⮜ Blog

⮜ List of tags

Showing all posts tagged
and

📝 Posted:
🚚 Summary of:
P0205, P0206
Commits:
3259190...327730f, 327730f...454c105
💰 Funded by:
[Anonymous], Yanga
🏷 Tags:

Oh look, it's another rather short and straightforward boss with a rather small number of bugs and quirks. Yup, contrary to the character's popularity, Mima's premiere is really not all that special in terms of code, and continues the trend established with 📝 Kikuri and 📝 SinGyoku. I've already covered 📝 the initial sprite-related bugs last November, so this post focuses on the main code of the fight itself. The overview:


And there aren't even any weird hitboxes this time. What is maybe special about Mima, however, is how there's something to cover about all of her patterns. Since this is TH01, it's won't surprise anyone that the rotating square patterns are one giant copy-pasta of unblitting, updating, and rendering code. At least ZUN placed the core polar→Cartesian transformation in a separate function for creating regular polygons with an arbitrary number of sides, which might hint toward some more varied shapes having been planned at one point?
5 of the 6 patterns even follow the exact same steps during square update frames:

  1. Calculate square corner coordinates
  2. Unblit the square
  3. Update the square angle and radius
  4. Use the square corner coordinates for spawning pellets or missiles
  5. Recalculate square corner coordinates
  6. Render the square

Notice something? Bullets are spawned before the corner coordinates are updated. That's why their initial positions seem to be a bit off – they are spawned exactly in the corners of the square, it's just that it's the square from 8 frames ago. :tannedcirno:

Mima's first pattern on Normal difficulty.

Once ZUN reached the final laser pattern though, he must have noticed that there's something wrong there… or maybe he just wanted to fire those lasers independently from the square unblit/update/render timer for a change. Spending an additional 16 bytes of the data segment for conveniently remembering the square corner coordinates across frames was definitely a decent investment.

Mima's laser pattern on Lunatic difficulty, now with correct laser spawn positions. If this pattern reminds you of the game crashing immediately when defeating Mima, 📝 check out the Elis blog post for the details behind this bug, and grab the bugfix patch from there.

When Mima isn't shooting bullets from the corners of a square or hopping across the playfield, she's raising flame pillars from the bottom of the playfield within very specifically calculated random ranges… which are then rendered at byte-aligned VRAM positions, while collision detection still uses their actual pixel position. Since I don't want to sound like a broken record all too much, I'll just direct you to 📝 Kikuri, where we've seen the exact same issue with the teardrop ripple sprites. The conclusions are identical as well.

Mima's flame pillar pattern. This video was recorded on a particularly unlucky seed that resulted in great disparities between a pillar's internal X coordinate and its byte-aligned on-screen appearance, leading to lots of right-shifted hitboxes.
Also note how the change from the meteor animation to the three-arm 🚫 casting sprite doesn't unblit the meteor, and leaves that job to any sprite that happens to fly over those pixels.

However, I'd say that the saddest part about this pattern is how choppy it is, with the circle/pillar entities updating and rendering at a meager 7 FPS. Why go that low on purpose when you can just make the game render ✨ smoothly ✨ instead?

So smooth it's almost uncanny.

The reason quickly becomes obvious: With TH01's lack of optimization, going for the full 56.4 FPS would have significantly slowed down the game on its intended 33 MHz CPUs, requiring more than cheap surface-level ASM optimization for a stable frame rate. That might very well have been ZUN's reason for only ever rendering one circle per frame to VRAM, and designing the pattern with these time offsets in mind. It's always been typical for PC-98 developers to target the lowest-spec models that could possibly still run a game, and implementing dynamic frame rates into such an engine-less game is nothing I would wish on anybody. And it's not like TH01 is particularly unique in its choppiness anyway; low frame rates are actually a rather typical part of the PC-98 game aesthetic.


The final piece of weirdness in this fight can be found in phase 1's hop pattern, and specifically its palette manipulation. Just from looking at the pattern code itself, each of the 4 hops is supposed to darken the hardware palette by subtracting #444 from every color. At the last hop, every color should have therefore been reduced to a pitch-black #000, leaving the player completely blind to the movement of the chasing pellets for 30 frames and making the pattern quite ghostly indeed. However, that's not what we see in the actual game:

Nothing in the pattern's code would cause the hardware palette to get brighter before the end of the pattern, and yet…
The expected version doesn't look all too unfair, even on Lunatic… well, at least at the default rank pellet speed shown in this video. At maximum pellet speed, it is in fact rather brutal.

