Wouldn't it be a bit disappointing to have TH05 completely
position-independent, but have it still require hex-editing of the
original ZUN.COM to mod its gaiji characters? As in, these
custom "text" glyphs, available to the PC-98 text RAM:
Especially since we now even have a sprite converter… the lack of which
was exactly 📝 what made rebuilding ZUN.COM not that worthwhile before.
So, before the big release, let's get all the remaining
ZUN.COM sub-binaries of TH04 and TH05 dumped into .ASM files,
and re-assembled and linked during the build process.
This is also the moment in which Egor's 2018
reimplementation of O. Morikawa's comcstm finally gets
to shine. Back then, I considered it too early to even bother with
ZUN.COM and reimplementing the .COM wrapper that ZUN
originally used to bundle multiple smaller executables into that single
binary. But now that the time is right, it is nice to have that
code, as it allowed me to get these rebuilds done in half a push.
Otherwise, it would have surely required one or two dedicated ones.
Since we like correctness here, newly dumped ZUN code means that it also
has to be included in the RE%
baseline calculation. This is why TH04's and TH05's overall RE% bars
have gone back a tiny bit… in case you remember how they previously looked
like After all, I would like to figure
out where all that memory allocated during TH04's and TH05's memory check
is freed, if at all.
Alright, one half of a push left… Y'know, getting rid of those last few PI
false positives is actually one of the most annoying chores in this
project, and quite stressful as well: I have to convince myself that the
remaining false positives are, in fact, not memory references, but with
way too little time for in-depth RE and to denote what they are
instead. In that situation, everyone (including myself!)
is anticipating that PI goal, and no one is really interested in RE.
(Well… that is, until they actually get to developing their mod. But more
on that tomorrow. ) Which means that it boils
down to quite some hasty, dumb, and superficial RE around those remaining
numbers.
So, in the hope of making it less annoying for the other 4 games in the
future, let's systematically cover the sources of those remaining false
positives in TH05, over all games. I/O port accesses with either the port
or the value in registers (and thus, no longer as an immediate argument to
the IN or OUT instructions, which the PI counter
can clearly ingore), palette color arithmetic, or heck, 0xFF constants that
obviously just mean "-1" and are not a reference to offset 0xFF in
the data segment. All of this, of course, once again had a way bigger
effect on everything but an almost position-independent TH05… but
hey, that's the sort of thing you reserve the "anything" pushes for. And
that's also how we get some of the single biggest PI% gains we have seen
so far, and will be seeing before the 100% PI mark. And yes, those will
continue in the next push.
Alright, tooling and technical debt. Shouldn't be really much to talk
about… oh, wait, this is still ReC98
For the tooling part, I finished up the remaining ergonomics and error
handling for the
📝 sprite converter that Jonathan Campbell contributed two months ago.
While I familiarized myself with the tool, I've actually ran into some
unreported errors myself, so this was sort of important to me. Still got
no command-line help in there, but the error messages can now do that job
probably even better, since we would have had to write them anyway.
So, what's up with the technical debt then? Well, by now we've accumulated
quite a number of 📝 ASM code slices that
need to be either decompiled or clearly marked as undecompilable. Since we
define those slices as "already reverse-engineered", that decision won't
affect the numbers on the front page at all. But for a complete
decompilation, we'd still have to do this someday. So, rather than
incorporating this work into pushes that were purchased with the
expectation of measurable progress in a certain area, let's take the
"anything goes" pushes, and focus entirely on that during them.
The second code segment seemed like the best place to start with this,
since it affects the largest number of games simultaneously. Starting with
TH02, this segment contains a set of random "core" functions needed by the
binary. Image formats, sounds, input, math, it's all there in some
capacity. You could maybe call it all "libzun" or something like
that? But for the time being, I simply went with the obvious name,
seg2. Maybe I'll come up with something more convincing in
the future.
Oh, but wait, why were we assembling all the previous undecompilable ASM
translation units in the 16-bit build part? By moving those to the 32-bit
part, we don't even need a 16-bit TASM in our list of dependencies, as
long as our build process is not fully 16-bit.
And with that, ReC98 now also builds on Windows 95, and thus, every 32-bit
Windows version. 🎉 Which is certainly the most user-visible improvement
in all of these two pushes.
