⮜ Blog

⮜ List of tags

Showing all posts tagged
,
and

📝 Posted:
🚚 Summary of:
P0262, P0263
Commits:
ae2fc28...741d889, 741d889...46cd6e7
💰 Funded by:
Blue Bolt, [Anonymous]
🏷 Tags:

And once again, the Shuusou Gyoku task was too complex to be satisfyingly solved within a single month. Even just finding provably correct loop sections in both the original and arranged MIDI files required some rather involved detection algorithms. I could have just defined what sounded like correct loops, but the results of these algorithms were quite surprising indeed. Turns out that not even Seihou is safe from ZUN quirks, and some tracks technically loop much later than you'd think they do, or don't loop at all. And since I then wanted to put these MIDI loops back into the game to ensure perfect synchronization between the recordings and MIDI versions, I ended up rewriting basically all the MIDI code in a cross-platform way. This rewrite also uncovered a pbg bug that has traveled from Shuusou Gyoku into Windows Touhou, where it survived until ZUN ultimately removed all MIDI code in TH11 (!)

Fortunately, the backlog still had enough general PC-98 Touhou funds that I could spend on picking some soon-important low-hanging fruit, giving me something to deliver for the end of the month after all. TH04 and TH05 use almost identical code for their main/option menus, so decompiling it would make number go up quite significantly and the associated blog post won't be that long…

Wait, what's this, a bug report from touhou-memories concerning the website?

  1. Tab switchers tended to break on certain Firefox versions, and
  2. video playback didn't work on Microsoft Edge at all?

Those are definitely some high-priority bugs that demand immediate attention.

  1. Microsoft Edge's anti-support of AV1
  2. TH04/TH05's main/option menu
  3. TH04/TH05's first-launch sound setup menu
  4. TH05's title animation ☯️

The tab switcher issue was easily fixed by replacing the previous z-index trickery with a more robust solution involving the hidden attribute. The second one, however, is much more aggravating, because video playback on Edge has been broken ever since I 📝 switched the preferred video codec to AV1.
This goes so far beyond not supporting a specific codec. Usually, unsupported codecs aren't supposed to be an issue: As soon as you start using the HTML <video> tag, you'll learn that not every browser supports all codecs. And so you set up an encoding pipeline to serve each video in a mix of new and ancient formats, put the <source> tag of the most preferred codec first, and rest assured that browsers will fall back on the best-supported option as necessary. Except that Edge doesn't even try, and insists on staying on a non-playing AV1 video. 🙄

The codecs parameter for the <source> type attribute was the first potential solution I came across. Specifying the video codec down to the finest encoding details right in the HTML markup sounds like a good idea, similar to specifying sizes of images and videos to prevent layout reflows on long pages during the initial page load. So why was this the first time I heard of this feature? The fact that there isn't a simple ffprobe -show_html_codecs_string command to retrieve this string might already give a clue about how useful it is in practice. Instead, you have to manually piece the string together by grepping your way through all of a video's metadata
…and then it still doesn't change anything about Edge's behavior, even when also specifying the string for the VP9 and VP8 sources. Calling the infamously ridiculous HTMLMediaElement.canPlayType() method with a representative parameter of "video/webm; codecs=av01.1.04M.08.0.000.01.13.00.0" explains why: Both the AV1-supporting Chrome and Edge return "probably", but only the former can actually play this format. 🤦

But wait, there is an AV1 video extension in the Microsoft Store that would add support to any unspecified favorite video app. Except that it stopped working inside Edge as of version 116. And even if it did: If you can't query the presence of this extension via JavaScript, it might as well not exist at all.
Not to mention that the favorite video app part is obviously a lie as a lot of widely preferred Windows video apps are bundled with their own codecs, and have probably long supported AV1.