Looking at the frame counter, it appears that something outside the pattern resets the palette every 40 frames. The only known constant with a value of 40 would be the invincibility frames after hitting a boss with the Orb, but we're not hitting Mima here… :thonk:
But as it turns out, that's exactly where the palette reset comes from: The hop animation darkens the hardware palette directly, while the 📝 infamous 12-parameter boss collision handler function unconditionally resets the hardware palette to the "default boss palette" every 40 frames, regardless of whether the boss was hit or not. I'd classify this as a bug: That function has no business doing periodic hardware palette resets outside the invincibility flash effect, and it completely defies common sense that it does.

That explains one unexpected palette change, but could this function possibly also explain the other infamous one, namely, the temporary green discoloration in the Konngara fight? That glitch comes down to how the game actually uses two global "default" palettes: a default boss palette for undoing the invincibility flash effect, and a default stage palette for returning the colors back to normal at the end of the bomb animation or when leaving the Pause menu. And sure enough, the stage palette is the one with the green color, while the boss palette contains the intended colors used throughout the fight. Sending the latter palette to the graphics chip every 40 frames is what corrects the discoloration, which would otherwise be permanent.

The green color comes from BOSS7_D1.GRP, the scrolling background of the entrance animation. That's what turns this into a clear bug: The stage palette is only set a single time in the entire fight, at the beginning of the entrance animation, to the palette of this image. Apart from consistency reasons, it doesn't even make sense to set the stage palette there, as you can't enter the Pause menu or bomb during a blocking animation function.
And just 3 lines of code later, ZUN loads BOSS8_A1.GRP, the main background image of the fight. Moving the stage palette assignment there would have easily prevented the discoloration.

But yeah, as you can tell, palette manipulation is complete jank in this game. Why differentiate between a stage and a boss palette to begin with? The blocking Pause menu function could have easily copied the original palette to a local variable before darkening it, and then restored it after closing the menu. It's not so easy for bombs as the intended palette could change between the start and end of the animation, but the code could have still been simplified a lot if there was just one global "default palette" variable instead of two. Heck, even the other bosses who manipulate their palettes correctly only do so because they manually synchronize the two after every change. The proper defense against bugs that result from wild mutation of global state is to get rid of global state, and not to put up safety nets hidden in the middle of existing effect code.

The easiest way of reproducing the green discoloration bug in the TH01 Konngara fight, timed to show the maximum amount of time the discoloration can possibly last.

In any case, that's Mima done! 7th PC-98 Touhou boss fully decompiled, 24 bosses remaining, and 59 functions left in all of TH01.


In other thrilling news, my call for secondary funding priorities in new TH01 contributions has given us three different priorities so far. This raises an interesting question though: Which of these contributions should I now put towards TH01 immediately, and which ones should I leave in the backlog for the time being? Since I've never liked deciding on priorities, let's turn this into a popularity contest instead: The contributions with the least popular secondary priorities will go towards TH01 first, giving the most popular priorities a higher chance to still be left over after TH01 is done. As of this delivery, we'd have the following popularity order:

  1. TH05 (1.67 pushes), from T0182
  2. Seihou (1 push), from T0184
  3. TH03 (0.67 pushes), from T0146

Which means that T0146 will be consumed for TH01 next, followed by T0184 and then T0182. I only assign transactions immediately before a delivery though, so you all still have the chance to change up these priorities before the next one.

Next up: The final boss of TH01 decompilation, YuugenMagan… if the current or newly incoming TH01 funds happen to be enough to cover the entire fight. If they don't turn out to be, I will have to pass the time with some Seihou work instead, missing the TH01 anniversary deadline as a result. Edit (2022-07-18): Thanks to Yanga for securing the funding for YuugenMagan after all! That fight will feature slightly more than half of all remaining code in TH01's REIIDEN.EXE and the single biggest function in all of PC-98 Touhou, let's go!

