⮜ Blog

⮜ List of tags

Showing all posts tagged
and

📝 Posted:
🚚 Summary of:
P0223, P0224, P0225
Commits:
139746c...371292d, 371292d...8118e61, 8118e61...4f85326
💰 Funded by:
rosenrose, Blue Bolt, Splashman, -Tom-, Yanga, Enderwolf, 32th System
🏷 Tags:

More than three months without any reverse-engineering progress! It's been way too long. Coincidentally, we're at least back with a surprising 1.25% of overall RE, achieved within just 3 pushes. The ending script system is not only more or less the same in TH04 and TH05, but actually originated in TH03, where it's also used for the cutscenes before stages 8 and 9. This means that it was one of the final pieces of code shared between three of the four remaining games, which I got to decompile at roughly 3× the usual speed, or ⅓ of the price.
The only other bargains of this nature remain in OP.EXE. The Music Room is largely equivalent in all three remaining games as well, and the sound device selection, ZUN Soft logo screens, and main/option menus are the same in TH04 and TH05. A lot of that code is in the "technically RE'd but not yet decompiled" ASM form though, so it would shift Finalized% more significantly than RE%. Therefore, make sure to order the new Finalization option rather than Reverse-engineering if you want to make number go up.

  1. General overview
  2. Game-specific differences
  3. Command reference
  4. Thoughts about translation support

So, cutscenes. On the surface, the .TXT files look simple enough: You directly write the text that should appear on the screen into the file without any special markup, and add commands to define visuals, music, and other effects at any place within the script. Let's start with the basics of how text is rendered, which are the same in all three games:


Superficially, the list of game-specific differences doesn't look too long, and can be summarized in a rather short table:

:th03: TH03 :th04: TH04 :th05: TH05
Script size limit 65536 bytes (heap-allocated) 8192 bytes (statically allocated)
Delay between every 2 bytes of text 1 frame by default, customizable via \v None
Text delay when holding ESC Varying speed-up factor None
Visibility of new text Immediately typed onto the screen Rendered onto invisible VRAM page, faded in on wait commands
Visibility of old text Unblitted when starting a new box Left on screen until crossfaded out with new text
Key binding for advancing the script Any key ⏎ Return, Shot, or ESC
Animation while waiting for an advance key None ⏎⃣, past right edge of current row
Inexplicable delays None 1 frame before changing pictures and after rendering new text boxes
Additional delay per interpreter loop 614.4 µs None 614.4 µs
The 614.4 µs correspond to the necessary delay for working around the repeated key up and key down events sent by PC-98 keyboards when holding down a key. While the absence of this delay significantly speeds up TH04's interpreter, it's also the reason why that game will stop recognizing a held ESC key after a few seconds, requiring you to press it again.

It's when you get into the implementation that the combined three systems reveal themselves as a giant mess, with more like 56 differences between the games. :zunpet: Every single new weird line of code opened up another can of worms, which ultimately made all of this end up with 24 pieces of bloat and 14 bugs. The worst of these should be quite interesting for the general PC-98 homebrew developers among my audience:


That brings us to the individual script commands… and yes, I'm going to document every single one of them. Some of their interactions and edge cases are not clear at all from just looking at the code.

Almost all commands are preceded by… well, a 0x5C lead byte. :thonk: Which raises the question of whether we should document it as an ASCII-encoded \ backslash, or a Shift-JIS-encoded ¥ yen sign. From a gaijin perspective, it seems obvious that it's a backslash, as it's consistently displayed as one in most of the editors you would actually use nowadays. But interestingly, iconv -f shift-jis -t utf-8 does convert any 0x5C lead bytes to actual ¥ U+00A5 YEN SIGN code points :tannedcirno:.
Ultimately, the distinction comes down to the font. There are fonts that still render 0x5C as ¥, but mainly do so out of an obvious concern about backward compatibility to JIS X 0201, where this mapping originated. Unsurprisingly, this group includes MS Gothic/Mincho, the old Japanese fonts from Windows 3.1, but even Meiryo and Yu Gothic/Mincho, Microsoft's modern Japanese fonts. Meanwhile, pretty much every other modern font, and freely licensed ones in particular, render this code point as \, even if you set your editor to Shift-JIS. And while ZUN most definitely saw it as a ¥, documenting this code point as \ is less ambiguous in the long run. It can only possibly correspond to one specific code point in either Shift-JIS or UTF-8, and will remain correct even if we later mod the cutscene system to support full-blown Unicode.

Now we've only got to clarify the parameter syntax, and then we can look at the big table of commands:

:th03: :th04: :th05: \@ Clears both VRAM pages by filling them with VRAM color 0.
🐞 In TH03 and TH04, this command does not update the internal text area background used for unblitting. This bug effectively restricts usage of this command to either the beginning of a script (before the first background image is shown) or its end (after no more new text boxes are started). See the image below for an example of using it anywhere else.
:th03: :th04: :th05: \b2 Sets the font weight to a value between 0 (raw font ROM glyphs) to 3 (very thicc). Specifying any other value has no effect.
:th04: :th05: 🐞 In TH04 and TH05, \b3 leads to glitched pixels when rendering half-width glyphs due to a bug in the newly micro-optimized ASM version of 📝 graph_putsa_fx(); see the image below for an example.
In these games, the parameter also directly corresponds to the graph_putsa_fx() effect function, removing the sanity check that was present in TH03. In exchange, you can also access the four dissolve masks for the bold font (\b2) by specifying a parameter between 4 (fewest pixels) to 7 (most pixels). Demo video below.
:th03: :th04: :th05: \c15 Changes the text color to VRAM color 15.
:th05: \c=,15 Adds a color map entry: If is the first code point inside the name area on a new line, the text color is automatically set to 15. Up to 8 such entries can be registered before overflowing the statically allocated buffer.
🐞 The comma is assumed to be present even if the color parameter is omitted.
:th03: :th04: :th05: \e0 Plays the sound effect with the given ID.
:th03: :th04: :th05: \f (no-op)
:th03: :th04: :th05: \fi1
\fo1
Calls master.lib's palette_black_in() or palette_black_out() to play a hardware palette fade animation from or to black, spending roughly 1 frame on each of the 16 fade steps.
:th03: :th04: :th05: \fm1 Fades out BGM volume via PMD's AH=02h interrupt call, in a non-blocking way. The fade speed can range from 1 (slowest) to 127 (fastest).
Values from 128 to 255 technically correspond to AH=02h's fade-in feature, which can't be used from cutscene scripts because it requires BGM volume to first be lowered via AH=19h, and there is no command to do that.
:th03: :th04: :th05: \g8 Plays a blocking 8-frame screen shake animation.
:th03: :th04: \ga0 Shows the gaiji with the given ID from 0 to 255 at the current cursor position. Even in TH03, gaiji always ignore the text delay interval configured with \v.
:th05: @3 TH05's replacement for the \ga command from TH03 and TH04. The default ID of 3 corresponds to the ♫ gaiji. Not to be confused with \@, which starts with a backslash, unlike this command.
:th05: @h Shows the 🎔 gaiji.
:th05: @t Shows the 💦 gaiji.
:th05: @! Shows the ! gaiji.
:th05: @? Shows the ? gaiji.
:th05: @!! Shows the ‼ gaiji.
:th05: @!? Shows the ⁉ gaiji.
:th03: :th04: :th05: \k0 Waits 0 frames (0 = forever) for an advance key to be pressed before continuing script execution. Before waiting, TH05 crossfades in any new text that was previously rendered to the invisible VRAM page…
🐞 …but TH04 doesn't, leaving the text invisible during the wait time. As a workaround, \vp1 can be used before \k to immediately display that text without a fade-in animation.
:th03: :th04: :th05: \m$ Stops the currently playing BGM.
:th03: :th04: :th05: \m* Restarts playback of the currently loaded BGM from the beginning.
:th03: :th04: :th05: \m,filename Stops the currently playing BGM, loads a new one from the given file, and starts playback.
:th03: :th04: :th05: \n Starts a new line at the leftmost X coordinate of the box, i.e., the start of the name area. This is how scripts can "change" the name of the currently speaking character, or use the entire 480×64 pixels without being restricted to the non-name area.
Note that automatic line breaks already move the cursor into a new line. Using this command at the "end" of a line with the maximum number of 30 full-width glyphs would therefore start a second new line and leave the previously started line empty.
If this command moved the cursor into the 5th line of a box, \s is executed afterward, with any of \n's parameters passed to \s.
:th03: :th04: :th05: \p (no-op)
:th03: :th04: :th05: \p- Deallocates the loaded .PI image.
:th03: :th04: :th05: \p,filename Loads the .PI image with the given file into the single .PI slot available to cutscenes. TH04 and TH05 automatically deallocate any previous image, 🐞 TH03 would leak memory without a manual prior call to \p-.
:th03: :th04: :th05: \pp Sets the hardware palette to the one of the loaded .PI image.
:th03: :th04: :th05: \p@ Sets the loaded .PI image as the full-screen 640×400 background image and overwrites both VRAM pages with its pixels, retaining the current hardware palette.
:th03: :th04: :th05: \p= Runs \pp followed by \p@.
:th03: :th04: :th05: \s0
\s-
Ends a text box and starts a new one. Fades in any text rendered to the invisible VRAM page, then waits 0 frames (0 = forever) for an advance key to be pressed. Afterward, the new text box is started with the cursor moved to the top-left corner of the name area.
\s- skips the wait time and starts the new box immediately.
:th03: :th04: :th05: \t100 Sets palette brightness via master.lib's palette_settone() to any value from 0 (fully black) to 200 (fully white). 100 corresponds to the palette's original colors. Preceded by a 1-frame delay unless ESC is held.
:th03: \v1 Sets the number of frames to wait between every 2 bytes of rendered text.
:th04: Sets the number of frames to spend on each of the 4 fade steps when crossfading between old and new text. The game-specific default value is also used before the first use of this command.
:th05: \v2
:th03: :th04: :th05: \vp0 Shows VRAM page 0. Completely useless in TH03 (this game always synchronizes both VRAM pages at a command boundary), only of dubious use in TH04 (for working around a bug in \k), and the games always return to their intended shown page before every blitting operation anyway. A debloated mod of this game would just remove this command, as it exposes an implementation detail that script authors should not need to worry about. None of the original scripts use it anyway.
:th03: :th04: :th05: \w64
  • \w and \wk wait for the given number of frames
  • \wm and \wmk wait until PMD has played back the current BGM for the total number of measures, including loops, given in the first parameter, and fall back on calling \w and \wk with the second parameter as the frame number if BGM is disabled.
    🐞 Neither PMD nor MMD reset the internal measure when stopping playback. If no BGM is playing and the previous BGM hasn't been played back for at least the given number of measures, this command will deadlock.
Since both TH04 and TH05 fade in any new text from the invisible VRAM page, these commands can be used to simulate TH03's typing effect in those games. Demo video below.
Contrary to \k and \s, specifying 0 frames would simply remove any frame delay instead of waiting forever.
The TH03-exclusive k variants allow the delay to be interrupted if ⏎ Return or Shot are held down. TH04 and TH05 recognize the k as well, but removed its functionality.
All of these commands have no effect if ESC is held.
\wm64,64
:th03: \wk64
\wmk64,64
:th03: :th04: :th05: \wi1
\wo1
Calls master.lib's palette_white_in() or palette_white_out() to play a hardware palette fade animation from or to white, spending roughly 1 frame on each of the 16 fade steps.
:th03: :th04: :th05: \=4 Immediately displays the given quarter of the loaded .PI image in the picture area, with no fade effect. Any value ≥ 4 resets the picture area to black.
:th03: :th04: :th05: \==4,1 Crossfades the picture area between its current content and quarter #4 of the loaded .PI image, spending 1 frame on each of the 4 fade steps unless ESC is held. Any value ≥ 4 is replaced with quarter #0.
:th03: :th04: :th05: \$ Stops script execution. Must be called at the end of each file; otherwise, execution continues into whatever lies after the script buffer in memory.
TH05 automatically deallocates the loaded .PI image, TH03 and TH04 require a separate manual call to \p- to not leak its memory.
Bold values signify the default if the parameter is omitted; \c is therefore equivalent to \c15.
Using the \@ command in the middle of a TH03 or TH04 cutscene script
The \@ bug. Yes, the ¥ is fake. It was easier to GIMP it than to reword the sentences so that the backslashes landed on the second byte of a 2-byte half-width character pair. :onricdennat:
Cutscene font weights in TH03Cutscene font weights in TH05, demonstrating the <code>\b3</code> bug that also affects TH04Cutscene font weights in TH03, rendered at a hypothetical unaligned X positionCutscene font weights in TH05, rendered at a hypothetical unaligned X position
The font weights and effects available through \b, including the glitch with \b3 in TH04 and TH05.
Font weight 3 is technically not rendered correctly in TH03 either; if you compare 1️⃣ with 4️⃣, you notice a single missing column of pixels at the left side of each glyph, which would extend into the previous VRAM byte. Ironically, the TH04/TH05 version is more correct in this regard: For half-width glyphs, it preserves any further pixel columns generated by the weight functions in the high byte of the 16-dot glyph variable. Unlike TH03, which still cuts them off when rendering text to unaligned X positions (3️⃣), TH04 and TH05 do bit-rotate them towards their correct place (4️⃣). It's only at byte-aligned X positions (2️⃣) where they remain at their internally calculated place, and appear on screen as these glitched pixel columns, 15 pixels away from the glyph they belong to. It's easy to blame bugs like these on micro-optimized ASM code, but in this instance, you really can't argue against it if the original C++ version was equally incorrect.
Combining \b and s- into a partial dissolve animation. The speed can be controlled with \v.
Simulating TH03's typing effect in TH04 and TH05 via \w. Even prettier in TH05 where we also get an additional fade animation after the box ends.

So yeah, that's the cutscene system. I'm dreading the moment I will have to deal with the other command interpreter in these games, i.e., the stage enemy system. Luckily, that one is completely disconnected from any other system, so I won't have to deal with it until we're close to finishing MAIN.EXE… that is, unless someone requests it before. And it won't involve text encodings or unblitting…


The cutscene system got me thinking in greater detail about how I would implement translations, being one of the main dependencies behind them. This goal has been on the order form for a while and could soon be implemented for these cutscenes, with 100% PI being right around the corner for the TH03 and TH04 cutscene executables.
Once we're there, the "Virgin" old-school way of static translation patching for Latin-script languages could be implemented fairly quickly:

  1. Establish basic UTF-8 parsing for less painful manual editing of the source files
  2. Procedurally generate glyphs for the few required additional letters based on existing font ROM glyphs. For example, we'd generate ä by painting two short lines on top of the font ROM's a glyph, or generate ¿ by vertically flipping the question mark. This way, the text retains a consistent look regardless of whether the translated game is run with an NEC or EPSON font ROM, or the hideous abomination that Neko Project II auto-generates if you don't provide either.
  3. (Optional) Change automatic line breaks to work on a per-word basis, rather than per-glyph

That's it – script editing and distribution would be handled by your local translation group. It might seem as if this would also work for Greek and Cyrillic scripts due to their presence in the PC-98 font ROM, but I'm not sure if I want to attempt procedurally shrinking these glyphs from 16×16 to 8×16… For any more thorough solution, we'd need to go for a more "Chad" kind of full-blown translation support:

  1. Implement text subdivisions at a sensible granularity while retaining automatic line and box breaks
  2. Compile translatable text into a Japanese→target language dictionary (I'm too old to develop any further translation systems that would overwrite modded source text with translations of the original text)
  3. Implement a custom Unicode font system (glyphs would be taken from GNU Unifont unless translators provide a different 8×16 font for their language)
  4. Combine the text compiler with the font compiler to only store needed glyphs as part of the translation's font file (dealing with a multi-MB font file would be rather ugly in a Real Mode game)
  5. Write a simple install/update/patch stacking tool that supports both .HDI and raw-file DOSBox-X scenarios (it's different enough from thcrap to warrant a separate tool – each patch stack would be statically compiled into a single package file in the game's directory)
  6. Add a nice language selection option to the main menu
  7. (Optional) Support proportional fonts

Which sounds more like a separate project to be commissioned from Touhou Patch Center's Open Collective funds, separate from the ReC98 cap. This way, we can make sure that the feature is completely implemented, and I can talk with every interested translator to make sure that their language works.
It's still cheaper overall to do this on PC-98 than to first port the games to a modern system and then translate them. On the other hand, most of the tasks in the Chad variant (3, 4, 5, and half of 2) purely deal with the difficulty of getting arbitrary Unicode characters to work natively in a PC-98 DOS game at all, and would be either unnecessary or trivial if we had already ported the game. Depending on where the patrons' interests lie, it may not be worth it. So let's see what all of you think about which way we should go, or whether it's worth doing at all. (Edit (2022-12-01): With Splashman's order towards the stage dialogue system, we've pretty much confirmed that it is.) Maybe we want to meet in the middle – using e.g. procedural glyph generation for dynamic translations to keep text rendering consistent with the rest of the PC-98 system, and just not support non-Latin-script languages in the beginning? In any case, I've added both options to the order form.
Edit (2023-07-28): Touhou Patch Center has agreed to fund a basic feature set somewhere between the Virgin and Chad level. Check the 📝 dedicated announcement blog post for more details and ideas, and to find out how you can support this goal!


Surprisingly, there was still a bit of RE work left in the third push after all of this, which I filled with some small rendering boilerplate. Since I also wanted to include TH02's playfield overlay functions, 1/15 of that last push went towards getting a TH02-exclusive function out of the way, which also ended up including that game in this delivery. :tannedcirno:
The other small function pointed out how TH05's Stage 5 midboss pops into the playfield quite suddenly, since its clipping test thinks it's only 32 pixels tall rather than 64:

Good chance that the pop-in might have been intended.
Edit (2023-06-30): Actually, it's a 📝 systematic consequence of ZUN having to work around the lack of clipping in master.lib's sprite functions.
There's even another quirk here: The white flash during its first frame is actually carried over from the previous midboss, which the game still considers as actively getting hit by the player shot that defeated it. It's the regular boilerplate code for rendering a midboss that resets the responsible damage variable, and that code doesn't run during the defeat explosion animation.

Next up: Staying with TH05 and looking at more of the pattern code of its boss fights. Given the remaining TH05 budget, it makes the most sense to continue in in-game order, with Sara and the Stage 2 midboss. If more money comes in towards this goal, I could alternatively go for the Mai & Yuki fight and immediately develop a pretty fix for the cheeto storage glitch. Also, there's a rather intricate pull request for direct ZMBV decoding on the website that I've still got to review…

📝 Posted:
🚚 Summary of:
P0148
Commits:
c940059...e1a26bb
💰 Funded by:
[Anonymous]
🏷 Tags:

Back after taking way too long to get Touhou Patch Center's MediaWiki update feature complete… I'm still waiting for more translators to test and review the new translation interface before delivering and deploying it all, which will most likely lead to another break from ReC98 within the next few months. For now though, I'm happy to have mostly addressed the nagging responsibility I still had after willing that site into existence, and to be back working on ReC98. 🙂

As announced, the next few pushes will focus on TH04's and TH05's bullet spawning code, before I get to put all that accumulated TH01 money towards finishing all of konngara's code in TH01. For a full picture of what's happening with bullets, we'd really also like to have the bullet update function as readable C code though.
Clearing all bullets on the playfield will trigger a Bonus!! popup, displayed as 📝 gaiji in that proportional font. Unfortunately, TLINK refused to link the code as soon as I referenced the function for animating the popups at the top of the playfield? Which can only mean that we have to decompile that function first… :thonk:

So, let's turn that piece of technical debt into a full push, and first decompile another random set of previously reverse-engineered TH04 and TH05 functions. Most of these are stored in a different place within the two MAIN.EXE binaries, and the tried-and-true method of matching segment names would therefore have introduced several unnecessary translation units. So I resorted to a segment splitting technique I should have started using way earlier: Simply creating new segments with names derived from their functions, at the exact positions they're needed. All the new segment start and end directives do bloat the ASM code somewhat, and certainly contributed to this push barely removing any actual lines of code. However, what we get in return is total freedom as far as decompilation order is concerned, 📝 which should be the case for any ReC project, really. And in the end, all these tiny code segments will cancel out anyway.
If only we could do the same with the data segment…


The popup function happened to be the final one I RE'd before my long break in the spring of 2019. Back then, I didn't even bother looking into that 64-frame delay between changing popups, and what that meant for the game.
Each of these popups stays on screen for 128 frames, during which, of course, another popup-worthy event might happen. Handling this cleanly without removing previous popups too early would involve some sort of event queue, whose size might even be meaningfully limited to the number of distinct events that can happen. But still, that'd be a data structure, and we're not gonna have that! :zunpet: Instead, ZUN simply keeps two variables for the new and current popup ID. During an active popup, any change to that ID will only be committed once the current popup has been shown for at least 64 frames. And during that time, that new ID can be freely overwritten with a different one, which drops any previous, undisplayed event. But surely, there won't be more than two events happening within 63 frames, right? :tannedcirno:

The rest was fairly uneventful – no newly RE'd functions in this push, after all – until I reached the widely used helper function for applying the current vertical scrolling offset to a Y coordinate. Its combination of a function parameter, the pascal calling convention, and no stack frame was previously thought to be undecompilable… except that it isn't, and the decompilation didn't even require any new workarounds to be developed? Good thing that I already forgot how impossible it was to decompile the first function I looked at that fell into this category!
Oh well, this discovery wasn't too groundbreaking. Looking back at all the other functions with that combination only revealed a grand total of 1 additional one where a decompilation made sense: TH05's version of snd_kaja_interrupt(), which is now compiled from the same C++ file for all 4 games that use it. And well, looks like some quirks really remain unnoticed and undocumented until you look at a function for the 11th time: Its return value is undefined if BGM is inactive – that is, if the user disabled it, or if no FM board is installed. Not that it matters for the original code, which never uses this function to retrieve anything from KAJA's drivers. But people apparently do copy ReC98 code into their own projects, so it is something to keep in mind.


All in all, nothing quite at jank level in this one, but we were surely grazing that tag. Next up, with that out of the way: The bullet update/step function! Very soon in fact, since I've mostly got it done already.

📝 Posted:
🚚 Summary of:
P0139
Commits:
864e864...d985811
💰 Funded by:
[Anonymous]
🏷 Tags:

Technical debt, part 10… in which two of the PMD-related functions came with such complex ramifications that they required one full push after all, leaving no room for the additional decompilations I wanted to do. At least, this did end up being the final one, completing all SHARED segments for the time being.


The first one of these functions determines the BGM and sound effect modes, combining the resident type of the PMD driver with the Option menu setting. The TH04 and TH05 version is apparently coded quite smartly, as PC-98 Touhou only needs to distinguish "OPN- / PC-9801-26K-compatible sound sources handled by PMD.COM" from "everything else", since all other PMD varieties are OPNA- / PC-9801-86-compatible.
Therefore, I only documented those two results returned from PMD's AH=09h function. I'll leave a comprehensive, fully documented enum to interested contributors, since that would involve research into basically the entire history of the PC-9800 series, and even the clearly out-of-scope PC-88VA. After all, distinguishing between more versions of the PMD driver in the Option menu (and adding new sprites for them!) is strictly mod territory.


The honor of being the final decompiled function in any SHARED segment went to TH04's snd_load(). TH04 contains by far the sanest version of this function: Readable C code, no new ZUN bugs (and still missing file I/O error handling, of course)… but wait, what about that actual file read syscall, using the INT 21h, AH=3Fh DOS file read API? Reading up to a hardcoded number of bytes into PMD's or MMD's song or sound effect buffer, 20 KiB in TH02-TH04, 64 KiB in TH05… that's kind of weird. About time we looked closer into this. :thonk:

Turns out that no, KAJA's driver doesn't give you the full 64 KiB of one memory segment for these, as especially TH05's code might suggest to anyone unfamiliar with these drivers. :zunpet: Instead, you can customize the size of these buffers on its command line. In GAME.BAT, ZUN allocates 8 KiB for FM songs, 2 KiB for sound effects, and 12 KiB for MMD files in TH02… which means that the hardcoded sizes in snd_load() are completely wrong, no matter how you look at them. :onricdennat: Consequently, this read syscall will overflow PMD's or MMD's song or sound effect buffer if the given file is larger than the respective buffer size.
Now, ZUN could have simply hardcoded the sizes from GAME.BAT instead, and it would have been fine. As it also turns out though, PMD has an API function (AH=22h) to retrieve the actual buffer sizes, provided for exactly that purpose. There is little excuse not to use it, as it also gives you PMD's default sizes if you don't specify any yourself.
(Unless your build process enumerates all PMD files that are part of the game, and bakes the largest size into both snd_load() and GAME.BAT. That would even work with MMD, which doesn't have an equivalent for AH=22h.)

What'd be the consequence of loading a larger file then? Well, since we don't get a full segment, let's look at the theoretical limit first.
PMD prefers to keep both its driver code and the data buffers in a single memory segment. As a result, the limit for the combined size of the song, instrument, and sound effect buffer is determined by the amount of code in the driver itself. In PMD86 version 4.8o (bundled with TH04 and TH05) for example, the remaining size for these buffers is exactly 45,555 bytes. Being an actually good programmer who doesn't blindly trust user input, KAJA thankfully validates the sizes given via the /M, /V, and /E command-line options before letting the driver reside in memory, and shuts down with an error message if they exceed 40 KiB. Would have been even better if he calculated the exact size – even in the current PMD version 4.8s from January 2020, it's still a hardcoded value (see line 8581).
Either way: If the file is larger than this maximum, the concrete effect is down to the INT 21h, AH=3Fh implementation in the underlying DOS version. DOS 3.3 treats the destination address as linear and reads past the end of the segment, DOS 5.0 and DOSBox-X truncate the number of bytes to not exceed the remaining space in the segment, and maybe there's even a DOS that wraps around and ends up overwriting the PMD driver code. In any case: You will overwrite what's after the driver in memory – typically, the game .EXE and its master.lib functions.

It almost feels like a happy accident that this doesn't cause issues in the original games. The largest PMD file in any of the 4 games, the -86 version of 幽夢 ~ Inanimate Dream, takes up 8,099 bytes, just under the 8,192 byte limit for BGM. For modders, I'd really recommend implementing this properly, with PMD's AH=22h function and error handling, once position independence has been reached.

Whew, didn't think I'd be doing more research into KAJA's drivers during regular ReC98 development! That's probably been the final time though, as all involved functions are now decompiled, and I'm unlikely to iterate over them again.


And that's it! Repaid the biggest chunk of technical debt, time for some actual progress again. Next up: Reopening the store tomorrow, and waiting for new priorities. If we got nothing by Sunday, I'm going to put the pending [Anonymous] pushes towards some work on the website.