In the end, there's no way around the utter desperation move of removing the AV1 <source> for Edge users. Serving each video in two other formats means that we can at least do something here – try visiting the GitHub release page of the P0234-1 TH01 Anniversary Edition build in Edge and you also don't get to see anything, because that video uses AV1 and GitHub understandably doesn't re-encode every uploaded video into a variety of old formats.
Just for comparison, I tried both that page and the ReC98 blog on an old Android 6 phone from 2014, and even that phone picked and played the AV1 videos with the latest available Chrome and Firefox versions. This was the phone whose available Firefox version didn't support VP9 in 2019, which was my initial reason for adding the VP8 versions. Looks like it's finally time to drop those… 🤔 Maybe in the far future once I start running out of space on this server.

Removing the <source> tags can be done in one of two places:

  1. server-side, detecting Edge via the User-Agent header, or
  2. client-side, using navigator.userAgentData.brands.

I went with 2) because more dynamic server-side code would only move us further away from static site generation, which would make a lot of sense as the next evolutionary step in the architecture of this website. The client-side solution is much simpler too, and we can defer the deletion until a user actually hovers over a specific video.
And while we're at it, let's also add a popup complaining about this whole state of affairs. Edge is heavily marketed inside Windows as "the modern browser recommended by Microsoft", and you sure wouldn't expect low-quality chroma-subsampled VP9 from such a tagline. With such a level of anti-support for AV1, Edge users deserve to know exactly what's going on, especially since this post also explains what they will encounter on other websites.

A popup on top of a ReC98 blog video, showing the caption "⚠️ Edge does not support AV1, falling back on low-quality video…"
That's the polite way of putting it.

Alright, where was I? For TH01, the main menu was the last thing I decompiled before the 100% finalization mark, so it's rather anticlimactic to already cover the TH04/TH05 one now, with both of the games still being very far away from 100%, just because people will soon want to translate the description text in the bottom-right corner of the screen. But then again, the ZUN Soft logo animation would make for an even nicer final piece of decompiled code, especially since the bouncing-ball logo from TH01, TH02, and TH03 was the very first decompilation I did, all the way back in 2015.

The code quality of ZUN's VRAM-based menus has barely increased between TH01 and TH05. Both the top-level and option menu still need to know the bounding rectangle of the other one to unblit the right pixels when switching between the two. And since ZUN sure loved hardcoded and copy-pasted numbers in the PC-98 days, the coordinates both tend to be excessively large, and excessively wrong. :zunpet: Luckily, each menu item comes with its own correct unblitting rectangle, which avoids any graphical glitches that would otherwise occur.
As for actual observable quirks and bugs, these menus only contain one of each, and both are exclusive to TH04:

And yes, these videos do have a frame rate of 2 FPS.

Now that 100% finalization of their OP.EXE binaries is within reach, all this bloat made me think about the viability of a 📝 single-executable build for TH04's and TH05's debloated and anniversary versions. It would be really nice to have such a build ready before I start working on the non-ASCII translations – not just because they will be based on the anniversary branch by default, but also because it would significantly help their development if there are 4 fewer executables to worry about.
However, it's not as simple for these games as it was for TH01. The unique code in their OP.EXE and MAINE.EXE binaries is much larger than Borland's easily removed C++ exception handler, so I'd have to remove a lot more bloat to keep the resulting single binary at or below the size of the original MAIN.EXE. But I'm sure going to try.


Speaking of code that can be debloated for great effect: The second push of this delivery focused on the first-launch sound setup menu, whose BGM and sound effect submenus are almost complete code duplicates of each other. The debloated branch could easily remove more than half of the code in there, yielding another ≈800 bytes in case we need them.
If hex-editing MIKO.CFG is more convenient for you than deleting that file, you can set its first byte to FF to re-trigger this menu. Decompiling this screen was not only relevant now because it contains text rendered with font ROM glyphs and it would help dig our way towards more important strings in the data segment, but also because of its visual style. I can imagine many potential mods that might want to use the same backgrounds and box graphics for their menus.

TH04's first-launch sound setup menu, showing the BGM mode selectionTH05's first-launch sound setup menu, showing the sound effect mode selection
How about an initial language selection menu in the same style?