📝 Posted:
🚚 Summary of:
P0105, P0106, P0107, P0108
Commits:
3622eb6...11b776b, 11b776b...1f1829d, 1f1829d...1650241, 1650241...dcf4e2c
💰 Funded by:
Yanga
🏷 Tags:

And indeed, I got to end my vacation with a lot of image format and blitting code, covering the final two formats, .GRC and .BOS. .GRC was nothing noteworthy – one function for loading, one function for byte-aligned blitting, and one function for freeing memory. That's it – not even a unblitting function for this one. .BOS, on the other hand…

…has no generic (read: single/sane) implementation, and is only implemented as methods of some boss entity class. And then again for Sariel's dress and wand animations, and then again for Reimu's animations, both of which weren't even part of these 4 pushes. Looking forward to decompiling essentially the same algorithms all over again… And that's how TH01 became the largest and most bloated PC-98 Touhou game. So yeah, still not done with image formats, even at 44% RE.

This means I also had to reverse-engineer that "boss entity" class… yeah, what else to call something a boss can have multiple of, that may or may not be part of a larger boss sprite, may or may not be animated, and that may or may not have an orb hitbox?
All bosses except for Kikuri share the same 5 global instances of this class. Since renaming all these variables in ASM land is tedious anyway, I went the extra mile and directly defined separate, meaningful names for the entities of all bosses. These also now document the natural order in which the bosses will ultimately be decompiled. So, unless a backer requests anything else, this order will be:

  1. Konngara
  2. Sariel
  3. Elis
  4. Kikuri
  5. SinGyoku
  6. (code for regular card-flipping stages)
  7. Mima
  8. YuugenMagan

As everyone kind of expects from TH01 by now, this class reveals yet another… um, unique and quirky piece of code architecture. In addition to the position and hitbox members you'd expect from a class like this, the game also stores the .BOS metadata – width, height, animation frame count, and 📝 bitplane pointer slot number – inside the same class. But if each of those still corresponds to one individual on-screen sprite, how can YuugenMagan have 5 eye sprites, or Kikuri have more than one soul and tear sprite? By duplicating that metadata, of course! And copying it from one entity to another :onricdennat:
At this point, I feel like I even have to congratulate the game for not actually loading YuugenMagan's eye sprites 5 times. But then again, 53,760 bytes of waste would have definitely been noticeable in the DOS days. Makes much more sense to waste that amount of space on an unused C++ exception handler, and a bunch of redundant, unoptimized blitting functions :tannedcirno:

(Thinking about it, YuugenMagan fits this entire system perfectly. And together with its position in the game's code – last to be decompiled means first on the linker command line – we might speculate that YuugenMagan was the first boss to be programmed for TH01?)

So if a boss wants to use sprites with different sizes, there's no way around using another entity. And that's why Girl-Elis and Bat-Elis are two distinct entities internally, and have to manually sync their position. Except that there's also a third one for Attacking-Girl-Elis, because Girl-Elis has 9 frames of animation in total, and the global .BOS bitplane pointers are divided into 4 slots of only 8 images each. :zunpet:
Same for SinGyoku, who is split into a sphere entity, a person entity, and a… white flash entity for all three forms, all at the same resolution. Or Konngara's facial expressions, which also require two entities just for themselves.


And once you decompile all this code, you notice just how much of it the game didn't even use. 13 of the 50 bytes of the boss entity class are outright unused, and 10 bytes are used for a movement clamping and lock system that would have been nice if ZUN also used it outside of Kikuri's soul sprites. Instead, all other bosses ignore this system completely, and just party on the X/Y coordinates of the boss entities directly.

As for the rendering functions, 5 out of 10 are unused. And while those definitely make up less than half of the code, I still must have spent at least 1 of those 4 pushes on effectively unused functionality.
Only one of these functions lends itself to some speculation. For Elis' entrance animation, the class provides functions for wavy blitting and unblitting, which use a separate X coordinate for every line of the sprite. But there's also an unused and sort of broken one for unblitting two overlapping wavy sprites, located at the same Y coordinate. This might indicate that Elis could originally split herself into two sprites, similar to TH04 Stage 6 Yuuka? Or it might just have been some other kind of animation effect, who knows.


After over 3 months of TH01 progress though, it's finally time to look at other games, to cover the rest of the crowdfunding backlog. Next up: Going back to TH05, and getting rid of those last PI false positives. And since I can potentially spend the next 7 weeks on almost full-time ReC98 work, I've also re-opened the store until October!