⮜ Blog

⮜ List of tags

Showing all posts tagged
,
and

📝 Posted:
🚚 Summary of:
P0227, P0228
Commits:
4f85326...bfd24c6, bfd24c6...739e1d8
💰 Funded by:
nrook, [Anonymous]
🏷 Tags:

Starting the year with a delivery that wasn't delayed until the last day of the month for once, nice! Still, very soon and high-maintenance did not go well together…

It definitely wasn't Sara's fault though. As you would expect from a Stage 1 Boss, her code was no challenge at all. Most of the TH02, TH04, and TH05 bosses follow the same overall structure, so let's introduce a new table to replace most of the boilerplate overview text:

Phase # Patterns HP boundary Timeout condition
Sprite of Sara in TH05 (Entrance) 4,650 288 frames
2 4 2,550 2,568 frames (= 32 patterns)
3 4 450 5,296 frames (= 24 patterns)
4 1 0 1,300 frames
Total 9 9,452 frames

And that's all the gameplay-relevant detail that ZUN put into Sara's code. It doesn't even make sense to describe the remaining patterns in depth, as their groups can significantly change between difficulties and rank values. The 📝 general code structure of TH05 bosses won't ever make for good-code, but Sara's code is just a lesser example of what I already documented for Shinki.
So, no bugs, no unused content, only inconsequential bloat to be found here, and less than 1 push to get it done… That makes 9 PC-98 Touhou bosses decompiled, with 22 to go, and gets us over the sweet 50% overall finalization mark! 🎉 And sure, it might be possible to pass through the lasers in Sara's final pattern, but the boss script just controls the origin, angle, and activity of lasers, so any quirk there would be part of the laser code… wait, you can do what?!?


TH05 expands TH04's one-off code for Yuuka's Master and Double Sparks into a more featureful laser system, and Sara is the first boss to show it off. Thus, it made sense to look at it again in more detail and finalize the code I had purportedly 📝 reverse-engineered over 4 years ago. That very short delivery notice already hinted at a very time-consuming future finalization of this code, and that prediction certainly came true. On the surface, all of the low-level laser ray rendering and collision detection code is undecompilable: It uses the SI and DI registers without Turbo C++'s safety backups on the stack, and its helper functions take their input and output parameters from convenient registers, completely ignoring common calling conventions. And just to raise the confusion even further, the code doesn't just set these registers for the helper function calls and then restores their original values, but permanently shifts them via additions and subtractions. Unfortunately, these convenient registers also include the BP base pointer to the stack frame of a function… and shifting that register throws any intuition behind accessed local variables right out of the window for a good part of the function, requiring a correctly shifted view of the stack frame just to make sense of it again. :godzun: How could such code even have been written?! This goes well beyond the already wrong assumption that using more stack space is somehow bad, and straight into the territory of self-inflicted pain.

So while it's not a lot of instructions, it's quite dense and really hard to follow. This code would really benefit from a decompilation that anchors all this madness as much as possible in existing C++ structures… so let's decompile it anyway? :tannedcirno:
Doing so would involve emitting lots of raw machine code bytes to hide the SI and DI registers from the compiler, but I already had a certain 📝 batshit insane compiler bug workaround abstraction lying around that could make such code more readable. Hilariously, it only took this one additional use case for that abstraction to reveal itself as premature and way too complicated. :onricdennat: Expanding the core idea into a full-on x86 instruction generator ended up simplifying the code structure a lot. All we really want there is a way to set all potential parameters to e.g. a specific form of the MOV instruction, which can all be expressed as the parameters to a force-inlined __emit__() function. Type safety can help by providing overloads for different operand widths here, but there really is no need for classes, templates, or explicit specialization of templates based on classes. We only need a couple of enums with opcode, register, and prefix constants from the x86 reference documentation, and a set of associated macros that token-paste pseudoregisters onto the prefixes of these enum constants.
And that's how you get a custom compile-time assembler in a 1994 C++ compiler and expand the limits of decompilability even further. What's even truly left now? Self-modifying code, layout tricks that can't be replicated with regularly structured control flow… and that's it. That leaves quite a few functions I previously considered undecompilable to be revisited once I get to work on making this game more portable.

With that, we've turned the low-level laser code into the expected horrible monstrosity that exposes all the hidden complexity in those few ASM instructions. The high-level part should be no big deal now… except that we're immediately bombarded with Fixup overflow errors at link time? Oh well, time to finally learn the true way of fixing this highly annoying issue in a second new piece of decompilation tech – and one that might actually be useful for other x86 Real Mode retro developers at that.
Earlier in the RE history of TH04 and TH05, I often wrote about the need to split the two original code segments into multiple segments within two groups, which makes it possible to slot in code from different translation units at arbitrary places within the original segment. If we don't want to define a unique segment name for each of these slotted-in translation units, we need a way to set custom segment and group names in C land. Turbo C++ offers two #pragmas for that:

For the most part, these #pragmas work well, but they seemed to not help much when it came to calling near functions declared in different segments within the same group. It took a bit of trial and error to figure out what was actually going on in that case, but there is a clear logic to it:

Summarized in code:

#pragma option -zCfoo_TEXT -zPfoo

void bar(void);
void near qux(void); // defined somewhere else, maybe in a different segment

#pragma codeseg baz_TEXT baz

// Despite the segment change in the line above, this function will still be
// put into `foo_TEXT`, the active segment during the first appearance of the
// function name.
void bar(void) {
}

// This function hasn't been declared yet, so it will go into `baz_TEXT` as
// expected.
void baz(void) {
	// This `near` function pointer will be calculated by subtracting the
	// flat/linear address of qux() inside the binary from the base address
	// of qux()'s declared segment, i.e., `foo_TEXT`.
	void (near *ptr_to_qux)(void) = qux;
}

So yeah, you might have to put #pragma codeseg into your headers to tell the linker about the correct segment of a near function in advance. 🤯 This is an important insight for everyone using this compiler, and I'm shocked that none of the Borland C++ books documented the interaction of code segment definitions and near references at least at this level of clarity. The TASM manuals did have a few pages on the topic of groups, but that syntax obviously doesn't apply to a C compiler. Fixup overflows in particular are such a common error and really deserved better than the unhelpful 🤷 of an explanation that ended up in the User's Guide. Maybe this whole technique of custom code segment names was considered arcane even by 1993, judging from the mere three sentences that #pragma codeseg was documented with? Still, it must have been common knowledge among Amusement Makers, because they couldn't have built these exact binaries without knowing about these details. This is the true solution to 📝 any issues involving references to near functions, and I'm glad to see that ZUN did not in fact lie to the compiler. 👍


OK, but now the remaining laser code compiles, and we get to write C++ code to draw some hitboxes during the two collision-detected states of each laser. These confirm what the low-level code from earlier already uncovered: Collision detection against lasers is done by testing a 12×12-pixel box at every 16 pixels along the length of a laser, which leaves obvious 4-pixel gaps at regular intervals that the player can just pass through. :zunpet: This adds 📝 yet 📝 another 📝 quirk to the growing list of quirks that were either intentional or must have been deliberately left in the game after their initial discovery. This is what constants were invented for, and there really is no excuse for not using them – especially during intoxicated coding, and/or if you don't have a compile-time abstraction for Q12.4 literals.