With the two submenus being shown in a fixed sequence, there's not a lot of room for the code to do anything wrong, and it's even more identical between the two games than the main menu already was. Thankfully, ZUN just reblits the respective options in the new color when moving the cursor, with no 📝 palette tricks. TH04's background image only uses 7 colors, so he could have easily reserved 3 colors for that. In exchange, the TH05 image gets to use the full 16 colors with no change to the code.


Rounding out this delivery, we also got TH05's rolling Yin-Yang Orb animation before the title screen… and it's just more bloat and landmines on a smaller scale that might be noticeable on slower PC-98 models. In total, there are three unnecessary inter-page copies of the entire VRAM that can easily insert lag frames, and two minor page-switching landmines that can potentially lead to tearing on the first frame of the roll or fade animation. Clearly, ZUN did not have smoothness or code quality in mind there, as evidenced by the fact that this animation simply displays 8 .PI files in sequence. But hey, a short animation like this is 📝 another perfectly appropriate place for a quick-and-dirty solution if you develop with a deadline.
And that's 1.30% of all PC-98 Touhou code finalized in two pushes! We're slowly running out of these big shared pieces of ASM code…

I've been neglecting TH03's OP.EXE quite a bit since it simply doesn't contain any translatable plaintext outside the Music Room. All menu labels are gaiji, and even the character selection menu displays its monochrome character names using the 4-plane sprites from CHNAME.BFT. Splitting off half of its data into a separate .ASM file was more akin to getting out a jackhammer to free up the room in front of the third remaining Music Room, but now we're there, and I can decompile all three of them in a natural way, with all referenced data.
Next up, therefore: Doing just that, securing another important piece of text for the upcoming non-ASCII translations and delivering another big piece of easily finalized code. I'm going to work full-time on ReC98 for almost all of December, and delivering that and the Shuusou Gyoku SC-88Pro recording BGM back-to-back should free up about half of the slightly higher cap for this month.

📝 Posted:
🚚 Summary of:
P0165, P0166, P0167
Commits:
7a0e5d8...f2bca01, f2bca01...e697907, e697907...c2de6ab
💰 Funded by:
Ember2528
🏷 Tags:

OK, TH01 missile bullets. Can we maybe have a well-behaved entity type, without any weirdness? Just once?

Ehh, kinda. Apart from another 150 bytes wasted on unused structure members, this code is indeed more on the low end in terms of overall jank. It does become very obvious why dodging these missiles in the YuugenMagan, Mima, and Elis fights feels so awful though: An unfair 46×46 pixel hitbox around Reimu's center pixel, combined with the comeback of 📝 interlaced rendering, this time in every stage. ZUN probably did this because missiles are the only 16×16 sprite in TH01 that is blitted to unaligned X positions, which effectively ends up touching a 32×16 area of VRAM per sprite.
But even if we assume VRAM writes to be the bottleneck here, it would have been totally possible to render every missile in every frame at roughly the same amount of CPU time that the original game uses for interlaced rendering:

That's an optimization that would have significantly benefitted the game, in contrast to all of the fake ones introduced in later games. Then again, this optimization is actually something that the later games do, and it might have in fact been necessary to achieve their higher bullet counts without significant slowdown.

Unfortunately, it was only worth decompiling half of the missile code right now, thanks to gratuitous FPU usage in the other half, where 📝 double variables are compared to float literals. That one will have to wait 📝 until after SinGyoku.


After some effectively unused Mima sprite effect code that is so broken that it's impossible to make sense out of it, we get to the final feature I wanted to cover for all bosses in parallel before returning to Sariel: The separate sprite background storage for moving or animated boss sprites in the Mima, Elis, and Sariel fights. But, uh… why is this necessary to begin with? Doesn't TH01 already reserve the other VRAM page for backgrounds?
Well, these sprites are quite big, and ZUN didn't want to blit them from main memory on every frame. After all, TH01 and TH02 had a minimum required clock speed of 33 MHz, half of the speed required for the later three games. So, he simply blitted these boss sprites to both VRAM pages, leading the usual unblitting calls to only remove the other sprites on top of the boss. However, these bosses themselves want to move across the screen… and this makes it necessary to save the stage background behind them in some other way.

