⮜ Blog

⮜ List of tags

Showing all posts tagged
and

📝 Posted:
🚚 Summary of:
P0193, P0194, P0195, P0196, P0197
Commits:
e1f3f9f...183d7a2, 183d7a2...5d93a50, 5d93a50...e18c53d, e18c53d...57c9ac5, 57c9ac5...48db0b7
💰 Funded by:
Ember2528, Yanga
🏷 Tags:

With Elis, we've not only reached the midway point in TH01's boss code, but also a bunch of other milestones: Both REIIDEN.EXE and TH01 as a whole have crossed the 75% RE mark, and overall position independence has also finally cracked 80%!

And it got done in 4 pushes again? Yup, we're back to 📝 Konngara levels of redundancy and copy-pasta. This time, it didn't even stop at the big copy-pasted code blocks for the rift sprite and 256-pixel circle animations, with the words "redundant" and "unnecessary" ending up a total of 18 times in my source code comments.
But damn is this fight broken. As usual with TH01 bosses, let's start with a high-level overview:

This puts the earliest possible end of the fight at the first frame of phase 5. However, nothing prevents Elis' HP from reaching 0 before that point. You can nicely see this in 📝 debug mode: Wait until the HP bar has filled up to avoid heap corruption, hold ↵ Return to reduce her HP to 0, and watch how Elis still goes through a total of two patterns* and four teleport animations before accepting defeat.

But wait, heap corruption? Yup, there's a bug in the HP bar that already affected Konngara as well, and it isn't even just about the graphical glitches generated by negative HP:

Since Elis starts with 14 HP, which is an even number, this corruption is trivial to cause: Simply hold ↵ Return from the beginning of the fight, and the completion condition will never be true, as the HP and frame numbers run past the off-by-one meeting point.

Edit (2023-07-21): Pressing ↵ Return to reduce HP also works in test mode (game t). There, the game doesn't even check the heap, and consequently won't report any corruption, allowing the HP bar to be glitched even further.

Regular gameplay, however, entirely prevents this due to the fixed start positions of Reimu and the Orb, the Orb's fixed initial trajectory, and the 50 frames of delay until a bomb deals damage to a boss. These aspects make it impossible to hit Elis within the first 14 frames of phase 1, and ensure that her HP bar is always filled up completely. So ultimately, this bug ends up comparable in seriousness to the 📝 recursion / stack overflow bug in the memory info screen.


These wavy teleport animations point to a quite frustrating architectural issue in this fight. It's not even the fact that unblitting the yellow star sprites rips temporary holes into Elis' sprite; that's almost expected from TH01 at this point. Instead, it's all because of this unused frame of the animation:

An unused wave animation frame from TH01's BOSS5.BOS

With this sprite still being part of BOSS5.BOS, Girl-Elis has a total of 9 animation frames, 1 more than the 📝 8 per-entity sprites allowed by ZUN's architecture. The quick and easy solution would have been to simply bump the sprite array size by 1, but… nah, this would have added another 20 bytes to all 6 of the .BOS image slots. :zunpet: Instead, ZUN wrote the manual position synchronization code I mentioned in that 2020 blog post. Ironically, he then copy-pasted this snippet of code often enough that it ended up taking up more than 120 bytes in the Elis fight alone – with, you guessed it, some of those copies being redundant. Not to mention that just going from 8 to 9 sprites would have allowed ZUN to go down from 6 .BOS image slots to 3. That would have actually saved 420 bytes in addition to the manual synchronization trouble. Looking forward to SinGyoku, that's going to be fun again…


As for the fight itself, it doesn't take long until we reach its most janky danmaku pattern, right in phase 1:

The "pellets along circle" pattern on Lunatic, in its original version and with fanfiction fixes for everything that can potentially be interpreted as a bug.

Then again, it might very well be that all of this was intended, or, most likely, just left in the game as a happy accident. The latter interpretation would explain why ZUN didn't just delete the rendering calls for the lower-right quarter of the circle, because seriously, how would you not spot that? The phase 3 patterns continue with more minor graphical glitches that aren't even worth talking about anymore.