When detecting laser collisions, the game checks the player's single center coordinate against any of the aforementioned 12×12-pixel boxes. Therefore, it's correct to split these 12×12 pixels into two 6×6-pixel boxes and assign the other half to the player for a more natural visualization. Always remember that hitbox visualizations need to keep all colliding entities in mind – 📝 assigning a constant-sized hitbox to "the player" and "the bullets" will be wrong in most other cases.

Using subpixel coordinates in collision detection also introduces a slight inaccuracy into any hitbox visualization recorded in-engine on a 16-color PC-98. Since we have to render discrete pixels, we cannot exactly place a Q12.4 coordinate in the 93.75% of cases where the fractional part is non-zero. This is why pretty much every laser segment hitbox in the video above shows up as 7×7 rather than 6×6: The actual W×H area of each box is 13 pixels smaller, but since the hitbox lies between these pixels, we cannot indicate where it lies exactly, and have to err on the side of caution. It's also why Reimu's box slightly changes size as she moves: Her non-diagonal movement speed is 3.5 pixels per frame, and the constant focused movement in the video above halves that to 1.75 pixels, making her end up on an exact pixel every 4 frames. Looking forward to the glorious future of displays that will allow us to scale up the playfield to 16× its original pixel size, thus rendering the game at its exact internal resolution of 6144×5888 pixels. Such a port would definitely add a lot of value to the game…

The remaining high-level laser code is rather unremarkable for the most part, but raises one final interesting question: With no explicitly defined limit, how wide can a laser be? Looking at the laser structure's 1-byte width field and the unsigned comparisons all throughout the update and rendering code, the answer seems to be an obvious 255 pixels. However, the laser system also contains an automated shrinking state, which can be most notably seen in Mai's wheel pattern. This state shrinks a laser by 2 pixels every 2 frames until it reached a width of 0. This presents a problem with odd widths, which would fall below 0 and overflow back to 255 due to the unsigned nature of this variable. So rather than, I don't know, treating width values of 0 as invalid and stopping at a width of 1, or even adding a condition for that specific case, the code just performs a signed comparison, effectively limiting the width of a shrinkable laser to a maximum of 127 pixels. :zunpet: This small signedness inconsistency now forces the distinction between shrinkable and non-shrinkable lasers onto every single piece of code that uses lasers. Yet another instance where 📝 aiming for a cinematic 30 FPS look made the resulting code much more complicated than if ZUN had just evenly spread out the subtraction across 2 frames. 🤷
Oh well, it's not as if any of the fixed lasers in the original scripts came close to any of these limits. Moving lasers are much more streamlined and limited to begin with: Since they're hardcoded to 6 pixels, the game can safely assume that they're always thinner than the 28 pixels they get gradually widened to during their decay animation.

Finally, in case you were missing a mention of hitboxes in the previous paragraph: Yes, the game always uses the aforementioned 12×12 boxes, regardless of a laser's width.

This video also showcases the 127-pixel limit because I wanted to include the shrink animation for a seamless loop.

That was what, 50% of this blog post just being about complications that made laser difficult for no reason? Next up: The first TH01 Anniversary Edition build, where I finally get to reap the rewards of having a 100% decompiled game and write some good code for once.

📝 Posted:
🚚 Summary of:
P0198, P0199, P0200
Commits:
48db0b7...440637e, 440637e...5af2048, 5af2048...67e46b5
💰 Funded by:
Ember2528, Lmocinemod, Yanga
🏷 Tags:

What's this? A simple, straightforward, easy-to-decompile TH01 boss with just a few minor quirks and only two rendering-related ZUN bugs? Yup, 2½ pushes, and Kikuri was done. Let's get right into the overview:

So yeah, there's your new timeout challenge. :godzun:


The few issues in this fight all relate to hitboxes, starting with the main one of Kikuri against the Orb. The coordinates in the code clearly describe a hitbox in the upper center of the disc, but then ZUN wrote a < sign instead of a > sign, resulting in an in-game hitbox that's not quite where it was intended to be…

Kikuri's actual hitbox. Since the Orb sprite doesn't change its shape, we can visualize the hitbox in a pixel-perfect way here. The Orb must be completely within the red area for a hit to be registered.
TODO TH01 Kikuri's intended hitboxTH01 Kikuri's actual hitbox

Much worse, however, are the teardrop ripples. It already starts with their rendering routine, which places the sprites from TAMAYEN.PTN at byte-aligned VRAM positions in the ultimate piece of if(…) {…} else if(…) {…} else if(…) {…} meme code. Rather than tracking the position of each of the five ripple sprites, ZUN suddenly went purely functional and manually hardcoded the exact rendering and collision detection calls for each frame of the animation, based on nothing but its total frame counter. :zunpet:
Each of the (up to) 5 columns is also unblitted and blitted individually before moving to the next column, starting at the center and then symmetrically moving out to the left and right edges. This wouldn't be a problem if ZUN's EGC-powered unblitting function didn't word-align its X coordinates to a 16×1 grid. If the ripple sprites happen to start at an odd VRAM byte position, their unblitting coordinates get rounded both down and up to the nearest 16 pixels, thus touching the adjacent 8 pixels of the previously blitted columns and leaving the well-known black vertical bars in their place. :tannedcirno:

OK, so where's the hitbox issue here? If you just look at the raw calculation, it's a slightly confusingly expressed, but perfectly logical 17 pixels. But this is where byte-aligned blitting has a direct effect on gameplay: These ripples can be spawned at any arbitrary, non-byte-aligned VRAM position, and collisions are calculated relative to this internal position. Therefore, the actual hitbox is shifted up to 7 pixels to the right, compared to where you would expect it from a ripple sprite's on-screen position:

Due to the deterministic nature of this part of the fight, it's always 5 pixels for this first set of ripples. These visualizations are obviously not pixel-perfect due to the different potential shapes of Reimu's sprite, so they instead relate to her 32×32 bounding box, which needs to be entirely inside the red area.

We've previously seen the same issue with the 📝 shot hitbox of Elis' bat form, where pixel-perfect collision detection against a byte-aligned sprite was merely a sidenote compared to the more serious X=Y coordinate bug. So why do I elevate it to bug status here? Because it directly affects dodging: Reimu's regular movement speed is 4 pixels per frame, and with the internal position of an on-screen ripple sprite varying by up to 7 pixels, any micrododging (or "grazing") attempt turns into a coin flip. It's sort of mitigated by the fact that Reimu is also only ever rendered at byte-aligned VRAM positions, but I wouldn't say that these two bugs cancel out each other.
Oh well, another set of rendering issues to be fixed in the hypothetical Anniversary Edition – obviously, the hitboxes should remain unchanged. Until then, you can always memorize the exact internal positions. The sequence of teardrop spawn points is completely deterministic and only controlled by the fixed per-difficulty spawn interval.


Aside from more minor coordinate inaccuracies, there's not much of interest in the rest of the pattern code. In another parallel to Elis though, the first soul pattern in phase 4 is aimed on every difficulty except Lunatic, where the pellets are once again statically fired downwards. This time, however, the pattern's difficulty is much more appropriately distributed across the four levels, with the simultaneous spinning circle pellets adding a constant aimed component to every difficulty level.

Kikuri's phase 4 patterns, on every difficulty.


That brings us to 5 fully decompiled PC-98 Touhou bosses, with 26 remaining… and another ½ of a push going to the cutscene code in FUUIN.EXE.
You wouldn't expect something as mundane as the boss slideshow code to contain anything interesting, but there is in fact a slight bit of speculation fuel there. The text typing functions take explicit string lengths, which precisely match the corresponding strings… for the most part. For the "Gatekeeper 'SinGyoku'" string though, ZUN passed 23 characters, not 22. Could that have been the "h" from the Hepburn romanization of 神玉?!
Also, come on, if this text is already blitted to VRAM for no reason, you could have gone for perfect centering at unaligned byte positions; the rendering function would have perfectly supported it. Instead, the X coordinates are still rounded up to the nearest byte.

The hardcoded ending cutscene functions should be even less interesting – don't they just show a bunch of images followed by frame delays? Until they don't, and we reach the 地獄/Jigoku Bad Ending with its special shake/"boom" effect, and this picture:

Picture #2 from ED2A.GRP.

Which is rendered by the following code:

for(int i = 0; i <= boom_duration; i++) { // (yes, off-by-one)
	if((i & 3) == 0) {
		graph_scrollup(8);
	} else {
		graph_scrollup(0);
	}

	end_pic_show(1); // ← different picture is rendered
	frame_delay(2);  // ← blocks until 2 VSync interrupts have occurred

	if(i & 1) {
		end_pic_show(2); // ← picture above is rendered
	} else {
		end_pic_show(1);
	}
}

Notice something? You should never see this picture because it's immediately overwritten before the frame is supposed to end. And yet it's clearly flickering up for about one frame with common emulation settings as well as on my real PC-9821 Nw133, clocked at 133 MHz. master.lib's graph_scrollup() doesn't block until VSync either, and removing these calls doesn't change anything about the blitted images. end_pic_show() uses the EGC to blit the given 320×200 quarter of VRAM from page 1 to the visible page 0, so the bottleneck shouldn't be there either…

…or should it? After setting it up via a few I/O port writes, the common method of EGC-powered blitting works like this:

  1. Read 16 bits from the source VRAM position on any single bitplane. This fills the EGC's 4 16-bit tile registers with the VRAM contents at that specific position on every bitplane. You do not care about the value the CPU returns from the read – in optimized code, you would make sure to just read into a register to avoid useless additional stores into local variables.
  2. Write any 16 bits to the target VRAM position on any single bitplane. This copies the contents of the EGC's tile registers to that specific position on every bitplane.

To transfer pixels from one VRAM page to another, you insert an additional write to I/O port 0xA6 before 1) and 2) to set your source and destination page… and that's where we find the bottleneck. Taking a look at the i486 CPU and its cycle counts, a single one of these page switches costs 17 cycles – 1 for MOVing the page number into AL, and 16 for the OUT instruction itself. Therefore, the 8,000 page switches required for EGC-copying a 320×200-pixel image require 136,000 cycles in total.

And that's the optimal case of using only those two instructions. 📝 As I implied last time, TH01 uses a function call for VRAM page switches, complete with creating and destroying a useless stack frame and unnecessarily updating a global variable in main memory. I tried optimizing ZUN's code by throwing out unnecessary code and using 📝 pseudo-registers to generate probably optimal assembly code, and that did speed up the blitting to almost exactly 50% of the original version's run time. However, it did little about the flickering itself. Here's a comparison of the first loop with boom_duration = 16, recorded in DOSBox-X with cputype=auto and cycles=max, and with i overlaid using the text chip. Caution, flashing lights:

The original animation, completing in 50 frames instead of the expected 34, thanks to slow blitting. Combined with the lack of double-buffering, this results in noticeable tearing as the screen refreshes while blitting is still in progress. (Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic #1.)
This optimized version completes in the expected 34 frames. No tearing happens to be visible in this recording, but the ドカーン image is still visible on every second loop iteration. (Note how the background of the ドカーン image is shifted 1 pixel to the left compared to pic #1.)

I pushed the optimized code to the th01_end_pic_optimize branch, to also serve as an example of how to get close to optimal code out of Turbo C++ 4.0J without writing a single ASM instruction.
And if you really want to use the EGC for this, that's the best you can do. It really sucks that it merely expanded the GRCG's 4×8-bit tile register to 4×16 bits. With 32 bits, ≥386 CPUs could have taken advantage of their wider registers and instructions to double the blitting performance. Instead, we now know the reason why 📝 Promisence Soft's EGC-powered sprite driver that ZUN later stole for TH03 is called SPRITE16 and not SPRITE32. What a massive disappointment.