Back in 2015, I already decompiled all of TH02's seg2
functions. As suggested by the Borland compiler, I tried to follow a "one
translation unit per segment" layout, bundling the binary-specific
contents via #include. In the end, it required two
translation units – and that was even after manually inserting the
original padding bytes via #pragma codestring… yuck. But it
worked, compiled, and kept the linker's job (and, by extension,
segmentation worries) to a minimum. And as long as it all matched the
original binaries, it still counted as a valid reconstruction of ZUN's
code.
However, that idea ultimately falls apart once TH03 starts mixing
undecompilable ASM code inbetween C functions. Now, we officially have no
choice but to use multiple C and ASM translation units, with maybe only
just one or two #includes in them…
…or we finally start reconstructing the actual seg2 library,
turning every sequence of related functions into its own translation unit.
This way, we can simply reuse the once-compiled .OBJ files for all the
binaries those functions appear in, without requiring that additional
layer of translation units mirroring the original segmentation.
The best example for this is
TH03's
almost undecompilable function that generates a lookup table for
horizontally flipping 8 1bpp pixels. It's part of every binary since
TH03, but only used in that game. With the previous approach, we would
have had to add 9 C translation units, which would all have just
#included that one file. Now, we simply put the .OBJ file
into the correct place on the linker command line, as soon as we can.
💡 And suddenly, the linker just inserts the correct padding bytes itself.
The most immediate gains there also happened to come from TH03. Which is
also where we did get some tiny RE% and PI% gains out of this after
all, by reverse-engineering some of its sprite blitting setup code. Sure,
I should have done even more RE here, to also cover those 5 functions at
the end of code segment #2 in TH03's MAIN.EXE that were in
front of a number of library functions I already covered in this push. But
let's leave that to an actual RE push 😛
All in all though, I was just getting started with this; the real
gains in terms of removed ASM files are still to come. But in the
meantime, the funding situation has become even better in terms of
allowing me to focus on things nobody asked for. 🙂 So here's a slightly
better idea: Instead of spending two more pushes on this, let's shoot for
TH05 MAINE.EXE position independence next. If I manage to get
it done, we'll have a 100% position-independent TH05 by the time
-Tom- finishes his MAIN.EXE PI demo, rather
than the 94% we'd get from just MAIN.EXE. That's bound to
make a much better impression on all the people who will then
(re-)discover the project.
TH01 pellets are coming up next, and for the first time, we'll have the
chance to move hardcoded sprite data from ASM land to C land. As it would
turn out, bad luck with the 2-byte alignment at the end of
REIIDEN.EXE's data segment pretty much forces us to declare
TH01's pellet sprites in C if we want to decompile the final few pellet
functions without ugly workarounds for the float literals there. And while
I could have just converted them into a C array and called it a day, it
did raise the question of when we are going to do this The Right And
Moddable Way, by auto-converting actual image files into ASM or C arrays
during the build process. These arrays are even more annoying to edit in
C, after all – unlike TASM, the old C++ we have to work with doesn't
support binary number literals, only hexadecimal or, gasp, octal.
Without the explicit funding for such a converter,
I reached out to
GitHub, asking backers and outside contributors whether they'd be in
favor of it. As something that requires no RE skills and collides with
nothing else, it would be a perfect task for C/C++ coders who want to
support ReC98 with something other than money.
And surprisingly, those still exist!
Jonathan Campbell, of
DOSBox-X fame,
went ahead and implemented all the required functionality, within just a
few days. Thanks again! The result is probably a lot more portable than it
would have been if I had written it. Which is pretty relevant for future
port authors – any additional tooling we write ourselves should not
add to the list of problems they'll have to worry about.
Right now, all of the sprites are #included from the big ASM
dump files, which means that they have to be converted before those files
are assembled during the 32-bit build part. We could have introduced a
third distinct build step there, perhaps even a 16-bit one so that we can
use Turbo C++ 4.0J to also compile the converter… However, the more
reasonable option was to do this at the beginning of the 32-bit build
step, and add a 32-bit Windows C++ compiler to the list of tools required
for ReC98's build process.
And the best choice for ReC98 is, in fact… 🥁… the 20-year-old Borland C++
5.5 freeware release.
See the README for a lengthy justification, as well as
download links.
So yes, all sprites mentioned in the GitHub issue can now be modded by
simply editing .BMP files, using an image editor of your choice. 🖌
And now that that's dealt with, it's finally time for more actual
progress! TH01 pellets coming tomorrow.