Alright, no more big code maintenance tasks that absolutely need to be
done right now. Time to really focus on parts 6 and 7 of repaying
technical debt, right? Except that we don't get to speed up just yet, as
TH05's barely decompilable PMD file loading function is rather…
complicated.
Fun fact: Whenever I see an unusual sequence of x86 instructions in PC-98
Touhou, I first consult the disassembly of Wolfenstein 3D. That game was
originally compiled with the quite similar Borland C++ 3.0, so it's quite
helpful to compare its ASM to the
officially released source
code. If I find the instructions in question, they mostly come from
that game's ASM code, leading to the amusing realization that "even John
Carmack was unable to get these instructions out of this compiler"
This time though, Wolfenstein 3D did point me
to Borland's intrinsics for common C functions like memcpy()
and strchr(), available via #pragma intrinsic.
Bu~t those unfortunately still generate worse code than what ZUN
micro-optimized here. Commenting how these sequences of instructions
should look in C is unfortunately all I could do here.
The conditional branches in this function did compile quite nicely
though, clarifying the control flow, and clearly exposing a ZUN
bug: TH05's snd_load() will hang in an infinite loop when
trying to load a non-existing -86 BGM file (with a .M2
extension) if the corresponding -26 BGM file (with a .M
extension) doesn't exist either.
Unsurprisingly, the PMD channel monitoring code in TH05's Music Room
remains undecompilable outside the two most "high-level" initialization
and rendering functions. And it's not because there's data in the
middle of the code segment – that would have actually been possible with
some #pragmas to ensure that the data and code segments have
the same name. As soon as the SI and DI registers are referenced
anywhere, Turbo C++ insists on emitting prolog code to save these
on the stack at the beginning of the function, and epilog code to restore
them from there before returning.
Found that out in
September 2019, and confirmed that there's no way around it. All the
small helper functions here are quite simply too optimized, throwing away
any concern for such safety measures. 🤷
Oh well, the two functions that were decompilable at least indicate
that I do try.
Within that same 6th push though, we've finally reached the one function
in TH05 that was blocking further progress in TH04, allowing that game
to finally catch up with the others in terms of separated translation
units. Feels good to finally delete more of those .ASM files we've
decompiled a while ago… finally!
But since that was just getting started, the most satisfying development
in both of these pushes actually came from some more experiments with
macros and inline functions for near-ASM code. By adding
"unused" dummy parameters for all relevant registers, the exact input
registers are made more explicit, which might help future port authors who
then maybe wouldn't have to look them up in an x86 instruction
reference quite as often. At its best, this even allows us to
declare certain functions with the __fastcall convention and
express their parameter lists as regular C, with no additional
pseudo-registers or macros required.
As for output registers, Turbo C++'s code generation turns out to be even
more amazing than previously thought when it comes to returning
pseudo-registers from inline functions. A nice example for
how this can improve readability can be found in this piece of TH02 code
for polling the PC-98 keyboard state using a BIOS interrupt:
inline uint8_t keygroup_sense(uint8_t group) {
_AL = group;
_AH = 0x04;
geninterrupt(0x18);
// This turns the output register of this BIOS call into the return value
// of this function. Surprisingly enough, this does *not* naively generate
// the `MOV AL, AH` instruction you might expect here!
return _AH;
}
void input_sense(void)
{
// As a result, this assignment becomes `_AH = _AH`, which Turbo C++
// never emits as such, giving us only the three instructions we need.
_AH = keygroup_sense(8);
// Whereas this one gives us the one additional `MOV BH, AH` instruction
// we'd expect, and nothing more.
_BH = keygroup_sense(7);
// And now it's obvious what both of these registers contain, from just
// the assignments above.
if(_BH & K7_ARROW_UP || _AH & K8_NUM_8) {
key_det |= INPUT_UP;
}
// […]
}
I love it. No inline assembly, as close to idiomatic C code as something
like this is going to get, yet still compiling into the minimum possible
number of x86 instructions on even a 1994 compiler. This is how I keep
this project interesting for myself during chores like these.
We might have even reached peak
inline already?
And that's 65% of technical debt in the SHARED segment repaid
so far. Next up: Two more of these, which might already complete that
segment? Finally!
So, TH05 OP.EXE. The first half of this push started out
nicely, with an easy decompilation of the entire player character
selection menu. Typical ZUN quality, with not much to say about it. While
the overall function structure is identical to its TH04 counterpart, the
two games only really share small snippets inside these functions, and do
need to be RE'd separately.
The high score viewing (not registration) menu would have been next.