Enter .PTN, and its functions to capture a 16×16 or 32×32 square from VRAM into a sprite slot. No problem with that approach in theory, as the size of all these bigger sprites is a multiple of 32×32; splitting a larger sprite into these smaller 32×32 chunks makes the code look just a little bit clumsy (and, of course, slower).
But somewhere during the development of Mima's fight, ZUN apparently forgot that those sprite backgrounds existed. And once Mima's 🚫 casting sprite is blitted on top of her regular sprite, using just regular sprite transparency, she ends up with her infamous third arm:

TH01 Mima's third arm

Ironically, there's an unused code path in Mima's unblit function where ZUN assumes a height of 48 pixels for Mima's animation sprites rather than the actual 64. This leads to even clumsier .PTN function calls for the bottom 128×16 pixels… Failing to unblit the bottom 16 pixels would have also yielded that third arm, although it wouldn't have looked as natural. Still wouldn't say that it was intentional; maybe this casting sprite was just added pretty late in the game's development?


So, mission accomplished, Sariel unblocked… at 2¼ pushes. :thonk: That's quite some time left for some smaller stage initialization code, which bundles a bunch of random function calls in places where they logically really don't belong. The stage opening animation then adds a bunch of VRAM inter-page copies that are not only redundant but can't even be understood without knowing the hidden internal state of the last VRAM page accessed by previous ZUN code…
In better news though: Turbo C++ 4.0 really doesn't seem to have any complexity limit on inlining arithmetic expressions, as long as they only operate on compile-time constants. That's how we get macro-free, compile-time Shift-JIS to JIS X 0208 conversion of the individual code points in the 東方★靈異伝 string, in a compiler from 1994. As long as you don't store any intermediate results in variables, that is… :tannedcirno:

But wait, there's more! With still ¼ of a push left, I also went for the boss defeat animation, which includes the route selection after the SinGyoku fight.
As in all other instances, the 2× scaled font is accomplished by first rendering the text at regular 1× resolution to the other, invisible VRAM page, and then scaled from there to the visible one. However, the route selection is unique in that its scaled text is both drawn transparently on top of the stage background (not onto a black one), and can also change colors depending on the selection. It would have been no problem to unblit and reblit the text by rendering the 1× version to a position on the invisible VRAM page that isn't covered by the 2× version on the visible one, but ZUN (needlessly) clears the invisible page before rendering any text. :zunpet: Instead, he assigned a separate VRAM color for both the 魔界 and 地獄 options, and only changed the palette value for these colors to white or gray, depending on the correct selection. This is another one of the 📝 rare cases where TH01 demonstrates good use of PC-98 hardware, as the 魔界へ and 地獄へ strings don't need to be reblitted during the selection process, only the Orb "cursor" does.

Then, why does this still not count as good-code? When changing palette colors, you kinda need to be aware of everything else that can possibly be on screen, which colors are used there, and which aren't and can therefore be used for such an effect without affecting other sprites. In this case, well… hover over the image below, and notice how Reimu's hair and the bomb sprites in the HUD light up when Makai is selected:

Demonstration of palette changes in TH01's route selection

This push did end on a high note though, with the generic, non-SinGyoku version of the defeat animation being an easily parametrizable copy. And that's how you decompile another 2.58% of TH01 in just slightly over three pushes.


Now, we're not only ready to decompile Sariel, but also Kikuri, Elis, and SinGyoku without needing any more detours into non-boss code. Thanks to the current TH01 funding subscriptions, I can plan to cover most, if not all, of Sariel in a single push series, but the currently 3 pending pushes probably won't suffice for Sariel's 8.10% of all remaining code in TH01. We've got quite a lot of not specifically TH01-related funds in the backlog to pass the time though.

Due to recent developments, it actually makes quite a lot of sense to take a break from TH01: spaztron64 has managed what every Touhou download site so far has failed to do: Bundling all 5 game onto a single .HDI together with pre-configured PC-98 emulators and a nice boot menu, and hosting the resulting package on a proper website. While this first release is already quite good (and much better than my attempt from 2014), there is still a bit of room for improvement to be gained from specific ReC98 research. Next up, therefore: