore acts as a stencil buffer that selects between the blank and spacey sub-image for every pixel. The important part here, however, is that the first bitplane of the blank sub-images does not consist entirely of 0 bits, but does have 1 bits at the pixels that represent the caption that's supposed to be overlaid on top of the animation. Since there now are some pixels that should always be taken from the spacey sub-image regardless of whether they're covered by a polygon, the game can no longer just clear the first bitplane at the start of every frame. Instead, it has to keep a separate copy of the first bitplane's original state (called nopoly_B in the code), captured right after it blitted the .PI image to VRAM. Turns out that this copy also comes in quite handy with the text, but more on that later.


Then, the game simply draws polygons onto only the reblitted first bitplane to conditionally set the respective bits. ZUN used master.lib's grcg_polygon_c() function for this, which means that we can entirely thank the uncredited master.lib developers for this iconic animation – if they hadn't included such a function, the Music Rooms would most certainly look completely different.
This is where we get to complete the series on the PC-98 GRCG chip with the last remaining four bits of its mode register. So far, we only needed the highest bit (0x80) to either activate or deactivate it, and the bit below (0x40) to choose between the 📝 RMW and 📝 TCR/📝 TDW modes. But you can also use the lowest four bits to restrict the GRCG's operations to any subset of the four bitplanes, leaving the other ones untouched:

// Enable the GRCG (0x80) in regular RMW mode (0x40). All bitplanes are
// enabled and written according to the contents of the tile register.
outportb(0x7C, 0xC0);

// The same, but limiting writes to the first bitplane by disabling the
// second (0x02), third (0x04), and fourth (0x08) one, as done in the
// PC-98 Touhou Music Rooms.
outportb(0x7C, 0xCE);

// Regular GRCG blitting code to any VRAM segment…
pokeb(0xA8000, offset, …);

// We're done, turn off the GRCG.
outportb(0x7C, 0x00);

This could be used for some unusual effects when writing to two or three of the four planes, but it seems rather pointless for this specific case at first. If we only want to write to a single plane, why not just do so directly, without the GRCG? Using that chip only involves more hardware and is therefore slower by definition, and the blitting code would be the same, right?
This is another one of these questions that would be interesting to benchmark one day, but in this case, the reason is purely practical: All of master.lib's polygon drawing functions expect the GRCG to be running in RMW mode. They write their pixels as bitmasks where 1 and 0 represent pixels that should or should not change, and leave it to the GRCG to combine these masks with its tile register and OR the result into the bitplanes instead of doing so themselves. Since GRCG writes are done via MOV instructions, not using the GRCG would turn these bitmasks into actual dot patterns, overwriting any previous contents of each VRAM byte that gets modified.
Technically, you'd only have to replace a few MOV instructions with OR to build a non-GRCG version of such a function, but why would you do that if you haven't measured polygon drawing to be an actual bottleneck.

Three overlapping Music Room polygons rendered using master.lib's grcg_polygon_c() function with a disabled GRCGThree overlapping Music Room polygons rendered as in the original game, with the GRCG enabled
An example with three polygons drawn from top to bottom. Without the GRCG, edges of later polygons overwrite any previously drawn pixels within the same VRAM byte. Note how treating bitmasks as dot patterns corrupts even those areas where the background image had nonzero bits in its first bitplane.

As far as complexity is concerned though, the worst part is the implicit logic that allows all this text to show up on top of the polygons in the first place. If every single piece of text is only rendered a single time, how can it appear on top of the polygons if those are drawn every frame?
Depending on the game (because of course it's game-specific), the answer involves either the individual bits of the text color index or the actual contents of the palette:

The contents of nopoly_B with each game's first track selected.

Finally, here's a list of all the smaller details that turn the Music Rooms into such a mess:

And that's all the Music Rooms! The OP.EXE binaries of TH04 and especially TH05 are now very close to being 100% RE'd, with only the respective High Score menus and TH04's title animation still missing. As for actual completion though, the finalization% metric is more relevant as it also includes the ZUN Soft logo, which I RE'd on paper but haven't decompiled. I'm 📝 still hoping that this will be the final piece of code I decompile for these two games, and that no one pays to get it done earlier… :onricdennat:


For the rest of the second push, there was a specific goal I wanted to reach for the remaining anything budget, which was blocked by a few functions at the beginning of TH04's and TH05's MAINE.EXE. In another anticlimactic development, this involved yet another way too early decompilation of a main() function…
Generally, this main() function just calls the top-level functions of all other ending-related screens in sequence, but it also handles the TH04-exclusive congratulating All Clear images within itself. After a 1CC, these are an additional reward on top of the Good Ending, showing the player character wearing a different outfit depending on the selected difficulty. On Easy Mode, however, the Good Ending is unattainable because the game always ends after Stage 5 with a Bad Ending, but ZUN still chose to show the EASY ALL CLEAR!! image in this case, regardless of how many continues you used.
While this might seem inconsistent with the other difficulties, it is consistent within Easy Mode itself, as the enforced Bad Ending after Stage 5 also doesn't distinguish between the number of continues. Also, Try to Normal Rank!! could very well be ZUN's roundabout way of implying "because this is how you avoid the Bad Ending".

With that out of the way, I was finally able to separate the VRAM text renderer of TH04 and TH05 into its own assembly unit, 📝 finishing the technical debt repayment project that I couldn't complete in 2021 due to assembly-time code segment label arithmetic in the data segment. This now allows me to translate this undecompilable self-modifying mess of ASM into C++ for the non-ASCII translation project, and thus unify the text renderers of all games and enhance them with support for Unicode characters loaded from a bitmap font. As the final finalized function in the SHARED segment, it also allowed me to remove 143 lines of particularly ugly segmentation workarounds 🙌


The remaining 1/6th of the second push provided the perfect occasion for some light TH02 PI work. The global boss position and damage variables represented some equally low-hanging fruit, being easily identified global variables that aren't part of a larger structure in this game. In an interesting twist, TH02 is the only game that uses an increasing damage value to track boss health rather than decreasing HP, and also doesn't internally distinguish between bosses and midbosses as far as these variables are concerned. Obviously, there's quite a bit of state left to be RE'd, not least because Marisa is doing her own thing with a bunch of redundant copies of her position, but that was too complex to figure out right now.

Also doing their own thing are the Five Magic Stones, which need five positions rather than a single one. Since they don't move, the game doesn't have to keep 📝 separate position variables for both VRAM pages, and can handle their positions in a much simpler way that made for a nice final commit.
And for the first time in a long while, I quite like what ZUN did there! Not only are their positions stored in an array that is indexed with a consistent ID for every stone, but these IDs also follow the order you fight the stones in: The two inner ones use 0 and 1, the two outer ones use 2 and 3, and the one in the center uses 4. This might look like an odd choice at first because it doesn't match their horizontal order on the playfield. But then you notice that ZUN uses this property in the respective phase control functions to iterate over only the subrange of active stones, and you realize how brilliant it actually is.

Screenshot of TH02's Five Magic Stones, with the first two (both internally and in the order you fight them in) alive and activated Screenshot of TH02's Five Magic Stones, with the second two (both internally and in the order you fight them in) alive and activated Screenshot of TH02's Five Magic Stones, with the last one (both internally and in the order you fight them in) alive and activated

This seems like a really basic thing to get excited about, especially since the rest of their data layout sure isn't perfect. Splitting each piece of state and even the individual X and Y coordinates into separate 5-element arrays is still counter-productive because the game ends up paying more memory and CPU cycles to recalculate the element offsets over and over again than this would have ever saved in cache misses on a 486. But that's a minor issue that could be fixed with a few regex replacements, not a misdesigned architecture that would require a full rewrite to clean it up. Compared to the hardcoded and bloated mess that was 📝 YuugenMagan's five eyes, this is definitely an improvement worthy of the good-code tag. The first actual one in two years, and a welcome change after the Music Room!

These three pieces of data alone yielded a whopping 5% of overall TH02 PI in just 1/6th of a push, bringing that game comfortably over the 60% PI mark. MAINE.EXE is guaranteed to reach 100% PI before I start working on the non-ASCII translations, but at this rate, it might even be realistic to go for 100% PI on MAIN.EXE as well? Or at least technical position independence, without the false positives.

Next up: Shuusou Gyoku SC-88Pro BGM. It's going to be wild.

📝 Posted:
🚚 Summary of:
P0240, P0241
Commits:
be69ab6...40c900f, 40c900f...08352a5
💰 Funded by:
JonathKane, Blue Bolt, [Anonymous]
🏷 Tags:

Well, well. My original plan was to ship the first step of Shuusou Gyoku OpenGL support on the next day after this delivery. But unfortunately, the complications just kept piling up, to a point where the required solutions definitely blow the current budget for that goal. I'm currently sitting on over 70 commits that would take at least 5 pushes to deliver as a meaningful release, and all of that is just rearchitecting work, preparing the game for a not too Windows-specific OpenGL backend in the first place. I haven't even written a single line of OpenGL yet… 🥲
This shifts the intended Big Release Month™ to June after all. Now I know that the next round of Shuusou Gyoku features should better start with the SC-88Pro recordings, which are much more likely to get done within their current budget. At least I've already completed the configuration versioning system required for that goal, which leaves only the actual audio part.

So, TH04 position independence. Thanks to a bit of funding for stage dialogue RE, non-ASCII translations will soon become viable, which finally presents a reason to push TH04 to 100% position independence after 📝 TH05 had been there for almost 3 years. I haven't heard back from Touhou Patch Center about how much they want to be involved in funding this goal, if at all, but maybe other backers are interested as well.
And sure, it would be entirely possible to implement non-ASCII translations in a way that retains the layout of the original binaries and can be easily compared at a binary level, in case we consider translations to be a critical piece of infrastructure. This wouldn't even just be an exercise in needless perfectionism, and we only have to look to Shuusou Gyoku to realize why: Players expected that my builds were compatible with existing SpoilerAL SSG files, which was something I hadn't even considered the need for. I mean, the game is open-source 📝 and I made it easy to build. You can just fork the code, implement all the practice features you want in a much more efficient way, and I'd probably even merge your code into my builds then?
But I get it – recompiling the game yields just yet another build that can't be easily compared to the original release. A cheat table is much more trustworthy in giving players the confidence that they're still practicing the same original game. And given the current priorities of my backers, it'll still take a while for me to implement proof by replay validation, which will ultimately free every part of the community from depending on the original builds of both Seihou and PC-98 Touhou.

However, such an implementation within the original binary layout would significantly drive up the budget of non-ASCII translations, and I sure don't want to constantly maintain this layout during development. So, let's chase TH04 position independence like it's 2020, and quickly cover a larger amount of PI-relevant structures and functions at a shallow level. The only parts I decompiled for now contain calculations whose intent can't be clearly communicated in ASM. Hitbox visualizations or other more in-depth research would have to wait until I get to the proper decompilation of these features.
But even this shallow work left us with a large amount of TH04-exclusive code that had its worst parts RE'd and could be decompiled fairly quickly. If you want to see big TH04 finalization% gains, general TH04 progress would be a very good investment.


The first push went to the often-mentioned stage-specific custom entities that share a single statically allocated buffer. Back in 2020, I 📝 wrongly claimed that these were a TH05 innovation, but the system actually originated in TH04. Both games use a 26-byte structure, but TH04 only allocates a 32-element array rather than TH05's 64-element one. The conclusions from back then still apply, but I also kept wondering why these games used a static array for these entities to begin with. You know what they call an area of memory that you can cleanly repurpose for things? That's right, a heap! :tannedcirno: And absolutely no one would mind one additional heap allocation at the start of a stage, next to the ones for all the sprites and portraits.
However, we are still running in Real Mode with segmented memory. Accessing anything outside a common data segment involves modifying segment registers, which has a nonzero CPU cycle cost, and Turbo C++ 4.0J is terrible at optimizing away the respective instructions. Does this matter? Probably not, but you don't take "risks" like these if you're in a permanent micro-optimization mindset… :godzun:

In TH04, this system is used for:

  1. Kurumi's symmetric bullet spawn rays, fired from her hands towards the left and right edges of the playfield. These are rather infamous for being the last thing you see before 📝 the Divide Error crash that can happen in ZUN's original build. Capped to 6 entities.

  2. The 4 📝 bits used in Marisa's Stage 4 boss fight. Coincidentally also related to the rare Divide Error crash in that fight.

  3. Stage 4 Reimu's spinning orbs. Note how the game uses two different sets of sprites just to have two different outline colors. This was probably better than messing with the palette, which can easily cause unintended effects if you only have 16 colors to work with. Heck, I have an entire blog post tag just to highlight these cases. Capped to the full 32 entities.

  4. The chasing cross bullets, seen in Phase 14 of the same Stage 6 Yuuka fight. Featuring some smart sprite work, making use of point symmetry to achieve a fluid animation in just 4 frames. This is good-code in sprite form. Capped to 31 entities, because the 32nd custom entity during this fight is defined to be…

  5. The single purple pulsating and shrinking safety circle, seen in Phase 4 of the same fight. The most interesting aspect here is actually still related to the cross bullets, whose spawn function is wrongly limited to 32 entities and could theoretically overwrite this circle. :zunpet: This is strictly landmine territory though:

    • Yuuka never uses these bullets and the safety circle simultaneously
    • She never spawns more than 24 cross bullets
    • All cross bullets are fast enough to have left the screen by the time Yuuka restarts the corresponding subpattern
    • The cross bullets spawn at Yuuka's center position, and assign its Q12.4 coordinates to structure fields that the safety circle interprets as raw pixels. The game does try to render the circle afterward, but since Yuuka's static position during this phase is nowhere near a valid pixel coordinate, it is immediately clipped.

  6. The flashing lines seen in Phase 5 of the Gengetsu fight, telegraphing the slightly random bullet columns.

    The spawn column lines in the TH05 Gengetsu fight, in the first of their two flashing colors.The spawn column lines in the TH05 Gengetsu fight, in the second of their two flashing colors.

These structures only took 1 push to reverse-engineer rather than the 2 I needed for their TH05 counterparts because they are much simpler in this game. The "structure" for Gengetsu's lines literally uses just a single X position, with the remaining 24 bytes being basically padding. The only minor bug I found on this shallow level concerns Marisa's bits, which are clipped at the right and bottom edges of the playfield 16 pixels earlier than you would expect:


The remaining push went to a bunch of smaller structures and functions:


To top off the second push, we've got the vertically scrolling checkerboard background during the Stage 6 Yuuka fight, made up of 32×32 squares. This one deserves a special highlight just because of its needless complexity. You'd think that even a performant implementation would be pretty simple:

  1. Set the GRCG to TDW mode
  2. Set the GRCG tile to one of the two square colors
  3. Start with Y as the current scroll offset, and X as some indicator of which color is currently shown at the start of each row of squares
  4. Iterate over all lines of the playfield, filling in all pixels that should be displayed in the current color, skipping over the other ones
  5. Count down Y for each line drawn
  6. If Y reaches 0, reset it to 32 and flip X
  7. At the bottom of the playfield, change the GRCG tile to the other color, and repeat with the initial value of X flipped

The most important aspect of this algorithm is how it reduces GRCG state changes to a minimum, avoiding the costly port I/O that we've identified time and time again as one of the main bottlenecks in TH01. With just 2 state variables and 3 loops, the resulting code isn't that complex either. A naive implementation that just drew the squares from top to bottom in a single pass would barely be simpler, but much slower: By changing the GRCG tile on every color, such an implementation would burn a low 5-digit number of CPU cycles per frame for the 12×11.5-square checkerboard used in the game.
And indeed, ZUN retained all important aspects of this algorithm… but still implemented it all in ASM, with a ridiculous layer of x86 segment arithmetic on top? :zunpet: Which blows up the complexity to 4 state variables, 5 nested loops, and a bunch of constants in unusual units. I'm not sure what this code is supposed to optimize for, especially with that rather questionable register allocation that nevertheless leaves one of the general-purpose registers unused. :onricdennat: Fortunately, the function was still decompilable without too many code generation hacks, and retains the 5 nested loops in all their goto-connected glory. If you want to add a checkerboard to your next PC-98 demo, just stick to the algorithm I gave above.
(Using a single XOR for flipping the starting X offset between 32 and 64 pixels is pretty nice though, I have to give him that.)


This makes for a good occasion to talk about the third and final GRCG mode, completing the series I started with my previous coverage of the 📝 RMW and 📝 TCR modes. The TDW (Tile Data Write) mode is the simplest of the three and just writes the 8×1 GRCG tile into VRAM as-is, without applying any alpha bitmask. This makes it perfect for clearing rectangular areas of pixels – or even all of VRAM by doing a single memset():

// Set up the GRCG in TDW mode.
outportb(0x7C, 0x80);

// Fill the tile register with color #7 (0111 in binary).
outportb(0x7E, 0xFF); // Plane 0: (B): (********)
outportb(0x7E, 0xFF); // Plane 1: (R): (********)
outportb(0x7E, 0xFF); // Plane 2: (G): (********)
outportb(0x7E, 0x00); // Plane 3: (E): (        )

// Set the 32 pixels at the top-left corner of VRAM to the exact contents of
// the tile register, effectively repeating the tile 4 times. In TDW mode, the
// GRCG ignores the CPU-supplied operand, so we might as well just pass the
// contents of a register with the intended width. This eliminates useless load
// instructions in the compiled assembly, and even sort of signals to readers
// of this code that we do not care about the source value.
*reinterpret_cast<uint32_t far *>(MK_FP(0xA800, 0)) = _EAX;

// Fill the entirety of VRAM with the GRCG tile. A simple C one-liner that will
// probably compile into a single `REP STOS` instruction. Unfortunately, Turbo
// C++ 4.0J only ever generates the 16-bit `REP STOSW` here, even when using
// the `__memset__` intrinsic and when compiling in 386 mode. When targeting
// that CPU and above, you'd ideally want `REP STOSD` for twice the speed.
memset(MK_FP(0xA800, 0), _AL, ((640 / 8) * 400));

However, this might make you wonder why TDW mode is even necessary. If it's functionally equivalent to RMW mode with a CPU-supplied bitmask made up entirely of 1 bits (i.e., 0xFF, 0xFFFF, or 0xFFFFFFFF), what's the point? The difference lies in the hardware implementation: If all you need to do is write tile data to VRAM, you don't need the read and modify parts of RMW mode which require additional processing time. The PC-9801 Programmers' Bible claims a speedup of almost 2× when using TDW mode over equivalent operations in RMW mode.
And that's the only performance claim I found, because none of these old PC-98 hardware and programming books did any benchmarks. Then again, it's not too interesting of a question to benchmark either, as the byte-aligned nature of TDW blitting severely limits its use in a game engine anyway. Sure, maybe it makes sense to temporarily switch from RMW to TDW mode if you've identified a large rectangular and byte-aligned section within a sprite that could be blitted without a bitmask? But the necessary identification work likely nullifies the performance gained from TDW mode, I'd say. In any case, that's pretty deep micro-optimization territory. Just use TDW mode for the few cases it's good at, and stick to RMW mode for the rest.

So is this all that can be said about the GRCG? Not quite, because there are 4 bits I haven't talked about yet…


And now we're just 5.37% away from 100% position independence for TH04! From this point, another 2 pushes should be enough to reach this goal. It might not look like we're that close based on the current estimate, but a big chunk of the remaining numbers are false positives from the player shot control functions. Since we've got a very special deadline to hit, I'm going to cobble these two pushes together from the two current general subscriptions and the rest of the backlog. But you can, of course, still invest in this goal to allow the existing contributions to go to something else.
… Well, if the store was actually open. :thonk: So I'd better continue with a quick task to free up some capacity sooner rather than later. Next up, therefore: Back to TH02, and its item and player systems. Shouldn't take that long, I'm not expecting any surprises there. (Yeah, I know, famous last words…)

📝 Posted:
🚚 Summary of:
P0227, P0228
Commits:
4f85326...bfd24c6, bfd24c6...739e1d8
💰 Funded by:
nrook, [Anonymous]
🏷 Tags:

Starting the year with a delivery that wasn't delayed until the last day of the month for once, nice! Still, very soon and high-maintenance did not go well together…

It definitely wasn't Sara's fault though. As you would expect from a Stage 1 Boss, her code was no challenge at all. Most of the TH02, TH04, and TH05 bosses follow the same overall structure, so let's introduce a new table to replace most of the boilerplate overview text:

Phase # Patterns HP boundary Timeout condition
Sprite of Sara in TH05 (Entrance) 4,650 288 frames
2 4 2,550 2,568 frames (= 32 patterns)
3 4 450 5,296 frames (= 24 patterns)
4 1 0 1,300 frames
Total 9 9,452 frames

And that's all the gameplay-relevant detail that ZUN put into Sara's code. It doesn't even make sense to describe the remaining patterns in depth, as their groups can significantly change between difficulties and rank values. The 📝 general code structure of TH05 bosses won't ever make for good-code, but Sara's code is just a lesser example of what I already documented for Shinki.
So, no bugs, no unused content, only inconsequential bloat to be found here, and less than 1 push to get it done… That makes 9 PC-98 Touhou bosses decompiled, with 22 to go, and gets us over the sweet 50% overall finalization mark! 🎉 And sure, it might be possible to pass through the lasers in Sara's final pattern, but the boss script just controls the origin, angle, and activity of lasers, so any quirk there would be part of the laser code… wait, you can do what?!?


TH05 expands TH04's one-off code for Yuuka's Master and Double Sparks into a more featureful laser system, and Sara is the first boss to show it off. Thus, it made sense to look at it again in more detail and finalize the code I had purportedly 📝 reverse-engineered over 4 years ago. That very short delivery notice already hinted at a very time-consuming future finalization of this code, and that prediction certainly came true. On the surface, all of the low-level laser ray rendering and collision detection code is undecompilable: It uses the SI and DI registers without Turbo C++'s safety backups on the stack, and its helper functions take their input and output parameters from convenient registers, completely ignoring common calling conventions. And just to raise the confusion even further, the code doesn't just set these registers for the helper function calls and then restores their original values, but permanently shifts them via additions and subtractions. Unfortunately, these convenient registers also include the BP base pointer to the stack frame of a function… and shifting that register throws any intuition behind accessed local variables right out of the window for a good part of the function, requiring a correctly shifted view of the stack frame just to make sense of it again. :godzun: How could such code even have been written?! This goes well beyond the already wrong assumption that using more stack space is somehow bad, and straight into the territory of self-inflicted pain.

So while it's not a lot of instructions, it's quite dense and really hard to follow. This code would really benefit from a decompilation that anchors all this madness as much as possible in existing C++ structures… so let's decompile it anyway? :tannedcirno:
Doing so would involve emitting lots of raw machine code bytes to hide the SI and DI registers from the compiler, but I already had a certain 📝 batshit insane compiler bug workaround abstraction lying around that could make such code more readable. Hilariously, it only took this one additional use case for that abstraction to reveal itself as premature and way too complicated. :onricdennat: Expanding the core idea into a full-on x86 instruction generator ended up simplifying the code structure a lot. All we really want there is a way to set all potential parameters to e.g. a specific form of the MOV instruction, which can all be expressed as the parameters to a force-inlined __emit__() function. Type safety can help by providing overloads for different operand widths here, but there really is no need for classes, templates, or explicit specialization of templates based on classes. We only need a couple of enums with opcode, register, and prefix constants from the x86 reference documentation, and a set of associated macros that token-paste pseudoregisters onto the prefixes of these enum constants.
And that's how you get a custom compile-time assembler in a 1994 C++ compiler and expand the limits of decompilability even further. What's even truly left now? Self-modifying code, layout tricks that can't be replicated with regularly structured control flow… and that's it. That leaves quite a few functions I previously considered undecompilable to be revisited once I get to work on making this game more portable.

With that, we've turned the low-level laser code into the expected horrible monstrosity that exposes all the hidden complexity in those few ASM instructions. The high-level part should be no big deal now… except that we're immediately bombarded with Fixup overflow errors at link time? Oh well, time to finally learn the true way of fixing this highly annoying issue in a second new piece of decompilation tech – and one that might actually be useful for other x86 Real Mode retro developers at that.
Earlier in the RE history of TH04 and TH05, I often wrote about the need to split the two original code segments into multiple segments within two groups, which makes it possible to slot in code from different translation units at arbitrary places within the original segment. If we don't want to define a unique segment name for each of these slotted-in translation units, we need a way to set custom segment and group names in C land. Turbo C++ offers two #pragmas for that:

For the most part, these #pragmas work well, but they seemed to not help much when it came to calling near functions declared in different segments within the same group. It took a bit of trial and error to figure out what was actually going on in that case, but there is a clear logic to it:

Summarized in code:

#pragma option -zCfoo_TEXT -zPfoo

void bar(void);
void near qux(void); // defined somewhere else, maybe in a different segment

#pragma codeseg baz_TEXT baz

// Despite the segment change in the line above, this function will still be
// put into `foo_TEXT`, the active segment during the first appearance of the
// function name.
void bar(void) {
}

// This function hasn't been declared yet, so it will go into `baz_TEXT` as
// expected.
void baz(void) {
	// This `near` function pointer will be calculated by subtracting the
	// flat/linear address of qux() inside the binary from the base address
	// of qux()'s declared segment, i.e., `foo_TEXT`.
	void (near *ptr_to_qux)(void) = qux;
}

So yeah, you might have to put #pragma codeseg into your headers to tell the linker about the correct segment of a near function in advance. 🤯 This is an important insight for everyone using this compiler, and I'm shocked that none of the Borland C++ books documented the interaction of code segment definitions and near references at least at this level of clarity. The TASM manuals did have a few pages on the topic of groups, but that syntax obviously doesn't apply to a C compiler. Fixup overflows in particular are such a common error and really deserved better than the unhelpful 🤷 of an explanation that ended up in the User's Guide. Maybe this whole technique of custom code segment names was considered arcane even by 1993, judging from the mere three sentences that #pragma codeseg was documented with? Still, it must have been common knowledge among Amusement Makers, because they couldn't have built these exact binaries without knowing about these details. This is the true solution to 📝 any issues involving references to near functions, and I'm glad to see that ZUN did not in fact lie to the compiler. 👍


OK, but now the remaining laser code compiles, and we get to write C++ code to draw some hitboxes during the two collision-detected states of each laser. These confirm what the low-level code from earlier already uncovered: Collision detection against lasers is done by testing a 12×12-pixel box at every 16 pixels along the length of a laser, which leaves obvious 4-pixel gaps at regular intervals that the player can just pass through. :zunpet: This adds 📝 yet 📝 another 📝 quirk to the growing list of quirks that were either intentional or must have been deliberately left in the game after their initial discovery. This is what constants were invented for, and there really is no excuse for not using them – especially during intoxicated coding, and/or if you don't have a compile-time abstraction for Q12.4 literals.

When detecting laser collisions, the game checks the player's single center coordinate against any of the aforementioned 12×12-pixel boxes. Therefore, it's correct to split these 12×12 pixels into two 6×6-pixel boxes and assign the other half to the player for a more natural visualization. Always remember that hitbox visualizations need to keep all colliding entities in mind – 📝 assigning a constant-sized hitbox to "the player" and "the bullets" will be wrong in most other cases.

Using subpixel coordinates in collision detection also introduces a slight inaccuracy into any hitbox visualization recorded in-engine on a 16-color PC-98. Since we have to render discrete pixels, we cannot exactly place a Q12.4 coordinate in the 93.75% of cases where the fractional part is non-zero. This is why pretty much every laser segment hitbox in the video above shows up as 7×7 rather than 6×6: The actual W×H area of each box is 13 pixels smaller, but since the hitbox lies between these pixels, we cannot indicate where it lies exactly, and have to err on the side of caution. It's also why Reimu's box slightly changes size as she moves: Her non-diagonal movement speed is 3.5 pixels per frame, and the constant focused movement in the video above halves that to 1.75 pixels, making her end up on an exact pixel every 4 frames. Looking forward to the glorious future of displays that will allow us to scale up the playfield to 16× its original pixel size, thus rendering the game at its exact internal resolution of 6144×5888 pixels. Such a port would definitely add a lot of value to the game…

The remaining high-level laser code is rather unremarkable for the most part, but raises one final interesting question: With no explicitly defined limit, how wide can a laser be? Looking at the laser structure's 1-byte width field and the unsigned comparisons all throughout the update and rendering code, the answer seems to be an obvious 255 pixels. However, the laser system also contains an automated shrinking state, which can be most notably seen in Mai's wheel pattern. This state shrinks a laser by 2 pixels every 2 frames until it reached a width of 0. This presents a problem with odd widths, which would fall below 0 and overflow back to 255 due to the unsigned nature of this variable. So rather than, I don't know, treating width values of 0 as invalid and stopping at a width of 1, or even adding a condition for that specific case, the code just performs a signed comparison, effectively limiting the width of a shrinkable laser to a maximum of 127 pixels. :zunpet: This small signedness inconsistency now forces the distinction between shrinkable and non-shrinkable lasers onto every single piece of code that uses lasers. Yet another instance where 📝 aiming for a cinematic 30 FPS look made the resulting code much more complicated than if ZUN had just evenly spread out the subtraction across 2 frames. 🤷
Oh well, it's not as if any of the fixed lasers in the original scripts came close to any of these limits. Moving lasers are much more streamlined and limited to begin with: Since they're hardcoded to 6 pixels, the game can safely assume that they're always thinner than the 28 pixels they get gradually widened to during their decay animation.

Finally, in case you were missing a mention of hitboxes in the previous paragraph: Yes, the game always uses the aforementioned 12×12 boxes, regardless of a laser's width.

This video also showcases the 127-pixel limit because I wanted to include the shrink animation for a seamless loop.

That was what, 50% of this blog post just being about complications that made laser difficult for no reason? Next up: The first TH01 Anniversary Edition build, where I finally get to reap the rewards of having a 100% decompiled game and write some good code for once.

📝 Posted:
🚚 Summary of:
P0190, P0191, P0192
Commits:
5734815...293e16a, 293e16a...71cb7b5, 71cb7b5...e1f3f9f
💰 Funded by:
nrook, -Tom-, [Anonymous]
🏷 Tags:

The important things first:

So, Shinki! As far as final boss code is concerned, she's surprisingly economical, with 📝 her background animations making up more than ⅓ of her entire code. Going straight from TH01's 📝 final 📝 bosses to TH05's final boss definitely showed how much ZUN had streamlined danmaku pattern code by the end of PC-98 Touhou. Don't get me wrong, there is still room for improvement: TH05 not only 📝 reuses the same 16 bytes of generic boss state we saw in TH04 last month, but also uses them 4× as often, and even for midbosses. Most importantly though, defining danmaku patterns using a single global instance of the group template structure is just bad no matter how you look at it:

Declaring a separate structure instance with the static data for every pattern would be both safer and more space-efficient, and there's more than enough space left for that in the game's data segment.
But all in all, the pattern functions are short, sweet, and easy to follow. The "devil" pattern is significantly more complex than the others, but still far from TH01's final bosses at their worst. I especially like the clear architectural separation between "one-shot pattern" functions that return true once they're done, and "looping pattern" functions that run as long as they're being called from a boss's main function. Not many all too interesting things in these pattern functions for the most part, except for two pieces of evidence that Shinki was coded after Yumeko:


Speaking about that wing sprite: If you look at ST05.BB2 (or any other file with a large sprite, for that matter), you notice a rather weird file layout:

Raw file layout of TH05's ST05.BB2, demonstrating master.lib's supposed BFNT width limit of 64 pixels
A large sprite split into multiple smaller ones with a width of 64 pixels each? What's this, hardware sprite limitations? On my PC-98?!

And it's not a limitation of the sprite width field in the BFNT+ header either. Instead, it's master.lib's BFNT functions which are limited to sprite widths up to 64 pixels… or at least that's what MASTER.MAN claims. Whatever the restriction was, it seems to be completely nonexistent as of master.lib version 0.23, and none of the master.lib functions used by the games have any issues with larger sprites.
Since ZUN stuck to the supposed 64-pixel width limit though, it's now the game that expects Shinki's winged form to consist of 4 physical sprites, not just 1. Any conversion from another, more logical sprite sheet layout back into BFNT+ must therefore replicate the original number of sprites. Otherwise, the sequential IDs ("patnums") assigned to every newly loaded sprite no longer match ZUN's hardcoded IDs, causing the game to crash. This is exactly what used to happen with -Tom-'s MysticTK automation scripts, which combined these exact sprites into a single large one. This issue has now been fixed – just in case there are some underground modders out there who used these scripts and wonder why their game crashed as soon as the Shinki fight started.


And then the code quality takes a nosedive with Shinki's main function. :onricdennat: Even in TH05, these boss and midboss update functions are still very imperative:

The biggest WTF in there, however, goes to using one of the 16 state bytes as a "relative phase" variable for differentiating between boss phases that share the same branch within the switch(boss.phase) statement. While it's commendable that ZUN tried to reduce code duplication for once, he could have just branched depending on the actual boss.phase variable? The same state byte is then reused in the "devil" pattern to track the activity state of the big jerky lasers in the second half of the pattern. If you somehow managed to end the phase after the first few bullets of the pattern, but before these lasers are up, Shinki's update function would think that you're still in the phase before the "devil" pattern. The main function then sequence-breaks right to the defeat phase, skipping the final pattern with the burning Makai background. Luckily, the HP boundaries are far away enough to make this impossible in practice.
The takeaway here: If you want to use the state bytes for your custom boss script mods, alias them to your own 16-byte structure, and limit each of the bytes to a clearly defined meaning across your entire boss script.

One final discovery that doesn't seem to be documented anywhere yet: Shinki actually has a hidden bomb shield during her two purple-wing phases. uth05win got this part slightly wrong though: It's not a complete shield, and hitting Shinki will still deal 1 point of chip damage per frame. For comparison, the first phase lasts for 3,000 HP, and the "devil" pattern phase lasts for 5,800 HP.

And there we go, 3rd PC-98 Touhou boss script* decompiled, 28 to go! 🎉 In case you were expecting a fix for the Shinki death glitch: That one is more appropriately fixed as part of the Mai & Yuki script. It also requires new code, should ideally look a bit prettier than just removing cheetos between one frame and the next, and I'd still like it to fit within the original position-dependent code layout… Let's do that some other time.
Not much to say about the Stage 1 midboss, or midbosses in general even, except that their update functions have to imperatively handle even more subsystems, due to the relative lack of helper functions.


The remaining ¾ of the third push went to a bunch of smaller RE and finalization work that would have hardly got any attention otherwise, to help secure that 50% RE mark. The nicest piece of code in there shows off what looks like the optimal way of setting up the 📝 GRCG tile register for monochrome blitting in a variable color:

mov ah, palette_index ; Any other non-AL 8-bit register works too.
                      ; (x86 only supports AL as the source operand for OUTs.)

rept 4                ; For all 4 bitplanes…
    shr ah,  1        ; Shift the next color bit into the x86 carry flag
    sbb al,  al       ; Extend the carry flag to a full byte
                      ; (CF=0 → 0x00, CF=1 → 0xFF)
    out 7Eh, al       ; Write AL to the GRCG tile register
endm

Thanks to Turbo C++'s inlining capabilities, the loop body even decompiles into a surprisingly nice one-liner. What a beautiful micro-optimization, at a place where micro-optimization doesn't hurt and is almost expected.
Unfortunately, the micro-optimizations went all downhill from there, becoming increasingly dumb and undecompilable. Was it really necessary to save 4 x86 instructions in the highly unlikely case of a new spark sprite being spawned outside the playfield? That one 2D polar→Cartesian conversion function then pointed out Turbo C++ 4.0J's woefully limited support for 32-bit micro-optimizations. The code generation for 32-bit 📝 pseudo-registers is so bad that they almost aren't worth using for arithmetic operations, and the inline assembler just flat out doesn't support anything 32-bit. No use in decompiling a function that you'd have to entirely spell out in machine code, especially if the same function already exists in multiple other, more idiomatic C++ variations.
Rounding out the third push, we got the TH04/TH05 DEMO?.REC replay file reading code, which should finally prove that nothing about the game's original replay system could serve as even just the foundation for community-usable replays. Just in case anyone was still thinking that.


Next up: Back to TH01, with the Elis fight! Got a bit of room left in the cap again, and there are a lot of things that would make a lot of sense now:

📝 Posted:
🚚 Summary of:
P0189
Commits:
22abdd1...b4876b6
💰 Funded by:
Arandui, Lmocinemod
🏷 Tags:

(Before we start: Make sure you've read the current version of the FAQ section on a potential takedown of this project, updated in light of the recent DMCA claims against PC-98 Touhou game downloads.)


Slight change of plans, because we got instructions for reliably reproducing the TH04 Kurumi Divide Error crash! Major thanks to Colin Douglas Howell. With those, it also made sense to immediately look at the crash in the Stage 4 Marisa fight as well. This way, I could release both of the obligatory bugfix mods at the same time.
Especially since it turned out that I was wrong: Both crashes are entirely unrelated to the custom entity structure that would have required PI-centric progress. They are completely specific to Kurumi's and Marisa's danmaku-pattern code, and really are two separate bugs with no connection to each other. All of the necessary research nicely fit into Arandui's 0.5 pushes, with no further deep understanding required here.

But why were there still three weeks between Colin's message and this blog post? DMCA distractions aside: There are no easy fixes this time, unlike 📝 back when I looked at the Stage 5 Yuuka crash. Just like how division by zero is undefined in mathematics, it's also, literally, undefined what should happen instead of these two Divide error crashes. This means that any possible "fix" can only ever be a fanfiction interpretation of the intentions behind ZUN's code. The gameplay community should be aware of this, and might decide to handle these cases differently. And if we have to go into fanfiction territory to work around crashes in the canon games, we'd better document what exactly we're fixing here and how, as comprehensible as possible.

  1. Kurumi's crash
  2. Marisa's crash

With that out of the way, let's look at Kurumi's crash first, since it's way easier to grasp. This one is known to primarily happen to new players, and it's easy to see why:

The pattern that causes the crash in Kurumi's fight. Also demonstrates how the number of bullets in a ring is always halved on Easy Mode after the rank-based tuning, leading to just a 3-ring on playperf = 16.

So, what should the workaround look like? Obviously, we want to modify neither the default number of ring bullets nor the tuning algorithm – that would change all other non-crashing variations of this pattern on other difficulties and ranks, creating a fork of the original gameplay. Instead, I came up with four possible workarounds that all seemed somewhat logical to me:

  1. Firing no bullet, i.e., interpreting 0-ring literally. This would create the only constellation in which a call to the bullet group spawn functions would not spawn at least one new bullet.
  2. Firing a "1-ring", i.e., a single bullet. This would be consistent with how the bullet spawn functions behave for "0-way" stack and spread groups.
  3. Firing a "∞-ring", i.e., 200 bullets, which is as much as the game's cap on 16×16 bullets would allow. This would poke fun at the whole "division by zero" idea… but given that we're still talking about Easy Mode (and especially new players) here, it might be a tad too cruel. Certainly the most trollish interpretation.
  4. Triggering an immediate Game Over, exchanging the hard crash for a softer and more controlled shutdown. Certainly the option that would be closest to the behavior of the original games, and perhaps the only one to be accepted in Serious, High-Level Play™.

As I was writing this post, it felt increasingly wrong for me to make this decision. So I once again went to Twitter, where 56.3% voted in favor of the 1-bullet option. Good that I asked! I myself was more leaning towards the 0-bullet interpretation, which only got 28.7% of the vote. Also interesting are the 2.3% in favor of the Game Over option but I get it, low-rank Easy Mode isn't exactly the most competitive mode of playing TH04.
There are reports of Kurumi crashing on higher difficulties as well, but I could verify none of them. If they aren't fixed by this workaround, they're caused by an entirely different bug that we have yet to discover.


Onto the Stage 4 Marisa crash then, which does in fact apply to all difficulty levels. I was also wrong on this one – it's a hell of a lot more intricate than being just a division by the number of on-screen bits. Without having decompiled the entire fight, I can't give a completely accurate picture of what happens there yet, but here's the rough idea:

Reference points for Marisa's point-reflected movement. Cyan: Marisa's position, green: (192, 112), yellow: the intended end point.
One of the two patterns in TH04's Stage 4 Marisa boss fight that feature frame number-dependent point-reflected movement. The bits were hacked to self-destruct on the respective frame.

tl;dr: "Game crashes if last bit destroyed within 4-frame window near end of two patterns". For an informed decision on a new movement behavior for these last 8 frames, we definitely need to know all the details behind the crash though. Here's what I would interpret into the code:

  1. Not moving at all, i.e., interpreting 0 as the middle ground between positive and negative movement. This would also make sense because a 12-frame duration implies 100% of the movement to consist of the braking phase – and Marisa wasn't moving before, after all.
  2. Move at maximum speed, i.e., dividing by 1 rather than 0. Since the movement duration is still 12 in this case, Marisa will immediately start braking. In total, she will move exactly ¾ of the way from her initial position to (192, 112) within the 8 frames before the pattern ends.
  3. Directly warping to (192, 112) on frame 0, and to the point-reflected target on 4, respectively. This "emulates" the division by zero by moving Marisa at infinite speed to the exact two points indicated by the velocity formula. It also fits nicely into the 8 frames we have to fill here. Sure, Marisa can't reach these points at any other duration, but why shouldn't she be able to, with infinite speed? Then again, if Marisa is far away enough from (192, 112), this workaround would warp her across the entire playfield. Can Marisa teleport according to lore? I have no idea… :tannedcirno:
  4. Triggering an immediate Game O– hell no, this is the Stage 4 boss, people already hate losing runs to this bug!

Asking Twitter worked great for the Kurumi workaround, so let's do it again! Gotta attach a screenshot of an earlier draft of this blog post though, since this stuff is impossible to explain in tweets…

…and it went through the roof, becoming the most successful ReC98 tweet so far?! Apparently, y'all really like to just look at descriptions of overly complex bugs that I'd consider way beyond the typical attention span that can be expected from Twitter. Unfortunately, all those tweet impressions didn't quite translate into poll turnout. The results were pretty evenly split between 1) and 2), with option 1) just coming out slightly ahead at 49.1%, compared to 41.5% of option 2).

(And yes, I only noticed after creating the poll that warping to both the green and yellow points made more sense than warping to just one of the two. Let's hope that this additional variant wouldn't have shifted the results too much. Both warp options only got 9.4% of the vote after all, and no one else came up with the idea either. :onricdennat: In the end, you can always merge together your preferred combination of workarounds from the Git branches linked below.)


So here you go: The new definitive version of TH04, containing not only the community-chosen Kurumi and Stage 4 Marisa workaround variant, but also the 📝 No-EMS bugfix from last year. Edit (2022-05-31): This package is outdated, 📝 the current version is here! 2022-04-18-community-choice-fixes.zip Oh, and let's also add spaztron64's TH03 GDC clock fix from 2019 because why not. This binary was built from the community_choice_fixes branch, and you can find the code for all the individual workarounds on these branches:

Again, because it can't be stated often enough: These fixes are fanfiction. The gameplay community should be aware of this, and might decide to handle these cases differently.


With all of that taking way more time to evaluate and document, this research really had to become part of a proper push, instead of just being covered in the quick non-push blog post I initially intended. With ½ of a push left at the end, TH05's Stage 1-5 boss background rendering functions fit in perfectly there. If you wonder how these static backdrop images even need any boss-specific code to begin with, you're right – it's basically the same function copy-pasted 4 times, differing only in the backdrop image coordinates and some other inconsequential details.
Only Sara receives a nice variation of the typical 📝 blocky entrance animation: The usually opaque bitmap data from ST00.BB is instead used as a transition mask from stage tiles to the backdrop image, by making clever use of the tile invalidation system:

TH04 uses the same effect a bit more frequently, for its first three bosses.

Next up: Shinki, for real this time! I've already managed to decompile 10 of her 11 danmaku patterns within a little more than one push – and yes, that one is included in there. Looks like I've slightly overestimated the amount of work required for TH04's and TH05's bosses…

📝 Posted:
🚚 Summary of:
P0186, P0187, P0188
Commits:
a21ab3d...bab5634, bab5634...426a531, 426a531...e881f95
💰 Funded by:
Blue Bolt, [Anonymous], nrook
🏷 Tags:

Did you know that moving on top of a boss sprite doesn't kill the player in TH04, only in TH05?

Screenshot of Reimu moving on top of Stage 6 Yuuka, demonstrating the lack of boss↔player collision in TH04
Yup, Reimu is not getting hit… yet.

That's the first of only three interesting discoveries in these 3 pushes, all of which concern TH04. But yeah, 3 for something as seemingly simple as these shared boss functions… that's still not quite the speed-up I had hoped for. While most of this can be blamed, again, on TH04 and all of its hardcoded complexities, there still was a lot of work to be done on the maintenance front as well. These functions reference a bunch of code I RE'd years ago and that still had to be brought up to current standards, with the dependencies reaching from 📝 boss explosions over 📝 text RAM overlay functionality up to in-game dialog loading.

The latter provides a good opportunity to talk a bit about x86 memory segmentation. Many aspiring PC-98 developers these days are very scared of it, with some even going as far as to rather mess with Protected Mode and DOS extenders just so that they don't have to deal with it. I wonder where that fear comes from… Could it be because every modern programming language I know of assumes memory to be flat, and lacks any standard language-level features to even express something like segments and offsets? That's why compilers have a hard time targeting 16-bit x86 these days: Doing anything interesting on the architecture requires giving the programmer full control over segmentation, which always comes down to adding the typical non-standard language extensions of compilers from back in the day. And as soon as DOS stopped being used, these extensions no longer made sense and were subsequently removed from newer tools. A good example for this can be found in an old version of the NASM manual: The project started as an attempt to make x86 assemblers simple again by throwing out most of the segmentation features from MASM-style assemblers, which made complete sense in 1996 when 16-bit DOS and Windows were already on their way out. But there was a point to all those features, and that's why ReC98 still has to use the supposedly inferior TASM.

Not that this fear of segmentation is completely unfounded: All the segmentation-related keywords, directives, and #pragmas provided by Borland C++ and TASM absolutely can be the cause of many weird runtime bugs. Even if the compiler or linker catches them, you are often left with confusing error messages that aged just as poorly as memory segmentation itself.
However, embracing the concept does provide quite the opportunity for optimizations. While it definitely was a very crazy idea, there is a small bit of brilliance to be gained from making proper use of all these segmentation features. Case in point: The buffer for the in-game dialog scripts in TH04 and TH05.

// Thanks to the semantics of `far` pointers, we only need a single 32-bit
// pointer variable for the following code.
extern unsigned char far *dialog_p;

// This master.lib function returns a `void __seg *`, which is a 16-bit
// segment-only pointer. Converting to a `far *` yields a full segment:offset
// pointer to offset 0000h of that segment.
dialog_p = (unsigned char far *)hmem_allocbyte(/* … */);

// Running the dialog script involves pointer arithmetic. On a far pointer,
// this only affects the 16-bit offset part, complete with overflow at 64 KiB,
// from FFFFh back to 0000h.
dialog_p += /* … */;
dialog_p += /* … */;
dialog_p += /* … */;

// Since the segment part of the pointer is still identical to the one we
// allocated above, we can later correctly free the buffer by pulling the
// segment back out of the pointer.
hmem_free((void __seg *)dialog_p);

If dialog_p was a huge pointer, any pointer arithmetic would have also adjusted the segment part, requiring a second pointer to store the base address for the hmem_free call. Doing that will also be necessary for any port to a flat memory model. Depending on how you look at it, this compression of two logical pointers into a single variable is either quite nice, or really, really dumb in its reliance on the precise memory model of one single architecture. :tannedcirno:


Why look at dialog loading though, wasn't this supposed to be all about shared boss functions? Well, TH04 unnecessarily puts certain stage-specific code into the boss defeat function, such as loading the alternate Stage 5 Yuuka defeat dialog before a Bad Ending, or initializing Gengetsu after Mugetsu's defeat in the Extra Stage.
That's TH04's second core function with an explicit conditional branch for Gengetsu, after the 📝 dialog exit code we found last year during EMS research. And I've heard people say that Shinki was the most hardcoded fight in PC-98 Touhou… Really, Shinki is a perfectly regular boss, who makes proper use of all internal mechanics in the way they were intended, and doesn't blast holes into the architecture of the game. Even within TH05, it's Mai and Yuki who rely on hacks and duplicated code, not Shinki.

The worst part about this though? How the function distinguishes Mugetsu from Gengetsu. Once again, it uses its own global variable to track whether it is called the first or the second time within TH04's Extra Stage, unrelated to the same variable used in the dialog exit function. But this time, it's not just any newly created, single-use variable, oh no. In a misguided attempt to micro-optimize away a few bytes of conventional memory, TH04 reserves 16 bytes of "generic boss state", which can (and are) freely used for anything a boss doesn't want to store in a more dedicated variable.
It might have been worth it if the bosses actually used most of these 16 bytes, but the majority just use (the same) two, with only Stage 4 Reimu using a whopping seven different ones. To reverse-engineer the various uses of these variables, I pretty much had to map out which of the undecompiled danmaku-pattern functions corresponds to which boss fight. In the end, I assigned 29 different variable names for each of the semantically different use cases, which made up another full push on its own.

Now, 16 bytes of wildly shared state, isn't that the perfect recipe for bugs? At least during this cursory look, I haven't found any obvious ones yet. If they do exist, it's more likely that they involve reused state from earlier bosses – just how the Shinki death glitch in TH05 is caused by reusing cheeto data from way back in Stage 4 – and hence require much more boss-specific progress.
And yes, it might have been way too early to look into all these tiny details of specific boss scripts… but then, this happened:

TH04 crashing to the DOS prompt in the Stage 4 Marisa fight, right as the last of her bits is destroyed

Looks similar to another screenshot of a crash in the same fight that was reported in December, doesn't it? I was too much in a hurry to figure it out exactly, but notice how both crashes happen right as the last of Marisa's four bits is destroyed. KirbyComment has suspected this to be the cause for a while, and now I can pretty much confirm it to be an unguarded division by the number of on-screen bits in Marisa-specific pattern code. But what's the cause for Kurumi then? :thonk:
As for fixing it, I can go for either a fast or a slow option:

  1. Superficially fixing only this crash will probably just take a fraction of a push.
  2. But I could also go for a deeper understanding by looking at TH04's version of the 📝 custom entity structure. It not only stores the data of Marisa's bits, but is also very likely to be involved in Kurumi's crash, and would get TH04 a lot closer to 100% PI. Taking that look will probably need at least 2 pushes, and might require another 3-4 to completely decompile Marisa's fight, and 2-3 to decompile Kurumi's.

OK, now that that's out of the way, time to finish the boss defeat function… but not without stumbling over the third of TH04's quirks, relating to the Clear Bonus for the main game or the Extra Stage:

And after another few collision-related functions, we're now truly, finally ready to decompile bosses in both TH04 and TH05! Just as the anything funds were running out… :onricdennat: The remaining ¼ of the third push then went to Shinki's 32×32 ball bullets, rounding out this delivery with a small self-contained piece of the first TH05 boss we're probably going to look at.

Next up, though: I'm not sure, actually. Both Shinki and Elis seem just a little bit larger than the 2¼ or 4 pushes purchased so far, respectively. Now that there's a bunch of room left in the cap again, I'll just let the next contribution decide – with a preference for Shinki in case of a tie. And if it will take longer than usual for the store to sell out again this time (heh), there's still the 📝 PC-98 text RAM JIS trail word rendering research waiting to be documented.

📝 Posted:
🚚 Summary of:
P0168, P0169
Commits:
c2de6ab...8b046da, 8b046da...479b766
💰 Funded by:
rosenrose, Blue Bolt
🏷 Tags:

EMS memory! The infamous stopgap measure between the 640 KiB ("ought to be enough for everyone") of conventional memory offered by DOS from the very beginning, and the later XMS standard for accessing all the rest of memory up to 4 GiB in the x86 Protected Mode. With an optionally active EMS driver, TH04 and TH05 will make use of EMS memory to preload a bunch of situational .CDG images at the beginning of MAIN.EXE:

  1. The "eye catch" game title image, shown while stages are loaded
  2. The character-specific background image, shown while bombing
  3. The player character dialog portraits
  4. TH05 additionally stores the boss portraits there, preloading them at the beginning of each stage. (TH04 instead keeps them in conventional memory during the entire stage.)

Once these images are needed, they can then be copied into conventional memory and accessed as usual.

Uh… wait, copied? It certainly would have been possible to map EMS memory to a regular 16-bit Real Mode segment for direct access, bank-switching out rarely used system or peripheral memory in exchange for the EMS data. However, master.lib doesn't expose this functionality, and only provides functions for copying data from EMS to regular memory and vice versa.
But even that still makes EMS an excellent fit for the large image files it's used for, as it's possible to directly copy their pixel data from EMS to VRAM. (Yes, I tried!) Well… would, because ZUN doesn't do that either, and always naively copies the images to newly allocated conventional memory first. In essence, this dumbs down EMS into just another layer of the memory hierarchy, inserted between conventional memory and disk: Not quite as slow as disk, but still requiring that memcpy() to retrieve the data. Most importantly though: Using EMS in this way does not increase the total amount of memory simultaneously accessible to the game. After all, some other data will have to be freed from conventional memory to make room for the newly loaded data.


The most idiomatic way to define the game-specific layout of the EMS area would be either a struct or an enum. Unfortunately, the total size of all these images exceeds the range of a 16-bit value, and Turbo C++ 4.0J supports neither 32-bit enums (which are silently degraded to 16-bit) nor 32-bit structs (which simply don't compile). That still leaves raw compile-time constants though, you only have to manually define the offset to each image in terms of the size of its predecessor. But instead of doing that, ZUN just placed each image at a nice round decimal offset, each slightly larger than the actual memory required by the previous image, just to make sure that everything fits. :tannedcirno: This results not only in quite a bit of unnecessary padding, but also in technically the single biggest amount of "wasted" memory in PC-98 Touhou: Out of the 180,000 (TH04) and 320,000 (TH05) EMS bytes requested, the game only uses 135,552 (TH04) and 175,904 (TH05) bytes. But hey, it's EMS, so who cares, right? Out of all the opportunities to take shortcuts during development, this is among the most acceptable ones. Any actual PC-98 model that could run these two games comes with plenty of memory for this to not turn into an actual issue.

On to the EMS-using functions themselves, which are the definition of "cross-cutting concerns". Most of these have a fallback path for the non-EMS case, and keep the loaded .CDG images in memory if they are immediately needed. Which totally makes sense, but also makes it difficult to find names that reflect all the global state changed by these functions. Every one of these is also just called from a single place, so inlining them would have saved me a lot of naming and documentation trouble there.
The TH04 version of the EMS allocation code was actually displayed on ZUN's monitor in the 2010 MAG・ネット documentary; WindowsTiger already transcribed the low-quality video image in 2019. By 2015 ReC98 standards, I would have just run with that, but the current project goal is to write better code than ZUN, so I didn't. 😛 We sure ain't going to use magic numbers for EMS offsets.

The dialog init and exit code then is completely different in both games, yet equally cross-cutting. TH05 goes even further in saving conventional memory, loading each individual player or boss portrait into a single .CDG slot immediately before blitting it to VRAM and freeing the pixel data again. People who play TH05 without an active EMS driver are surely going to enjoy the hard drive access lag between each portrait change… :godzun: TH04, on the other hand, also abuses the dialog exit function to preload the Mugetsu defeat / Gengetsu entrance and Gengetsu defeat portraits, using a static variable to track how often the function has been called during the Extra Stage… who needs function parameters anyway, right? :zunpet:

This is also the function in which TH04 infamously crashes after the Stage 5 pre-boss dialog when playing with Reimu and without any active EMS driver. That crash is what motivated this look into the games' EMS usage… but the code looks perfectly fine? Oh well, guess the crash is not related to EMS then. Next u–

OK, of course I can't leave it like that. Everyone is expecting a fix now, and I still got half of a push left over after decompiling the regular EMS code. Also, I've now RE'd every function that could possibly be involved in the crash, and this is very likely to be the last time I'll be looking at them.


Turns out that the bug has little to do with EMS, and everything to do with ZUN limiting the amount of conventional RAM that TH04's MAIN.EXE is allowed to use, and then slightly miscalculating this upper limit. Playing Stage 5 with Reimu is the most asset-intensive configuration in this game, due to the combination of

The star image used in TH04's Stage 5.
The star image used in TH04's Stage 5.

Remove any single one of the above points, and this crash would have never occurred. But with all of them combined, the total amount of memory consumed by TH04's MAIN.EXE just barely exceeds ZUN's limit of 320,000 bytes, by no more than 3,840 bytes, the size of the star image.

But wait: As we established earlier, EMS does nothing to reduce the amount of conventional memory used by the game. In fact, if you disabled TH04's EMS handling, you'd still get this crash even if you are running an EMS driver and loaded DOS into the High Memory Area to free up as much conventional RAM as possible. How can EMS then prevent this crash in the first place?

The answer: It's only because ZUN's usage of EMS bypasses the need to load the cached images back out of the XOR-encrypted 東方幻想.郷 packfile. Leaving aside the general stupidity of any game data file encryption*, master.lib's decryption implementation is also quite wasteful: It uses a separate buffer that receives fixed-size chunks of the file, before decrypting every individual byte and copying it to its intended destination buffer. That really resembles the typical slowness of a C fread() implementation more than it does the highly optimized ASM code that master.lib purports to be… And how large is this well-hidden decryption buffer? 4 KiB. :onricdennat:

So, looking back at the game, here is what happens once the Stage 5 pre-battle dialog ends:

  1. Reimu's bomb background image, which was previously freed to make space for her dialog portraits, has to be loaded back into conventional memory from disk
  2. BB0.CDG is found inside the 東方幻想.郷 packfile
  3. file_ropen() ends up allocating a 4 KiB buffer for the encrypted packfile data, getting us the decisive ~4 KiB closer to the memory limit
  4. The .CDG loader tries to allocate 52 608 contiguous bytes for the pixel data of Reimu's bomb image
  5. This would exceed the memory limit, so hmem_allocbyte() fails and returns a nullptr
  6. ZUN doesn't check for this case (as usual)
  7. The pixel data is loaded to address 0000:0000, overwriting the Interrupt Vector Table and whatever comes after
  8. The game crashes
The final frame rendered before the TH04 Stage 5 Reimu No-EMS crash
The final frame rendered by a crashing TH04.

The 4 KiB encryption buffer would only be freed by the corresponding file_close() call, which of course never happens because the game crashes before it gets there. At one point, I really did suspect the cause to be some kind of memory leak or fragmentation inside master.lib, which would have been quite delightful to fix.
Instead, the most straightforward fix here is to bump up that memory limit by at least 4 KiB. Certainly easier than squeezing in a cdg_free() call for the star image before the pre-boss dialog without breaking position dependence.

Or, even better, let's nuke all these memory limits from orbit because they make little sense to begin with, and fix every other potential out-of-memory crash that modders would encounter when adding enough data to any of the 4 games that impose such limits on themselves. Unless you want to launch other binaries (which need to do their own memory allocations) after launching the game, there's really no reason to restrict the amount of memory available to a DOS process. Heck, whenever DOS creates a new one, it assigns all remaining free memory by default anyway.
Removing the memory limits also removes one of ZUN's few error checks, which end up quitting the game if there isn't at least a given maximum amount of conventional RAM available. While it might be tempting to reserve enough memory at the beginning of execution and then never check any allocation for a potential failure, that's exactly where something like TH04's crash comes from.
This game is also still running on DOS, where such an initial allocation failure is very unlikely to happen – no one fills close to half of conventional RAM with TSRs and then tries running one of these games. It might have been useful to detect systems with less than 640 KiB of actual, physical RAM, but none of the PC-98 models with that little amount of memory are fast enough to run these games to begin with. How ironic… a place where ZUN actually added an error check, and then it's mostly pointless.

Here's an archive that contains both fix variants, just in case. These were compiled from the th04_noems_crash_fix and mem_assign_all branches, and contain as little code changes as possible.
Edit (2022-04-18): For TH04, you probably want to download the 📝 community choice fix package instead, which contains this fix along with other workarounds for the Divide error crashes. 2021-11-29-Memory-limit-fixes.zip

So yeah, quite a complex bug, leaving no time for the TH03 scorefile format research after all. Next up: Raising prices.

📝 Posted:
🚚 Summary of:
P0147
Commits:
456b621...c940059
💰 Funded by:
Ember2528, -Tom-
🏷 Tags:

Didn't quite get to cover background rendering for TH05's Stage 1-5 bosses in this one, as I had to reverse-engineer two more fundamental parts involved in boss background rendering before.

First, we got the those blocky transitions from stage tiles to bomb and boss backgrounds, loaded from BB*.BB and ST*.BB, respectively. These files store 16 frames of animation, with every bit corresponding to a 16×16 tile on the playfield. With 384×368 pixels to be covered, that would require 69 bytes per frame. But since that's a very odd number to work with in micro-optimized ASM, ZUN instead stores 512×512 pixels worth of bits, ending up with a frame size of 128 bytes, and a per-frame waste of 59 bytes. :tannedcirno: At least it was possible to decompile the core blitting function as __fastcall for once.
But wait, TH05 comes with, and loads, a bomb .BB file for every character, not just for the Reimu and Yuuka bomb transitions you see in-game… 🤔 Restoring those unused stage tile → bomb image transition animations for Mima and Marisa isn't that trivial without having decompiled their actual bomb animation functions before, so stay tuned!

Interestingly though, the code leaves out what would look like the most obvious optimization: All stage tiles are unconditionally redrawn each frame before they're erased again with the 16×16 blocks, no matter if they weren't covered by such a block in the previous frame, or are going to be covered by such a block in this frame. The same is true for the static bomb and boss background images, where ZUN simply didn't write a .CDG blitting function that takes the dirty tile array into account. If VRAM writes on PC-98 really were as slow as the games' README.TXT files claim them to be, shouldn't all the optimization work have gone towards minimizing them? :thonk: Oh well, it's not like I have any idea what I'm talking about here. I'd better stop talking about anything relating to VRAM performance on PC-98… :onricdennat:


Second, it finally was time to solve the long-standing confusion about all those callbacks that are supposed to render the playfield background. Given the aforementioned static bomb background images, ZUN chose to make this needlessly complicated. And so, we have two callback function pointers: One during bomb animations, one outside of bomb animations, and each boss update function is responsible for keeping the former in sync with the latter. :zunpet:

Other than that, this was one of the smoothest pushes we've had in a while; the hardest parts of boss background rendering all were part of 📝 the last push. Once you figured out that ZUN does indeed dynamically change hardware color #0 based on the current boss phase, the remaining one function for Shinki, and all of EX-Alice's background rendering becomes very straightforward and understandable.


Meanwhile, -Tom- told me about his plans to publicly release 📝 his TH05 scripting toolkit once TH05's MAIN.EXE would hit around 50% RE! That pretty much defines what the next bunch of generic TH05 pushes will go towards: bullets, shared boss code, and one full, concrete boss script to demonstrate how it's all combined. Next up, therefore: TH04's bullet firing code…? Yes, TH04's. I want to see what I'm doing before I tackle the undecompilable mess that is TH05's bullet firing code, and you all probably want readable code for that feature as well. Turns out it's also the perfect place for Blue Bolt's pending contributions.

📝 Posted:
🚚 Summary of:
P0146
Commits:
08bc188...456b621
💰 Funded by:
Ember2528, -Tom-
🏷 Tags:

Y'know, I kinda prefer the pending crowdfunded workload to stay more near the middle of the cap, rather than being sold out all the time. So to reach this point more quickly, let's do the most relaxing thing that can be easily done in TH05 right now: The boss backgrounds, starting with Shinki's, 📝 now that we've got the time to look at it in detail.

… Oh come on, more things that are borderline undecompilable, and require new workarounds to be developed? Yup, Borland C++ always optimizes any comparison of a register with a literal 0 to OR reg, reg, no matter how many calculations and inlined function calls you replace the 0 with. Shinki's background particle rendering function contains a CMP AX, 0 instruction though… so yeah, 📝 yet another piece of custom ASM that's worse than what Turbo C++ 4.0J would have generated if ZUN had just written readable C. This was probably motivated by ZUN insisting that his modified master.lib function for blitting particles takes its X and Y parameters as registers. If he had just used the __fastcall convention, he also would have got the sprite ID passed as a register. 🤷
So, we really don't want to be forced into inline assembly just because of the third comparison in the otherwise perfectly decompilable four-comparison if() expression that prevents invisible particles from being drawn. The workaround: Comparing to a pointer instead, which only the linker gets to resolve to the actual value of 0. :tannedcirno: This way, the compiler has to make room for any 16-bit literal, and can't optimize anything.


And then we go straight from micro-optimization to waste, with all the duplication in the code that animates all those particles together with the zooming and spinning lines. This push decompiled 1.31% of all code in TH05, and thanks to alignment, we're still missing Shinki's high-level background rendering function that calls all the subfunctions I decompiled here.
With all the manipulated state involved here, it's not at all trivial to see how this code produces what you see in-game. Like:

  1. If all lines have the same Y velocity, how do the other three lines in background type B get pushed down into this vertical formation while the top one stays still? (Answer: This velocity is only applied to the top line, the other lines are only pushed based on some delta.)
  2. How can this delta be calculated based on the distance of the top line with its supposed target point around Shinki's wings? (Answer: The velocity is never set to 0, so the top line overshoots this target point in every frame. After calculating the delta, the top line itself is pushed down as well, canceling out the movement. :zunpet:)
  3. Why don't they get pushed down infinitely, but stop eventually? (Answer: We only see four lines out of 20, at indices #0, #6, #12, and #18. In each frame, lines [0..17] are copied to lines [1..18], before anything gets moved. The invisible lines are pushed down based on the delta as well, which defines a distance between the visible lines of (velocity * array gap). And since the velocity is capped at -14 pixels per frame, this also means a maximum distance of 84 pixels between the midpoints of each line.)
  4. And why are the lines moving back up when switching to background type C, before moving down? (Answer: Because type C increases the velocity rather than decreasing it. Therefore, it relies on the previous velocity state from type B to show a gapless animation.)

So yeah, it's a nice-looking effect, just very hard to understand. 😵

With the amount of effort I'm putting into this project, I typically gravitate towards more descriptive function names. Here, however, uth05win's simple and seemingly tiny-brained "background type A/B/C/D" was quite a smart choice. It clearly defines the sequence in which these animations are intended to be shown, and as we've seen with point 4 from the list above, that does indeed matter.

Next up: At least EX-Alice's background animations, and probably also the high-level parts of the background rendering for all the other TH05 bosses.

📝 Posted:
🚚 Summary of:
P0111, P0112
Commits:
8b5c146...4ef4c9e, 4ef4c9e...e447a2d
💰 Funded by:
[Anonymous], Blue Bolt
🏷 Tags:

Only one newly ordered push since I've reopened the store? Great, that's all the justification I needed for the extended maintenance delay that was part of these two pushes 😛

Having to write comments to explain whether coordinates are relative to the top-left corner of the screen or the top-left corner of the playfield has finally become old. So, I introduced distinct types for all the coordinate systems we typically encounter, applying them to all code decompiled so far. Note how the planar nature of PC-98 VRAM meant that X and Y coordinates also had to be different from each other. On the X side, there's mainly the distinction between the [0; 640] screen space and the corresponding [0; 80] VRAM byte space. On the Y side, we also have the [0; 400] screen space, but the visible area of VRAM might be limited to [0; 200] when running in the PC-98's line-doubled 640×200 mode. A VRAM Y coordinate also always implies an added offset for vertical scrolling.
During all of the code reconstruction, these types can only have a documenting purpose. Turning them into anything more than just typedefs to int, in order to define conversion operators between them, simply won't recompile into identical binaries. Modding and porting projects, however, now have a nice foundation for doing just that, and can entirely lift coordinate system transformations into the type system, without having to proofread all the meaningless int declarations themselves.


So, what was left in terms of memory references? EX-Alice's fire waves were our final unknown entity that can collide with the player. Decently implemented, with little to say about them.

That left the bomb animation structures as the one big remaining PI blocker. They started out nice and simple in TH04, with a small 6-byte star animation structure used for both Reimu and Marisa. TH05, however, gave each character her own animation… and what the hell is going on with Reimu's blue stars there? Nope, not going to figure this out on ASM level.