But what's perhaps a bigger surprise: Blitting planar images from main memory is much faster than EGC-powered inter-page VRAM copies, despite the required manual access to all 4 bitplanes. In fact, the blitting functions for the .CDG/.CD2 format, used from TH03 onwards, would later demonstrate the optimal method of using REP MOVSD for blitting every line in 32-pixel chunks. If that was also used for these ending images, the core blitting operation would have taken ((12 + (3 × (320 / 32))) × 200 × 4) = 33,600 cycles, with not much more overhead for the surrounding row and bitplane loops. Sure, this doesn't factor in the whole infamous issue of VRAM being slow on PC-98, but the aforementioned 136,000 cycles don't even include any actual blitting either. And as you move up to later PC-98 models with Pentium CPUs, the gap between OUT and REP MOVSD only becomes larger. (Note that the page I linked above has a typo in the cycle count of REP MOVSD on Pentium CPUs: According to the original Intel Architecture and Programming Manual, it's 13+𝑛, not 3+𝑛.)
This difference explains why later games rarely use EGC-"accelerated" inter-page VRAM copies, and keep all of their larger images in main memory. It especially explains why TH04 and TH05 can get away with naively redrawing boss backdrop images on every frame.

In the end, the whole fact that ZUN did not define how long this image should be visible is enough for me to increment the game's overall bug counter. Who would have thought that looking at endings of all things would teach us a PC-98 performance lesson… Sure, optimizing TH01 already seemed promising just by looking at its bloated code, but I had no idea that its performance issues extended so far past that level.

That only leaves the common beginning part of all endings and a short main() function before we're done with FUUIN.EXE, and 98 functions until all of TH01 is decompiled! Next up: SinGyoku, who not only is the quickest boss to defeat in-game, but also comes with the least amount of code. See you very soon!

📝 Posted:
🚚 Summary of:
P0174, P0175, P0176, P0177, P0178, P0179, P0180, P0181
Commits:
27f901c...a0fe812, a0fe812...40ac9a7, 40ac9a7...c5dc45b, c5dc45b...5f0cabc, 5f0cabc...60621f8, 60621f8...9e5b344, 9e5b344...091f19f, 091f19f...313450f
💰 Funded by:
Ember2528, Yanga
🏷 Tags:

Here we go, TH01 Sariel! This is the single biggest boss fight in all of PC-98 Touhou: If we include all custom effect code we previously decompiled, it amounts to a total of 10.31% of all code in TH01 (and 3.14% overall). These 8 pushes cover the final 8.10% (or 2.47% overall), and are likely to be the single biggest delivery this project will ever see. Considering that I only managed to decompile 6.00% across all games in 2021, 2022 is already off to a much better start!

So, how can Sariel's code be that large? Well, we've got:

In total, it's just under 3,000 lines of C++ code, containing a total of 8 definite ZUN bugs, 3 of them being subpixel/pixel confusions. That might not look all too bad if you compare it to the 📝 player control function's 8 bugs in 900 lines of code, but given that Konngara had 0… (Edit (2022-07-17): Konngara contains two bugs after all: A 📝 possible heap corruption in test or debug mode, and the infamous 📝 temporary green discoloration.) And no, the code doesn't make it obvious whether ZUN coded Konngara or Sariel first; there's just as much evidence for either.

Some terminology before we start: Sariel's first form is separated into four phases, indicated by different background images, that cycle until Sariel's HP reach 0 and the second, single-phase form starts. The danmaku patterns within each phase are also on a cycle, and the game picks a random but limited number of patterns per phase before transitioning to the next one. The fight always starts at pattern 1 of phase 1 (the random purple lasers), and each new phase also starts at its respective first pattern.


Sariel's bugs already start at the graphics asset level, before any code gets to run. Some of the patterns include a wand raise animation, which is stored in BOSS6_2.BOS:

TH01 BOSS6_2.BOS
Umm… OK? The same sprite twice, just with slightly different colors? So how is the wand lowered again?

The "lowered wand" sprite is missing in this file simply because it's captured from the regular background image in VRAM, at the beginning of the fight and after every background transition. What I previously thought to be 📝 background storage code has therefore a different meaning in Sariel's case. Since this captured sprite is fully opaque, it will reset the entire 128×128 wand area… wait, 128×128, rather than 96×96? Yup, this lowered sprite is larger than necessary, wasting 1,967 bytes of conventional memory.
That still doesn't quite explain the second sprite in BOSS6_2.BOS though. Turns out that the black part is indeed meant to unblit the purple reflection (?) in the first sprite. But… that's not how you would correctly unblit that?

VRAM after blitting the first sprite of TH01's BOSS6_2.BOS VRAM after blitting the second sprite of TH01's BOSS6_2.BOS

The first sprite already eats up part of the red HUD line, and the second one additionally fails to recover the seal pixels underneath, leaving a nice little black hole and some stray purple pixels until the next background transition. :tannedcirno: Quite ironic given that both sprites do include the right part of the seal, which isn't even part of the animation.


Just like Konngara, Sariel continues the approach of using a single function per danmaku pattern or custom entity. While I appreciate that this allows all pattern- and entity-specific state to be scoped locally to that one function, it quickly gets ugly as soon as such a function has to do more than one thing.
The "bird function" is particularly awful here: It's just one if(…) {…} else if(…) {…} else if(…) {…} chain with different branches for the subfunction parameter, with zero shared code between any of these branches. It also uses 64-bit floating-point double as its subpixel type… and since it also takes four of those as parameters (y'know, just in case the "spawn new bird" subfunction is called), every call site has to also push four double values onto the stack. Thanks to Turbo C++ even using the FPU for pushing a 0.0 constant, we have already reached maximum floating-point decadence before even having seen a single danmaku pattern. Why decadence? Every possible spawn position and velocity in both bird patterns just uses pixel resolution, with no fractional component in sight. And there goes another 720 bytes of conventional memory.

Speaking about bird patterns, the red-bird one is where we find the first code-level ZUN bug: The spawn cross circle sprite suddenly disappears after it finished spawning all the bird eggs. How can we tell it's a bug? Because there is code to smoothly fly this sprite off the playfield, that code just suddenly forgets that the sprite's position is stored in Q12.4 subpixels, and treats it as raw screen pixels instead. :zunpet: As a result, the well-intentioned 640×400 screen-space clipping rectangle effectively shrinks to 38×23 pixels in the top-left corner of the screen. Which the sprite is always outside of, and thus never rendered again.
The intended animation is easily restored though:

Sariel's third pattern, and the first to spawn birds, in its original and fixed versions. Note that I somewhat fixed the bird hatch animation as well: ZUN's code never unblits any frame of animation there, and simply blits every new one on top of the previous one.

Also, did you know that birds actually have a quite unfair 14×38-pixel hitbox? Not that you'd ever collide with them in any of the patterns…

Another 3 of the 8 bugs can be found in the symmetric, interlaced spawn rays used in three of the patterns, and the 32×32 debris "sprites" shown at their endpoint, at the edge of the screen. You kinda have to commend ZUN's attention to detail here, and how he wrote a lot of code for those few rapidly animated pixels that you most likely don't even notice, especially with all the other wrong pixels resulting from rendering glitches. One of the bugs in the very final pattern of phase 4 even turns them into the vortex sprites from the second pattern in phase 1 during the first 5 frames of the first time the pattern is active, and I had to single-step the blitting calls to verify it.
It certainly was annoying how much time I spent making sense of these bugs, and all weird blitting offsets, for just a few pixels… Let's look at something more wholesome, shall we?


So far, we've only seen the PC-98 GRCG being used in RMW (read-modify-write) mode, which I previously 📝 explained in the context of TH01's red-white HP pattern. The second of its three modes, TCR (Tile Compare Read), affects VRAM reads rather than writes, and performs "color extraction" across all 4 bitplanes: Instead of returning raw 1bpp data from one plane, a VRAM read will instead return a bitmask, with a 1 bit at every pixel whose full 4-bit color exactly matches the color at that offset in the GRCG's tile register, and 0 everywhere else. Sariel uses this mode to make sure that the 2×2 particles and the wind effect are only blitted on top of "air color" pixels, with other parts of the background behaving like a mask. The algorithm:

  1. Set the GRCG to TCR mode, and all 8 tile register dots to the air color
  2. Read N bits from the target VRAM position to obtain an N-bit mask where all 1 bits indicate air color pixels at the respective position
  3. AND that mask with the alpha plane of the sprite to be drawn, shifted to the correct start bit within the 8-pixel VRAM byte
  4. Set the GRCG to RMW mode, and all 8 tile register dots to the color that should be drawn
  5. Write the previously obtained bitmask to the same position in VRAM

Quite clever how the extracted colors double as a secondary alpha plane, making for another well-earned good-code tag. The wind effect really doesn't deserve it, though:

As far as I can tell, ZUN didn't use TCR mode anywhere else in PC-98 Touhou. Tune in again later during a TH04 or TH05 push to learn about TDW, the final GRCG mode!


Speaking about the 2×2 particle systems, why do we need three of them? Their only observable difference lies in the way they move their particles:

  1. Up or down in a straight line (used in phases 4 and 2, respectively)
  2. Left or right in a straight line (used in the second form)
  3. Left and right in a sinusoidal motion (used in phase 3, the "dark orange" one)

Out of all possible formats ZUN could have used for storing the positions and velocities of individual particles, he chose a) 64-bit / double-precision floating-point, and b) raw screen pixels. Want to take a guess at which data type is used for which particle system?

If you picked double for 1) and 2), and raw screen pixels for 3), you are of course correct! :godzun: Not that I'm implying that it should have been the other way round – screen pixels would have perfectly fit all three systems use cases, as all 16-bit coordinates are extended to 32 bits for trigonometric calculations anyway. That's what, another 1.080 bytes of wasted conventional memory? And that's even calculated while keeping the current architecture, which allocates space for 3×30 particles as part of the game's global data, although only one of the three particle systems is active at any given time.

That's it for the first form, time to put on "Civilization of Magic"! Or "死なばもろとも"? Or "Theme of 地獄めくり"? Or whatever SYUGEN is supposed to mean…


… and the code of these final patterns comes out roughly as exciting as their in-game impact. With the big exception of the very final "swaying leaves" pattern: After 📝 Q4.4, 📝 Q28.4, 📝 Q24.8, and double variables, this pattern uses… decimal subpixels? Like, multiplying the number by 10, and using the decimal one's digit to represent the fractional part? Well, sure, if you really insist on moving the leaves in cleanly represented integer multiples of ⅒, which is infamously impossible in IEEE 754. Aside from aesthetic reasons, it only really combines less precision (10 possible fractions rather than the usual 16) with the inferior performance of having to use integer divisions and multiplications rather than simple bit shifts. And it's surely not because the leaf sprites needed an extended integer value range of [-3276, +3276], compared to Q12.4's [-2047, +2048]: They are clipped to 640×400 screen space anyway, and are removed as soon as they leave this area.

This pattern also contains the second bug in the "subpixel/pixel confusion hiding an entire animation" category, causing all of BOSS6GR4.GRC to effectively become unused:

The "swaying leaves" pattern. ZUN intended a splash animation to be shown once each leaf "spark" reaches the top of the playfield, which is never displayed in the original game.

At least their hitboxes are what you would expect, exactly covering the 30×30 pixels of Reimu's sprite. Both animation fixes are available on the th01_sariel_fixes branch.

After all that, Sariel's main function turned out fairly unspectacular, just putting everything together and adding some shake, transition, and color pulse effects with a bunch of unnecessary hardware palette changes. There is one reference to a missing BOSS6.GRP file during the first→second form transition, suggesting that Sariel originally had a separate "first form defeat" graphic, before it was replaced with just the shaking effect in the final game.
Speaking about the transition code, it is kind of funny how the… um, imperative and concrete nature of TH01 leads to these 2×24 lines of straight-line code. They kind of look like ZUN rattling off a laundry list of subsystems and raw variables to be reinitialized, making damn sure to not forget anything.


Whew! Second PC-98 Touhou boss completely decompiled, 29 to go, and they'll only get easier from here! 🎉 The next one in line, Elis, is somewhere between Konngara and Sariel as far as x86 instruction count is concerned, so that'll need to wait for some additional funding. Next up, therefore: Looking at a thing in TH03's main game code – really, I have little idea what it will be!

Now that the store is open again, also check out the 📝 updated RE progress overview I've posted together with this one. In addition to more RE, you can now also directly order a variety of mods; all of these are further explained in the order form itself.

📝 Posted:
🚚 Summary of:
P0165, P0166, P0167
Commits:
7a0e5d8...f2bca01, f2bca01...e697907, e697907...c2de6ab
💰 Funded by:
Ember2528
🏷 Tags:

OK, TH01 missile bullets. Can we maybe have a well-behaved entity type, without any weirdness? Just once?

Ehh, kinda. Apart from another 150 bytes wasted on unused structure members, this code is indeed more on the low end in terms of overall jank. It does become very obvious why dodging these missiles in the YuugenMagan, Mima, and Elis fights feels so awful though: An unfair 46×46 pixel hitbox around Reimu's center pixel, combined with the comeback of 📝 interlaced rendering, this time in every stage. ZUN probably did this because missiles are the only 16×16 sprite in TH01 that is blitted to unaligned X positions, which effectively ends up touching a 32×16 area of VRAM per sprite.
But even if we assume VRAM writes to be the bottleneck here, it would have been totally possible to render every missile in every frame at roughly the same amount of CPU time that the original game uses for interlaced rendering:

That's an optimization that would have significantly benefitted the game, in contrast to all of the fake ones introduced in later games. Then again, this optimization is actually something that the later games do, and it might have in fact been necessary to achieve their higher bullet counts without significant slowdown.