📝 Posted:
🚚 Summary of:
P0135, P0136
Commits:
a6eed55...252c13d, 252c13d...07bfcf2
💰 Funded by:
[Anonymous]
🏷 Tags:

Alright, no more big code maintenance tasks that absolutely need to be done right now. Time to really focus on parts 6 and 7 of repaying technical debt, right? Except that we don't get to speed up just yet, as TH05's barely decompilable PMD file loading function is rather… complicated.
Fun fact: Whenever I see an unusual sequence of x86 instructions in PC-98 Touhou, I first consult the disassembly of Wolfenstein 3D. That game was originally compiled with the quite similar Borland C++ 3.0, so it's quite helpful to compare its ASM to the officially released source code. If I find the instructions in question, they mostly come from that game's ASM code, leading to the amusing realization that "even John Carmack was unable to get these instructions out of this compiler" :onricdennat: This time though, Wolfenstein 3D did point me to Borland's intrinsics for common C functions like memcpy() and strchr(), available via #pragma intrinsic. Bu~t those unfortunately still generate worse code than what ZUN micro-optimized here. Commenting how these sequences of instructions should look in C is unfortunately all I could do here.
The conditional branches in this function did compile quite nicely though, clarifying the control flow, and clearly exposing a ZUN bug: TH05's snd_load() will hang in an infinite loop when trying to load a non-existing -86 BGM file (with a .M2 extension) if the corresponding -26 BGM file (with a .M extension) doesn't exist either.

Unsurprisingly, the PMD channel monitoring code in TH05's Music Room remains undecompilable outside the two most "high-level" initialization and rendering functions. And it's not because there's data in the middle of the code segment – that would have actually been possible with some #pragmas to ensure that the data and code segments have the same name. As soon as the SI and DI registers are referenced anywhere, Turbo C++ insists on emitting prolog code to save these on the stack at the beginning of the function, and epilog code to restore them from there before returning. Found that out in September 2019, and confirmed that there's no way around it. All the small helper functions here are quite simply too optimized, throwing away any concern for such safety measures. 🤷
Oh well, the two functions that were decompilable at least indicate that I do try.


Within that same 6th push though, we've finally reached the one function in TH05 that was blocking further progress in TH04, allowing that game to finally catch up with the others in terms of separated translation units. Feels good to finally delete more of those .ASM files we've decompiled a while ago… finally!

But since that was just getting started, the most satisfying development in both of these pushes actually came from some more experiments with macros and inline functions for near-ASM code. By adding "unused" dummy parameters for all relevant registers, the exact input registers are made more explicit, which might help future port authors who then maybe wouldn't have to look them up in an x86 instruction reference quite as often. At its best, this even allows us to declare certain functions with the __fastcall convention and express their parameter lists as regular C, with no additional pseudo-registers or macros required.
As for output registers, Turbo C++'s code generation turns out to be even more amazing than previously thought when it comes to returning pseudo-registers from inline functions. A nice example for how this can improve readability can be found in this piece of TH02 code for polling the PC-98 keyboard state using a BIOS interrupt:

inline uint8_t keygroup_sense(uint8_t group) {
	_AL = group;
	_AH = 0x04;
	geninterrupt(0x18);
	// This turns the output register of this BIOS call into the return value
	// of this function. Surprisingly enough, this does *not* naively generate
	// the `MOV AL, AH` instruction you might expect here!
	return _AH;
}

void input_sense(void)
{
	// As a result, this assignment becomes `_AH = _AH`, which Turbo C++
	// never emits as such, giving us only the three instructions we need.
	_AH = keygroup_sense(8);

	// Whereas this one gives us the one additional `MOV BH, AH` instruction
	// we'd expect, and nothing more.
	_BH = keygroup_sense(7);

	// And now it's obvious what both of these registers contain, from just
	// the assignments above.
	if(_BH & K7_ARROW_UP || _AH & K8_NUM_8) {
		key_det |= INPUT_UP;
	}
	// […]
}

I love it. No inline assembly, as close to idiomatic C code as something like this is going to get, yet still compiling into the minimum possible number of x86 instructions on even a 1994 compiler. This is how I keep this project interesting for myself during chores like these. :tannedcirno: We might have even reached peak inline already?

And that's 65% of technical debt in the SHARED segment repaid so far. Next up: Two more of these, which might already complete that segment? Finally!