A decompilation first required some more bomb-related variables to be named though. Since this was part of a generic RE push, it made sense to do this in all 5 games… which then led to nice PI gains in anything but TH05. :tannedcirno: Most notably, we now got the "pulling all items to player" flag in TH04 and TH05, which is actually separate from bombing. The obvious cheat mod is left as an exercise to the reader.


So, TH05 bomb animations. Just like the 📝 custom entity types of this game, all 4 characters share the same memory, with the superficially same 10-byte structure.
But let's just look at the very first field. Seen from a low level, it's a simple struct { int x, y; } pos, storing the current position of the character-specific bomb animation entity. But all 4 characters use this field differently:

Therefore, I decompiled it as 4 separate structures once again, bundled into an union of arrays.

As for Reimu… yup, that's some pointer arithmetic straight out of Jigoku* for setting and updating the positions of the falling star trails. :zunpet: While that certainly required several comments to wrap my head around the current array positions, the one "bug" in all this arithmetic luckily has no effect on the game.
There is a small glitch with the growing circles, though. They are spawned at the end of the loop, with their position taken from the star pointer… but after that pointer has already been incremented. On the last loop iteration, this leads to an out-of-bounds structure access, with the position taken from some unknown EX-Alice data, which is 0 during most of the game. If you look at the animation, you can easily spot these bugged circles, consistently growing from the top-left corner (0, 0) of the playfield:


After all that, there was barely enough remaining time to filter out and label the final few memory references. But now, TH05's MAIN.EXE is technically position-independent! 🎉 -Tom- is going to work on a pretty extensive demo of this unprecedented level of efficient Touhou game modding. For a more impactful effect of both the 100% PI mark and that demo, I'll be delaying the push covering the remaining false positives in that binary until that demo is done. I've accumulated a pretty huge backlog of minor maintenance issues by now…
Next up though: The first part of the long-awaited build system improvements. I've finally come up with a way of sanely accelerating the 32-bit build part on most setups you could possibly want to build ReC98 on, without making the building experience worse for the other few setups.

📝 Posted:
🚚 Summary of:
P0086, P0087
Commits:
54ee99b...24b96cd, 24b96cd...97ce7b7
💰 Funded by:
[Anonymous], Blue Bolt, -Tom-
🏷 Tags:

Alright, the score popup numbers shown when collecting items or defeating (mid)bosses. The second-to-last remaining big entity type in TH05… with quite some PI false positives in the memory range occupied by its data. Good thing I still got some outstanding generic RE pushes that haven't been claimed for anything more specific in over a month! These conveniently allowed me to RE most of these functions right away, the right way.

Most of the false positives were boss HP values, passed to a "boss phase end" function which sets the HP value at which the next phase should end. Stage 6 Yuuka, Mugetsu, and EX-Alice have their own copies of this function, in which they also reset certain boss-specific global variables. Since I always like to cover all varieties of such duplicated functions at once, it made sense to reverse-engineer all the involved variables while I was at it… and that's why this was exactly the right time to cover the implementation details of Stage 6 Yuuka's parasol and vanishing animations in TH04. :zunpet:

With still a bit of time left in that RE push afterwards, I could also start looking into some of the smaller functions that didn't quite fit into other pushes. The most notable one there was a simple function that aims from any point to the current player position. Which actually only became a separate function in TH05, probably since it's called 27 times in total. That's 27 places no longer being blocked from further RE progress.

WindowsTiger already did most of the work for the score popup numbers in January, which meant that I only had to review it and bring it up to ReC98's current coding styles and standards. This one turned out to be one of those rare features whose TH05 implementation is significantly less insane than the TH04 one. Both games lazily redraw only the tiles of the stage background that were drawn over in the previous frame, and try their best to minimize the amount of tiles to be redrawn in this way. For these popup numbers, this involves calculating the on-screen width, based on the exact number of digits in the point value. TH04 calculates this width every frame during the rendering function, and even resorts to setting that field through the digit iteration pointer via self-modifying code… yup. TH05, on the other hand, simply calculates the width once when spawning a new popup number, during the conversion of the point value to binary-coded decimal. The "×2" multiplier suffix being removed in TH05 certainly also helped in simplifying that feature in this game.

And that's ⅓ of TH05 reverse-engineered! Next up, one more TH05 PI push, in which the stage enemies hopefully finish all the big entity types. Maybe it will also be accompanied by another RE push? In any case, that will be the last piece of TH05 progress for quite some time. The next TH01 stretch will consist of 6 pushes at the very least, and I currently have no idea of how much time I can spend on ReC98 a month from now…

📝 Posted:
🚚 Summary of:
P0078, P0079
Commits:
f4eb7a8...9e52cb1, 9e52cb1...cd48aa3
💰 Funded by:
iruleatgames, -Tom-
🏷 Tags:

To finish this TH05 stretch, we've got a feature that's exclusive to TH05 for once! As the final memory management innovation in PC-98 Touhou, TH05 provides a single static (64 * 26)-byte array for storing up to 64 entities of a custom type, specific to a stage or boss portion. (Edit (2023-05-29): This system actually debuted in 📝 TH04, where it was used for much simpler entities.)

TH05 uses this array for

  1. the Stage 2 star particles,
  2. Alice's puppets,
  3. the tip of curve ("jello") bullets,
  4. Mai's snowballs and Yuki's fireballs,
  5. Yumeko's swords,
  6. and Shinki's 32×32 bullets,

which makes sense, given that only one of those will be active at any given time.

On the surface, they all appear to share the same 26-byte structure, with consistently sized fields, merely using its 5 generic fields for different purposes. Looking closer though, there actually are differences in the signedness of certain fields across the six types. uth05win chose to declare them as entirely separate structures, and given all the semantic differences (pixels vs. subpixels, regular vs. tiny master.lib sprites, …), it made sense to do the same in ReC98. It quickly turned out to be the only solution to meet my own standards of code readability.

Which blew this one up to two pushes once again… But now, modders can trivially resize any of those structures without affecting the other types within the original (64 * 26)-byte boundary, even without full position independence. While you'd still have to reduce the type-specific number of distinct entities if you made any structure larger, you could also have more entities with fewer structure members.

As for the types themselves, they're full of redundancy once again – as you might have already expected from seeing #4, #5, and #6 listed as unrelated to each other. Those could have indeed been merged into a single 32×32 bullet type, supporting all the unique properties of #4 (destructible, with optional revenge bullets), #5 (optional number of twirl animation frames before they begin to move) and #6 (delay clouds). The *_add(), *_update(), and *_render() functions of #5 and #6 could even already be completely reverse-engineered from just applying the structure onto the ASM, with the ones of #3 and #4 only needing one more RE push.

But perhaps the most interesting discovery here is in the curve bullets: TH05 only renders every second one of the 17 nodes in a curve bullet, yet hit-tests every single one of them. In practice, this is an acceptable optimization though – you only start to notice jagged edges and gaps between the fragments once their speed exceeds roughly 11 pixels per second:

And that brings us to the last 20% of TH05 position independence! But first, we'll have more cheap and fast TH01 progress.

📝 Posted:
🚚 Summary of:
P0029, P0030
Commits:
6ff427a...c7fc4ca, c7fc4ca...dea40ad
💰 Funded by:
zorg
🏷 Tags:

Here we go, new C code! …eh, it will still take a bit to really get decompilation going at the speeds I was hoping for. Especially with the sheer amount of stuff that is set in the first few significant functions we actually can decompile, which now all has to be correctly declared in the C world. Turns out I spent the last 2 years screwing up the case of exported functions, and even some of their names, so that it didn't actually reflect their calling convention… yup. That's just the stuff you tend to forget while it doesn't matter.

To make up for that, I decided to research whether we can make use of some C++ features to improve code readability after all. Previously, it seemed that TH01 was the only game that included any C++ code, whereas TH02 and later seemed to be 100% C and ASM. However, during the development of the soon to be released new build system, I noticed that even this old compiler from the mid-90's, infamous for prioritizing compile speeds over all but the most trivial optimizations, was capable of quite surprising levels of automatic inlining with class methods…

…leading the research to culminate in the mindblow that is 9d121c7 – yes, we can use C++ class methods and operator overloading to make the code more readable, while still generating the same code than if we had just used C and preprocessor macros.

Looks like there's now the potential for a few pull requests from outside devs that apply C++ features to improve the legibility of previously decompiled and terribly macro-ridden code. So, if anyone wants to help without spending money…

📝 Posted:
🚚 Summary of:
P0028
Commits:
6023f5c...6ff427a
💰 Funded by:
zorg
🏷 Tags:

Back to actual development! Starting off this stretch with something fairly mechanical, the few remaining generic boss and midboss state variables. And once we start converting the constant numbers used for and around those variables into decimal, the estimated position independence probability immediately jumped by 5.31% for TH04's MAIN.EXE, and 4.49% for TH05's – despite not having made the game any more position- independent than it was before. Yup… lots of false positives in there, but who can really know for sure without having put in the work.

But now, we've RE'd enough to finally decompile something again next, 4 years after the last decompilation of anything!

📝 Posted:
🚚 Summary of:
P0049, P0050
Commits:
893bd46...6ed8e60
💰 Funded by:
-Tom-
🏷 Tags:

Sometimes, "strategically picking things to reverse-engineer" unfortunately also means "having to move seemingly random and utterly uninteresting stuff, which will only make sense later, out of the way". Really, this was so boring. Gonna get a lot more exciting in the next ones though.

📝 Posted:
🚚 Summary of:
P0041
Commits:
b03bc91...f3b6137
💰 Funded by:
-Tom-
🏷 Tags:

So, after introducing instruction number statistics… let's go for over 2,000 lines that won't show up there immediately :tannedcirno: That being (mid-)boss HP, position, and sprite ID variables for TH04/TH05. Doesn't sound like much, but it kind of is if you insist on decimal numbers for easier comparison with uth05win's source code.