And then Elis transforms into her bat form at the beginning of Phase 5, which displays some rather unique hitboxes. The one against the Orb is fine, but the one against player shots…

… uses the bat's X coordinate for both X and Y dimensions. :zunpet: In regular gameplay, it's not too bad as most of the bat patterns fire aimed pellets which typically don't allow you to move below her sprite to begin with. But if you ever tried destroying these pellets while standing near the middle of the playfield, now you know why that didn't work. This video also nicely points out how the bat, like any boss sprite, is only ever blitted at positions on the 8×1-pixel VRAM byte grid, while collision detection uses the actual pixel position.

The bat form patterns are all relatively simple, with little variation depending on the difficulty level, except for the "slow pellet spreads" pattern. This one is almost easiest to dodge on Lunatic, where the 5-spreads are not only always fired downwards, but also at the hardcoded narrow delta angle, leaving plenty of room for the player to move out of the way:

The "slow pellet spreads" pattern of Elis' bat form, on every difficulty. Which version do you think is the easiest one?

Finally, we've got another potential timesave in the girl form's "safety circle" pattern:

After the circle spawned completely, you lose a life by moving outside it, but doing that immediately advances the pattern past the circle part. This part takes 200 frames, but the defeat animation only takes 82 frames, so you can save up to 118 frames there.

Final funny tidbit: As with all dynamic entities, this circle is only blitted to VRAM page 0 to allow easy unblitting. However, it's also kind of static, and there needs to be some way to keep the Orb, the player shots, and the pellets from ripping holes into it. So, ZUN just re-blits the circle every… 4 frames?! 🤪 The same is true for the Star of David and its surrounding circle, but there you at least get a flash animation to justify it. All the overlap is actually quite a good reason for not even attempting to 📝 mess with the hardware color palette instead.


And that's the 4th PC-98 Touhou boss decompiled, 27 to go… but wait, all these quirks, and I still got nothing about the one actual crash that can appear in regular gameplay? There has even been a recent video about it. The cause has to be in Elis' main function, after entering the defeat branch and before the blocking white-out animation. It can't be anywhere else other than in the 📝 central line blitting and unblitting function, called from 📝 that one broken laser reset+unblit function, because everything else in that branch looks fine… and I think we can rule out a crash in MDRV2's non-blocking fade-out call. That's going to need some extra research, and a 5th push added on top of this delivery.

Reproducing the crash was the whole challenge here. Even after moving Elis and Reimu to the exact positions seen in Pearl's video and setting Elis' HP to 0 on the exact same frame, everything ran fine for me. It's definitely no division by 0 this time, the function perfectly guards against that possibility. The line specified in the function's parameters is always clipped to the VRAM region as well, so we can also rule out illegal memory accesses here…

… or can we? Stepping through it all reminded me of how this function brings unblitting sloppiness to the next level: For each VRAM byte touched, ZUN actually unblits the 4 surrounding bytes, adding one byte to the left and two bytes to the right, and using a single 32-bit read and write per bitplane. So what happens if the function tries to unblit the topmost byte of VRAM, covering the pixel positions from (0, 0) to (7, 0) inclusive? The VRAM offset of 0x0000 is decremented to 0xFFFF to cover the one byte to the left, 4 bytes are written to this address, the CPU's internal offset overflows… and as it turns out, that is illegal even in Real Mode as of the 80286, and will raise a General Protection Fault. Which is… ignored by DOSBox-X, every Neko Project II version in common use, the CSCP emulators, SL9821, and T98-Next. Only Anex86 accurately emulates the behavior of real hardware here.

OK, but no laser fired by Elis ever reaches the top-left corner of the screen. How can such a fault even happen in practice? That's where the broken laser reset+unblit function comes in: Not only does it just flat out pass the wrong parameters to the line unblitting function – describing the line already traveled by the laser and stopping where the laser begins – but it also passes them wrongly, in the form of raw 32-bit fixed-point Q24.8 values, with no conversion other than a truncation to the signed 16-bit pixels expected by the function. What then follows is an attempt at interpolation and clipping to find a line segment between those garbage coordinates that actually falls within the boundaries of VRAM:

  1. right/bottom correspond to a laser's origin position, and left/top to the leftmost pixel of its moved-out top line. The bug therefore only occurs with lasers that stopped growing and have started moving.
  2. Moreover, it will only happen if either (left % 256) or (right % 256) is ≤ 127 and the other one of the two is ≥ 128. The typecast to signed 16-bit integers then turns the former into a large positive value and the latter into a large negative value, triggering the function's clipping code.
  3. The function then follows Bresenham's algorithm: left is ensured to be smaller than right by swapping the two values if necessary. If that happened, top and bottom are also swapped, regardless of their value – the algorithm does not care about their order.
  4. The slope in the X dimension is calculated using an integer division of ((bottom - top) / (right - left)). Both subtractions are done on signed 16-bit integers, and overflow accordingly.
  5. (-left × slope_x) is added to top, and left is set to 0.
  6. If both top and bottom are < 0 or ≥ 640, there's nothing to be unblitted. Otherwise, the final coordinates are clipped to the VRAM range of [(0, 0), (639, 399)].
  7. If the function got this far, the line to be unblitted is now very likely to reach from
    1. the top-left to the bottom-right corner, starting out at (0, 0) right away, or
    2. from the bottom-left corner to the top-right corner. In this case, you'd expect unblitting to end at (639, 0), but thanks to an off-by-one error, it actually ends at (640, -1), which is equivalent to (0, 0). Why add clipping to VRAM offset calculations when everything else is clipped already, right? :godzun:
Possible laser states that will cause the fault, with some debug output to help understand the cause, and any pellets removed for better readability. This can happen for all bosses that can potentially have shootout lasers on screen when being defeated, so it also applies to Mima. Fixing this is easier than understanding why it happens, but since y'all love reading this stuff…

tl;dr: TH01 has a high chance of freezing at a boss defeat sequence if there are diagonally moving lasers on screen, and if your PC-98 system raises a General Protection Fault on a 4-byte write to offset 0xFFFF, and if you don't run a TSR with an INT 0Dh handler that might handle this fault differently.

The easiest fix option would be to just remove the attempted laser unblitting entirely, but that would also have an impact on this game's… distinctive visual glitches, in addition to touching a whole lot of code bytes. If I ever get funded to work on a hypothetical TH01 Anniversary Edition that completely rearchitects the game to fix all these glitches, it would be appropriate there, but not for something that purports to be the original game.

(Sidenote to further hype up this Anniversary Edition idea for PC-98 hardware owners: With the amount of performance left on the table at every corner of this game, I'm pretty confident that we can get it to work decently on PC-98 models with just an 80286 CPU.)

Since we're in critical infrastructure territory once again, I went for the most conservative fix with the least impact on the binary: Simply changing any VRAM offsets >= 0xFFFD to 0x0000 to avoid the GPF, and leaving all other bugs in place. Sure, it's rather lazy and "incorrect"; the function still unblits a 32-pixel block there, but adding a special case for blitting 24 pixels would add way too much code. And seriously, it's not like anything happens in the 8 pixels between (24, 0) and (31, 0) inclusive during gameplay to begin with. To balance out the additional per-row if() branch, I inlined the VRAM page change I/O, saving two function calls and one memory write per unblitted row.

That means it's time for a new community_choice_fixes build, containing the new definitive bugfixed versions of these games: 2022-05-31-community-choice-fixes.zip Check the th01_critical_fixes branch for the modified TH01 code. It also contains a fix for the HP bar heap corruption in test or debug mode – simply changing the == comparison to <= is enough to avoid it, and negative HP will still create aesthetic glitch art.


Once again, I then was left with ½ of a push, which I finally filled with some FUUIN.EXE code, specifically the verdict screen. The most interesting part here is the player title calculation, which is quite sneaky: There are only 6 skill levels, but three groups of titles for each level, and the title you'll see is picked from a random group. It looks like this is the first time anyone has documented the calculation?
As for the levels, ZUN definitely didn't expect players to do particularly well. With a 1cc being the standard goal for completing a Touhou game, it's especially funny how TH01 expects you to continue a lot: The code has branches for up to 21 continues, and the on-screen table explicitly leaves room for 3 digits worth of continues per 5-stage scene. Heck, these counts are even stored in 32-bit long variables.