Unfortunately, it was only worth decompiling half of the missile code right now, thanks to gratuitous FPU usage in the other half, where 📝 double variables are compared to float literals. That one will have to wait 📝 until after SinGyoku.


After some effectively unused Mima sprite effect code that is so broken that it's impossible to make sense out of it, we get to the final feature I wanted to cover for all bosses in parallel before returning to Sariel: The separate sprite background storage for moving or animated boss sprites in the Mima, Elis, and Sariel fights. But, uh… why is this necessary to begin with? Doesn't TH01 already reserve the other VRAM page for backgrounds?
Well, these sprites are quite big, and ZUN didn't want to blit them from main memory on every frame. After all, TH01 and TH02 had a minimum required clock speed of 33 MHz, half of the speed required for the later three games. So, he simply blitted these boss sprites to both VRAM pages, leading the usual unblitting calls to only remove the other sprites on top of the boss. However, these bosses themselves want to move across the screen… and this makes it necessary to save the stage background behind them in some other way.

Enter .PTN, and its functions to capture a 16×16 or 32×32 square from VRAM into a sprite slot. No problem with that approach in theory, as the size of all these bigger sprites is a multiple of 32×32; splitting a larger sprite into these smaller 32×32 chunks makes the code look just a little bit clumsy (and, of course, slower).
But somewhere during the development of Mima's fight, ZUN apparently forgot that those sprite backgrounds existed. And once Mima's 🚫 casting sprite is blitted on top of her regular sprite, using just regular sprite transparency, she ends up with her infamous third arm:

TH01 Mima's third arm

Ironically, there's an unused code path in Mima's unblit function where ZUN assumes a height of 48 pixels for Mima's animation sprites rather than the actual 64. This leads to even clumsier .PTN function calls for the bottom 128×16 pixels… Failing to unblit the bottom 16 pixels would have also yielded that third arm, although it wouldn't have looked as natural. Still wouldn't say that it was intentional; maybe this casting sprite was just added pretty late in the game's development?


So, mission accomplished, Sariel unblocked… at 2¼ pushes. :thonk: That's quite some time left for some smaller stage initialization code, which bundles a bunch of random function calls in places where they logically really don't belong. The stage opening animation then adds a bunch of VRAM inter-page copies that are not only redundant but can't even be understood without knowing the hidden internal state of the last VRAM page accessed by previous ZUN code…
In better news though: Turbo C++ 4.0 really doesn't seem to have any complexity limit on inlining arithmetic expressions, as long as they only operate on compile-time constants. That's how we get macro-free, compile-time Shift-JIS to JIS X 0208 conversion of the individual code points in the 東方★靈異伝 string, in a compiler from 1994. As long as you don't store any intermediate results in variables, that is… :tannedcirno:

But wait, there's more! With still ¼ of a push left, I also went for the boss defeat animation, which includes the route selection after the SinGyoku fight.
As in all other instances, the 2× scaled font is accomplished by first rendering the text at regular 1× resolution to the other, invisible VRAM page, and then scaled from there to the visible one. However, the route selection is unique in that its scaled text is both drawn transparently on top of the stage background (not onto a black one), and can also change colors depending on the selection. It would have been no problem to unblit and reblit the text by rendering the 1× version to a position on the invisible VRAM page that isn't covered by the 2× version on the visible one, but ZUN (needlessly) clears the invisible page before rendering any text. :zunpet: Instead, he assigned a separate VRAM color for both the 魔界 and 地獄 options, and only changed the palette value for these colors to white or gray, depending on the correct selection. This is another one of the 📝 rare cases where TH01 demonstrates good use of PC-98 hardware, as the 魔界へ and 地獄へ strings don't need to be reblitted during the selection process, only the Orb "cursor" does.

Then, why does this still not count as good-code? When changing palette colors, you kinda need to be aware of everything else that can possibly be on screen, which colors are used there, and which aren't and can therefore be used for such an effect without affecting other sprites. In this case, well… hover over the image below, and notice how Reimu's hair and the bomb sprites in the HUD light up when Makai is selected:

Demonstration of palette changes in TH01's route selection

This push did end on a high note though, with the generic, non-SinGyoku version of the defeat animation being an easily parametrizable copy. And that's how you decompile another 2.58% of TH01 in just slightly over three pushes.


Now, we're not only ready to decompile Sariel, but also Kikuri, Elis, and SinGyoku without needing any more detours into non-boss code. Thanks to the current TH01 funding subscriptions, I can plan to cover most, if not all, of Sariel in a single push series, but the currently 3 pending pushes probably won't suffice for Sariel's 8.10% of all remaining code in TH01. We've got quite a lot of not specifically TH01-related funds in the backlog to pass the time though.

Due to recent developments, it actually makes quite a lot of sense to take a break from TH01: spaztron64 has managed what every Touhou download site so far has failed to do: Bundling all 5 game onto a single .HDI together with pre-configured PC-98 emulators and a nice boot menu, and hosting the resulting package on a proper website. While this first release is already quite good (and much better than my attempt from 2014), there is still a bit of room for improvement to be gained from specific ReC98 research. Next up, therefore:

📝 Posted:
🚚 Summary of:
P0160, P0161
Commits:
e491cd7...42ba4a5, 42ba4a5...81dd96e
💰 Funded by:
Yanga, [Anonymous]
🏷 Tags:

Nothing really noteworthy in TH01's stage timer code, just yet another HUD element that is needlessly drawn into VRAM. Sure, ZUN applies his custom boldfacing effect on top of the glyphs retrieved from font ROM, but he could have easily installed those modified glyphs as gaiji.
Well, OK, halfwidth gaiji aren't exactly well documented, and sometimes not even correctly emulated 📝 due to the same PC-98 hardware oddity I was researching last month. I've reserved two of the pending anonymous "anything" pushes for the conclusion of this research, just in case you were wondering why the outstanding workload is now lower after the two delivered here.

And since it doesn't seem to be clearly documented elsewhere: Every 2 ticks on the stage timer correspond to 4 frames.


So, TH01 rank pellet speed. The resident pellet speed value is a factor ranging from a minimum of -0.375 up to a maximum of 0.5 (pixels per frame), multiplied with the difficulty-adjusted base speed for each pellet and added on top of that same speed. This multiplier is modified

Apparently, ZUN noted that these deltas couldn't be losslessly stored in an IEEE 754 floating-point variable, and therefore didn't store the pellet speed factor exactly in a way that would correspond to its gameplay effect. Instead, it's stored similar to Q12.4 subpixels: as a simple integer, pre-multiplied by 40. This results in a raw range of -15 to 20, which is what the undecompiled ASM calls still use. When spawning a new pellet, its base speed is first multiplied by that factor, and then divided by 40 again. This is actually quite smart: The calculation doesn't need to be aware of either Q12.4 or the 40× format, as ((Q12.4 * factor×40) / factor×40) still comes out as a Q12.4 subpixel even if all numbers are integers. The only limiting issue here would be the potential overflow of the 16-bit multiplication at unadjusted base speeds of more than 50 pixels per frame, but that'd be seriously unplayable.
So yeah, pellet speed modifications are indeed gradual, and don't just fall into the coarse three "high, normal, and low" categories.


That's ⅝ of P0160 done, and the continue and pause menus would make good candidates to fill up the remaining ⅜… except that it seemed impossible to figure out the correct compiler options for this code?
The issues centered around the two effects of Turbo C++ 4.0J's -O switch:

  1. Optimizing jump instructions: merging duplicate successive jumps into a single one, and merging duplicated instructions at the end of conditional branches into a single place under a single branch, which the other branches then jump to
  2. Compressing ADD SP and POP CX stack-clearing instructions after multiple successive CALLs to __cdecl functions into a single ADD SP with the combined parameter stack size of all function calls

But how can the ASM for these functions exhibit #1 but not #2? How can it be seemingly optimized and unoptimized at the same time? The only option that gets somewhat close would be -O- -y, which emits line number information into the .OBJ files for debugging. This combination provides its own kind of #1, but these functions clearly need the real deal.

The research into this issue ended up consuming a full push on its own. In the end, this solution turned out to be completely unrelated to compiler options, and instead came from the effects of a compiler bug in a totally different place. Initializing a local structure instance or array like

const uint4_t flash_colors[3] = { 3, 4, 5 };

always emits the { 3, 4, 5 } array into the program's data segment, and then generates a call to the internal SCOPY@ function which copies this data array to the local variable on the stack. And as soon as this SCOPY@ call is emitted, the -O optimization #1 is disabled for the entire rest of the translation unit?!
So, any code segment with an SCOPY@ call followed by __cdecl functions must strictly be decompiled from top to bottom, mirroring the original layout of translation units. That means no TH01 continue and pause menus before we haven't decompiled the bomb animation, which contains such an SCOPY@ call. 😕
Luckily, TH01 is the only game where this bug leads to significant restrictions in decompilation order, as later games predominantly use the pascal calling convention, in which each function itself clears its stack as part of its RET instruction.


What now, then? With 51% of REIIDEN.EXE decompiled, we're slowly running out of small features that can be decompiled within ⅜ of a push. Good that I haven't been looking a lot into OP.EXE and FUUIN.EXE, which pretty much only got easy pieces of code left to do. Maybe I'll end up finishing their decompilations entirely within these smaller gaps?
I still ended up finding one more small piece in REIIDEN.EXE though: The particle system, seen in the Mima fight.

I like how everything about this animation is contained within a single function that is called once per frame, but ZUN could have really consolidated the spawning code for new particles a bit. In Mima's fight, particles are only spawned from the top and right edges of the screen, but the function in fact contains unused code for all other 7 possible directions, written in quite a bloated manner. This wouldn't feel quite as unused if ZUN had used an angle parameter instead… :thonk: Also, why unnecessarily waste another 40 bytes of the BSS segment?

But wait, what's going on with the very first spawned particle that just stops near the bottom edge of the screen in the video above? Well, even in such a simple and self-contained function, ZUN managed to include an off-by-one error. This one then results in an out-of-bounds array access on the 80th frame, where the code attempts to spawn a 41st particle. If the first particle was unlucky to be both slow enough and spawned away far enough from the bottom and right edges, the spawning code will then kill it off before its unblitting code gets to run, leaving its pixel on the screen until something else overlaps it and causes it to be unblitted.
Which, during regular gameplay, will quickly happen with the Orb, all the pellets flying around, and your own player movement. Also, the RNG can easily spawn this particle at a position and velocity that causes it to leave the screen more quickly. Kind of impressive how ZUN laid out the structure of arrays in a way that ensured practically no effect of this bug on the game; this glitch could have easily happened every 80 frames instead. He almost got close to all bugs canceling out each other here! :godzun:

Next up: The player control functions, including the second-biggest function in all of PC-98 Touhou.

📝 Posted:
🚚 Summary of:
P0149, P0150, P0151, P0152
Commits:
e1a26bb...05e4c4a, 05e4c4a...768251d, 768251d...4d24ca5, 4d24ca5...81fc861
💰 Funded by:
Blue Bolt, Ember2528, -Tom-, [Anonymous]
🏷 Tags:

…or maybe not that soon, as it would have only wasted time to untangle the bullet update commits from the rest of the progress. So, here's all the bullet spawning code in TH04 and TH05 instead. I hope you're ready for this, there's a lot to talk about!

(For the sake of readability, "bullets" in this blog post refers to the white 8×8 pellets and all 16×16 bullets loaded from MIKO16.BFT, nothing else.)


But first, what was going on 📝 in 2020? Spent 4 pushes on the basic types and constants back then, still ended up confusing a couple of things, and even getting some wrong. Like how TH05's "bullet slowdown" flag actually always prevents slowdown and fires bullets at a constant speed instead. :tannedcirno: Or how "random spread" is not the best term to describe that unused bullet group type in TH04.
Or that there are two distinct ways of clearing all bullets on screen, which deserve different names:

Mechanic #1: Clearing bullets for a custom amount of time, awarding 1000 points for all bullets alive on the first frame, and 100 points for all bullets spawned during the clear time.
Mechanic #2: Zapping bullets for a fixed 16 frames, awarding a semi-exponential and loudly announced Bonus!! for all bullets alive on the first frame, and preventing new bullets from being spawned during those 16 frames. In TH04 at least; thanks to a ZUN bug, zapping got reduced to 1 frame and no animation in TH05…

Bullets are zapped at the end of most midboss and boss phases, and cleared everywhere else – most notably, during bombs, when losing a life, or as rewards for extends or a maximized Dream bonus. The Bonus!! points awarded for zapping bullets are calculated iteratively, so it's not trivial to give an exact formula for these. For a small number 𝑛 of bullets, it would exactly be 5𝑛³ - 10𝑛² + 15𝑛 points – or, using uth05win's (correct) recursive definition, Bonus(𝑛) = Bonus(𝑛-1) + 15𝑛² - 5𝑛 + 10. However, one of the internal step variables is capped at a different number of points for each difficulty (and game), after which the points only increase linearly. Hence, "semi-exponential".