Unfortunately, it calls one of the GENSOU.SCR loading
functions… which are all a complete mess that still needed to be sorted
out first. 5 distinct functions in 6 binaries, and of course TH05 also
micro-optimized its MAIN.EXE version to directly use the DOS
INT 21h file loading API instead of master.lib's wrappers.
Could have all been avoided with a single method on the score data
structure, taking a player character ID and a difficulty level as
parameters…
So, no score menu in this push then. Looking at the other end of the ASM
code though, we find the starting functions for the main game, the Extra
Stage, and the demo replays, which did fit perfectly to round out
this push.
Which is where we find an easter egg! 🥚 The hidden 5th demo replay,
DEMO5.REC, is actually a full Extra Stage clear with Mima,
with 3 bombs and 1 death, obviously recorded by ZUN himself. To watch it
without modding the game, unlock the Extra Stage with all 4 characters,
then hold both the ⬅️ left and ➡️ right arrow keys in the main menu while
waiting for the usual demo replay.
I can't possibly be the first one to discover this, but I couldn't find
any other mention of it. Edit (2021-03-15): ZUN did in fact document this replay
in Section 6 of TH05's OMAKE.TXT, along with the exact method
to view it.
Thanks
to Popfan for the discovery!
Here's a recording of the whole replay:
Note how the boss dialogue is skipped. MAIN.EXE actually
contains no less than 6 if() branches just to distinguish
this overly long replay from the regular ones.
I'd really like to do the TH04 and TH05 main menus in parallel, since we
can expect a bit more shared code after all the initial differences.
Therefore, I'm going to put the next "anything" push towards covering the
TH04 version of those functions. Next up though, it's back to TH01, with
more redundant image format code…
Finally, after a long while, we've got two pushes with barely anything to
talk about! Continuing the road towards 100% PI for TH05, these were
exactly the two pushes that TH05 MAINE.EXE PI was estimated
to additionally cost, relative to TH04's. Consequently, they mostly went
to TH05's unique data structures in the ending cutscenes, the score name
registration menu, and the
staff roll.
A unique feature in there is TH05's support for automatic text color
changes in its ending scripts, based on the first full-width Shift-JIS
codepoint in a line. The \c=codepoint,color
commands at the top of the _ED??.TXT set up exactly this
codepoint→color mapping. As far as I can tell, TH05 is the only Touhou
game with a feature like this – even the Windows Touhou games went back to
manually spelling out each color change.
The orb particles in TH05's staff roll also try to be a bit unique by
using 32-bit X and Y subpixel variables for their current position. With
still just 4 fractional bits, I can't really tell yet whether the extended
range was actually necessary. Maybe due to how the "camera scrolling"
through "space" was implemented? All other entities were pretty much the
usual fare, though.
12.4, 4.4, and now a 28.4 fixed-point format… yup,
📝 C++ templates were
definitely the right choice.
At the end of its staff roll, TH05 not only displays
the usual performance
verdict, but then scrolls in the scores at the end of each stage
before switching to the high score menu. The simplest way to smoothly
scroll between two full screens on a PC-98 involves a separate bitmap…
which is exactly what TH05 does here, reserving 28,160 bytes of its global
data segment for just one overly large monochrome 320×704 bitmap where
both the screens are rendered to. That's… one benefit of splitting your
game into multiple executables, I guess?
Not sure if it's common knowledge that you can actually scroll back and
forth between the two screens with the Up and Down keys before moving to
the score menu. I surely didn't know that before. But it makes sense –
might as well get the most out of that memory.
The necessary groundwork for all of this may have actually made
TH04's (yes, TH04's) MAINE.EXE technically
position-independent. Didn't quite reach the same goal for TH05's – but
what we did reach is ⅔ of all PC-98 Touhou code now being
position-independent! Next up: Celebrating even more milestones, as
-Tom- is about to finish development on his TH05
MAIN.EXE PI demo…
🎉 TH04's and TH05's OP.EXE are now fully
position-independent! 🎉
What does this mean?
You can now add any data or code to the main menus of the two games, by
simply editing the ReC98 source, writing your mod in ASM or C/C++, and
recompiling the code. Since all absolute memory addresses have now been
converted to labels, this will work without causing any instability. See
the position independence section in the FAQ
for a more thorough explanation about why this was a problem.
What does this not mean?
The original ZUN code hasn't been completely reverse-engineered yet, let
alone decompiled. Pretty much all of that is still ASM, which might make
modding a bit inconvenient right now.
Since this push was otherwise pretty unremarkable, I made a video
demonstrating a few basic things you can do with this:
Now, what to do for the last outstanding Touhou Patch Center push?
Bullets, or resident structures?