Next up: 📝 Finally finishing the long overdue Touhou Patch Center MediaWiki update work, while continuing with Kikuri in the meantime. Originally I wasn't sure about what to do between Elis and Seihou, but with Ember2528's surprise contribution last week, y'all have demonstrated more than enough interest in the idea of getting TH01 done sooner rather than later. And I agree – after all, we've got the 25th anniversary of its first public release coming up on August 15, and I might still manage to completely decompile this game by that point…

📝 Posted:
🚚 Summary of:
P0189
Commits:
22abdd1...b4876b6
💰 Funded by:
Arandui, Lmocinemod
🏷 Tags:

(Before we start: Make sure you've read the current version of the FAQ section on a potential takedown of this project, updated in light of the recent DMCA claims against PC-98 Touhou game downloads.)


Slight change of plans, because we got instructions for reliably reproducing the TH04 Kurumi Divide Error crash! Major thanks to Colin Douglas Howell. With those, it also made sense to immediately look at the crash in the Stage 4 Marisa fight as well. This way, I could release both of the obligatory bugfix mods at the same time.
Especially since it turned out that I was wrong: Both crashes are entirely unrelated to the custom entity structure that would have required PI-centric progress. They are completely specific to Kurumi's and Marisa's danmaku-pattern code, and really are two separate bugs with no connection to each other. All of the necessary research nicely fit into Arandui's 0.5 pushes, with no further deep understanding required here.

But why were there still three weeks between Colin's message and this blog post? DMCA distractions aside: There are no easy fixes this time, unlike 📝 back when I looked at the Stage 5 Yuuka crash. Just like how division by zero is undefined in mathematics, it's also, literally, undefined what should happen instead of these two Divide error crashes. This means that any possible "fix" can only ever be a fanfiction interpretation of the intentions behind ZUN's code. The gameplay community should be aware of this, and might decide to handle these cases differently. And if we have to go into fanfiction territory to work around crashes in the canon games, we'd better document what exactly we're fixing here and how, as comprehensible as possible.

  1. Kurumi's crash
  2. Marisa's crash

With that out of the way, let's look at Kurumi's crash first, since it's way easier to grasp. This one is known to primarily happen to new players, and it's easy to see why:

The pattern that causes the crash in Kurumi's fight. Also demonstrates how the number of bullets in a ring is always halved on Easy Mode after the rank-based tuning, leading to just a 3-ring on playperf = 16.

So, what should the workaround look like? Obviously, we want to modify neither the default number of ring bullets nor the tuning algorithm – that would change all other non-crashing variations of this pattern on other difficulties and ranks, creating a fork of the original gameplay. Instead, I came up with four possible workarounds that all seemed somewhat logical to me:

  1. Firing no bullet, i.e., interpreting 0-ring literally. This would create the only constellation in which a call to the bullet group spawn functions would not spawn at least one new bullet.
  2. Firing a "1-ring", i.e., a single bullet. This would be consistent with how the bullet spawn functions behave for "0-way" stack and spread groups.
  3. Firing a "∞-ring", i.e., 200 bullets, which is as much as the game's cap on 16×16 bullets would allow. This would poke fun at the whole "division by zero" idea… but given that we're still talking about Easy Mode (and especially new players) here, it might be a tad too cruel. Certainly the most trollish interpretation.
  4. Triggering an immediate Game Over, exchanging the hard crash for a softer and more controlled shutdown. Certainly the option that would be closest to the behavior of the original games, and perhaps the only one to be accepted in Serious, High-Level Play™.

As I was writing this post, it felt increasingly wrong for me to make this decision. So I once again went to Twitter, where 56.3% voted in favor of the 1-bullet option. Good that I asked! I myself was more leaning towards the 0-bullet interpretation, which only got 28.7% of the vote. Also interesting are the 2.3% in favor of the Game Over option but I get it, low-rank Easy Mode isn't exactly the most competitive mode of playing TH04.
There are reports of Kurumi crashing on higher difficulties as well, but I could verify none of them. If they aren't fixed by this workaround, they're caused by an entirely different bug that we have yet to discover.


Onto the Stage 4 Marisa crash then, which does in fact apply to all difficulty levels. I was also wrong on this one – it's a hell of a lot more intricate than being just a division by the number of on-screen bits. Without having decompiled the entire fight, I can't give a completely accurate picture of what happens there yet, but here's the rough idea:

Reference points for Marisa's point-reflected movement. Cyan: Marisa's position, green: (192, 112), yellow: the intended end point.
One of the two patterns in TH04's Stage 4 Marisa boss fight that feature frame number-dependent point-reflected movement. The bits were hacked to self-destruct on the respective frame.

tl;dr: "Game crashes if last bit destroyed within 4-frame window near end of two patterns". For an informed decision on a new movement behavior for these last 8 frames, we definitely need to know all the details behind the crash though. Here's what I would interpret into the code:

  1. Not moving at all, i.e., interpreting 0 as the middle ground between positive and negative movement. This would also make sense because a 12-frame duration implies 100% of the movement to consist of the braking phase – and Marisa wasn't moving before, after all.
  2. Move at maximum speed, i.e., dividing by 1 rather than 0. Since the movement duration is still 12 in this case, Marisa will immediately start braking. In total, she will move exactly ¾ of the way from her initial position to (192, 112) within the 8 frames before the pattern ends.
  3. Directly warping to (192, 112) on frame 0, and to the point-reflected target on 4, respectively. This "emulates" the division by zero by moving Marisa at infinite speed to the exact two points indicated by the velocity formula. It also fits nicely into the 8 frames we have to fill here. Sure, Marisa can't reach these points at any other duration, but why shouldn't she be able to, with infinite speed? Then again, if Marisa is far away enough from (192, 112), this workaround would warp her across the entire playfield. Can Marisa teleport according to lore? I have no idea… :tannedcirno:
  4. Triggering an immediate Game O– hell no, this is the Stage 4 boss, people already hate losing runs to this bug!

Asking Twitter worked great for the Kurumi workaround, so let's do it again! Gotta attach a screenshot of an earlier draft of this blog post though, since this stuff is impossible to explain in tweets…

…and it went through the roof, becoming the most successful ReC98 tweet so far?! Apparently, y'all really like to just look at descriptions of overly complex bugs that I'd consider way beyond the typical attention span that can be expected from Twitter. Unfortunately, all those tweet impressions didn't quite translate into poll turnout. The results were pretty evenly split between 1) and 2), with option 1) just coming out slightly ahead at 49.1%, compared to 41.5% of option 2).

(And yes, I only noticed after creating the poll that warping to both the green and yellow points made more sense than warping to just one of the two. Let's hope that this additional variant wouldn't have shifted the results too much. Both warp options only got 9.4% of the vote after all, and no one else came up with the idea either. :onricdennat: In the end, you can always merge together your preferred combination of workarounds from the Git branches linked below.)


So here you go: The new definitive version of TH04, containing not only the community-chosen Kurumi and Stage 4 Marisa workaround variant, but also the 📝 No-EMS bugfix from last year. Edit (2022-05-31): This package is outdated, 📝 the current version is here! 2022-04-18-community-choice-fixes.zip Oh, and let's also add spaztron64's TH03 GDC clock fix from 2019 because why not. This binary was built from the community_choice_fixes branch, and you can find the code for all the individual workarounds on these branches:

Again, because it can't be stated often enough: These fixes are fanfiction. The gameplay community should be aware of this, and might decide to handle these cases differently.


With all of that taking way more time to evaluate and document, this research really had to become part of a proper push, instead of just being covered in the quick non-push blog post I initially intended. With ½ of a push left at the end, TH05's Stage 1-5 boss background rendering functions fit in perfectly there. If you wonder how these static backdrop images even need any boss-specific code to begin with, you're right – it's basically the same function copy-pasted 4 times, differing only in the backdrop image coordinates and some other inconsequential details.
Only Sara receives a nice variation of the typical 📝 blocky entrance animation: The usually opaque bitmap data from ST00.BB is instead used as a transition mask from stage tiles to the backdrop image, by making clever use of the tile invalidation system:

TH04 uses the same effect a bit more frequently, for its first three bosses.

Next up: Shinki, for real this time! I've already managed to decompile 10 of her 11 danmaku patterns within a little more than one push – and yes, that one is included in there. Looks like I've slightly overestimated the amount of work required for TH04's and TH05's bosses…