On to TH04's bullet spawn code then, because that one can at least be decompiled. And immediately, we have to deal with a pointless distinction between regular bullets, with either a decelerating or constant velocity, and special bullets, with preset velocity changes during their lifetime. That preset has to be set somewhere, so why have separate functions? In TH04, this separation continues even down to the lowest level of functions, where values are written into the global bullet array. TH05 merges those two functions into one, but then goes too far and uses self-modifying code to save a grand total of two local variables… Luckily, the rest of its actual code is identical to TH04.

Most of the complexity in bullet spawning comes from the (thankfully shared) helper function that calculates the velocities of the individual bullets within a group. Both games handle each group type via a large switch statement, which is where TH04 shows off another Turbo C++ 4.0 optimization: If the range of case values is too sparse to be meaningfully expressed in a jump table, it usually generates a linear search through a second value table. But with the -G command-line option, it instead generates branching code for a binary search through the set of cases. 𝑂(log 𝑛) as the worst case for a switch statement in a C++ compiler from 1994… that's so cool. But still, why are the values in TH04's group type enum all over the place to begin with? :onricdennat:
Unfortunately, this optimization is pretty rare in PC-98 Touhou. It only shows up here and in a few places in TH02, compared to at least 50 switch value tables.

In all of its micro-optimized pointlessness, TH05's undecompilable version at least fixes some of TH04's redundancy. While it's still not even optimal, it's at least a decently written piece of ASM… if you take the time to understand what's going on there, because it certainly took quite a bit of that to verify that all of the things which looked like bugs or quirks were in fact correct. And that's how the code for this function ended up with 35% comments and blank lines before I could confidently call it "reverse-engineered"…
Oh well, at least it finally fixes a correctness issue from TH01 and TH04, where an invalid bullet group type would fill all remaining slots in the bullet array with identical versions of the first bullet.

Something that both games also share in these functions is an over-reliance on globals for return values or other local state. The most ridiculous example here: Tuning the speed of a bullet based on rank actually mutates the global bullet template… which ZUN then works around by adding a wrapper function around both regular and special bullet spawning, which saves the base speed before executing that function, and restores it afterward. :zunpet: Add another set of wrappers to bypass that exact tuning, and you've expanded your nice 1-function interface to 4 functions. Oh, and did I mention that TH04 pointlessly duplicates the first set of wrapper functions for 3 of the 4 difficulties, which can't even be explained with "debugging reasons"? That's 10 functions then… and probably explains why I've procrastinated this feature for so long.

At this point, I also finally stopped decompiling ZUN's original ASM just for the sake of it. All these small TH05 functions would look horribly unidiomatic, are identical to their decompiled TH04 counterparts anyway, except for some unique constant… and, in the case of TH05's rank-based speed tuning function, actually become undecompilable as soon as we want to return a C++ class to preserve the semantic meaning of the return value. Mainly, this is because Turbo C++ does not allow register pseudo-variables like _AX or _AL to be cast into class types, even if their size matches. Decompiling that function would have therefore lowered the quality of the rest of the decompiled code, in exchange for the additional maintenance and compile-time cost of another translation unit. Not worth it – and for a TH05 port, you'd already have to decompile all the rest of the bullet spawning code anyway!


The only thing in there that was still somewhat worth being decompiled was the pre-spawn clipping and collision detection function. Due to what's probably a micro-optimization mistake, the TH05 version continues to spawn a bullet even if it was spawned on top of the player. This might sound like it has a different effect on gameplay… until you realize that the player got hit in this case and will either lose a life or deathbomb, both of which will cause all on-screen bullets to be cleared anyway. So it's at most a visual glitch.

But while we're at it, can we please stop talking about hitboxes? At least in the context of TH04 and TH05 bullets. The actual collision detection is described way better as a kill delta of 8×8 pixels between the center points of the player and a bullet. You can distribute these pixels to any combination of bullet and player "hitboxes" that make up 8×8. 4×4 around both the player and bullets? 1×1 for bullets, and 8×8 for the player? All equally valid… or perhaps none of them, once you keep in mind that other entity types might have different kill deltas. With that in mind, the concept of a "hitbox" turns into just a confusing abstraction.

The same is true for the 36×44 graze box delta. For some reason, this one is not exactly around the center of a bullet, but shifted to the right by 2 pixels. So, a bullet can be grazed up to 20 pixels right of the player, but only up to 16 pixels left of the player. uth05win also spotted this… and rotated the deltas clockwise by 90°?!


Which brings us to the bullet updates… for which I still had to research a decompilation workaround, because 📝 P0148 turned out to not help at all? Instead, the solution was to lie to the compiler about the true segment distance of the popup function and declare its signature far rather than near. This allowed ZUN to save that ridiculous overhead of 1 additional far function call/return per frame, and those precious 2 bytes in the BSS segment that he didn't have to spend on a segment value. 📝 Another function that didn't have just a single declaration in a common header file… really, 📝 how were these games even built???

The function itself is among the longer ones in both games. It especially stands out in the indentation department, with 7 levels at its most indented point – and that's the minimum of what's possible without goto. Only two more notable discoveries there:

  1. Bullets are the only entity affected by Slow Mode. If the number of bullets on screen is ≥ (24 + (difficulty * 8) + rank) in TH04, or (42 + (difficulty * 8)) in TH05, Slow Mode reduces the frame rate by 33%, by waiting for one additional VSync event every two frames.
    The code also reveals a second tier, with 50% slowdown for a slightly higher number of bullets, but that conditional branch can never be executed :zunpet:
  2. Bullets must have been grazed in a previous frame before they can be collided with. (Note how this does not apply to bullets that spawned on top of the player, as explained earlier!)

Whew… When did ReC98 turn into a full-on code review?! 😅 And after all this, we're still not done with TH04 and TH05 bullets, with all the special movement types still missing. That should be less than one push though, once we get to it. Next up: Back to TH01 and Konngara! Now have fun rewriting the Touhou Wiki Gameplay pages 😛