⮜ Blog

⮜ List of tags

Showing all posts tagged bomb-

📝 Posted:
🚚 Summary of:
P0158, P0159
Commits:
bf7bb7e...c0c0ebc, c0c0ebc...e491cd7
💰 Funded by:
Yanga
🏷 Tags:
rec98+ th01+ gameplay+ card-flipping+ rng+ score+ bomb- animation+ jank+ waste+

Of course, Sariel's potentially bloated and copy-pasted code is blocked by even more definitely bloated and copy-pasted code. It's TH01, what did you expect? :tannedcirno:

But even then, TH01's item code is on a new level of software architecture ridiculousness. First, ZUN uses distinct arrays for both types of items, with their own caps of 4 for bomb items, and 10 for point items. Since that obviously makes any type-related switch statement redundant, he also used distinct functions for both types, with copy-pasted boilerplate code. The main per-item update and render function is shared though… and takes every single accessed member of the item structure as its own reference parameter. Like, why, you have a structure, right there?! That's one way to really practice the C++ language concept of passing arbitrary structure fields by mutable reference… :zunpet:
To complete the unwarranted grand generic design of this function, it calls back into per-type collision detection, drop, and collect functions with another three reference parameters. Yeah, why use C++ virtual methods when you can also implement the effectively same polymorphism functionality by hand? Oh, and the coordinate clamping code in one of these callbacks could only possibly have come from nested min() and max() preprocessor macros. And that's how you extend such dead-simple functionality to 1¼ pushes…

Amidst all this jank, we've at least got a sensible item↔player hitbox this time, with 24 pixels around Reimu's center point to the left and right, and extending from 24 pixels above Reimu down to the bottom of the playfield. It absolutely didn't look like that from the initial naive decompilation though. Changing entity coordinates from left/top to center was one of the better lessons from TH01 that ZUN implemented in later games, it really makes collision detection code much more intuitive to grasp.


The card flip code is where we find out some slightly more interesting aspects about item drops in this game, and how they're controlled by a hidden cycle variable:

Then again, score players largely ignore point items anyway, as card combos simply have a much bigger effect on the score. With this, I should have RE'd all information necessary to construct a tool-assisted score run, though?
Edit: Turns out that 1) point items are becoming increasingly important in score runs, and 2) Pearl already did a TAS some months ago. Thanks to spaztron64 for the info!

The Orb↔card hitbox also makes perfect sense, with 24 pixels around the center point of a card in every direction.

The rest of the code confirms the card flip score formula documented on Touhou Wiki, as well as the way cards are flipped by bombs: During every of the 90 "damaging" frames of the 140-frame bomb animation, there is a 75% chance to flip the card at the [bomb_frame % total_card_count_in_stage] array index. Since stages can only have up to 50 cards 📝 thanks to a bug, even a 75% chance is high enough to typically flip most cards during a bomb. Each of these flips still only removes a single card HP, just like after a regular collision with the Orb.
Also, why are the card score popups rendered before the cards themselves? That's two needless frames of flicker during that 25-frame animation. Not all too noticeable, but still.


And that's over 50% of REIIDEN.EXE decompiled as well! Next up: More HUD update and rendering code… with a direct dependency on rank pellet speed modifications?

📝 Posted:
🚚 Summary of:
P0147
Commits:
456b621...c940059
💰 Funded by:
Ember2528, -Tom-
🏷 Tags:
rec98+ th04+ th05+ file-format+ pc98+ player+ bomb- boss+ shinki+ ex-alice+ animation+ waste+

Didn't quite get to cover background rendering for TH05's Stage 1-5 bosses in this one, as I had to reverse-engineer two more fundamental parts involved in boss background rendering before.

First, we got the those blocky transitions from stage tiles to bomb and boss backgrounds, loaded from BB*.BB and ST*.BB, respectively. These files store up to 8 frames of animation, with every bit corresponding to a 16×16 tile on the playfield. With 384×368 pixels to be covered, that would require 69 bytes per frame. But since that's a very odd number to work with in micro-optimized ASM, ZUN instead stores 512×512 pixels worth of bits, ending up with a frame size of 128 bytes, and a per-frame waste of 59 bytes. :tannedcirno: At least it was possible to decompile the core blitting function as __fastcall for once.
But wait, TH05 comes with, and loads, a bomb .BB file for every character, not just for the Reimu and Yuuka bomb transitions you see in-game… 🤔 Restoring those unused stage tile → bomb image transition animations for Mima and Marisa isn't that trivial without having decompiled their actual bomb animation functions before, so stay tuned!

Interestingly though, the code leaves out what would look like the most obvious optimization: All stage tiles are unconditionally redrawn each frame before they're erased again with the 16×16 blocks, no matter if they weren't covered by such a block in the previous frame, or are going to be covered by such a block in this frame. The same is true for the static bomb and boss background images, where ZUN simply didn't write a .CDG blitting function that takes the dirty tile array into account. If VRAM writes on PC-98 really were as slow as the games' README.TXT files claim them to be, shouldn't all the optimization work have gone towards minimizing them? :thonk: Oh well, it's not like I have any idea what I'm talking about here. I'd better stop talking about anything relating to VRAM performance on PC-98… :onricdennat:


Second, it finally was time to solve the long-standing confusion about all those callbacks that are supposed to render the playfield background. Given the aforementioned static bomb background images, ZUN chose to make this needlessly complicated. And so, we have two callback function pointers: One during bomb animations, one outside of bomb animations, and each boss update function is responsible for keeping the former in sync with the latter. :zunpet:

Other than that, this was one of the smoothest pushes we've had in a while; the hardest parts of boss background rendering all were part of 📝 the last push. Once you figured out that ZUN does indeed dynamically change hardware color #0 based on the current boss phase, the remaining one function for Shinki, and all of EX-Alice's background rendering becomes very straightforward and understandable.


Meanwhile, -Tom- told me about his plans to publicly release 📝 his TH05 scripting toolkit once TH05's MAIN.EXE would hit around 50% RE! That pretty much defines what the next bunch of generic TH05 pushes will go towards: bullets, shared boss code, and one full, concrete boss script to demonstrate how it's all combined. Next up, therefore: TH04's bullet firing code…? Yes, TH04's. I want to see what I'm doing before I tackle the undecompilable mess that is TH05's bullet firing code, and you all probably want readable code for that feature as well. Turns out it's also the perfect place for Blue Bolt's pending contributions.

📝 Posted:
🚚 Summary of:
P0111, P0112
Commits:
8b5c146...4ef4c9e, 4ef4c9e...e447a2d
💰 Funded by:
[Anonymous], Blue Bolt
🏷 Tags:
rec98+ th02+ th04+ th05+ gameplay+ player+ bomb- boss+ ex-alice+ animation+ glitch+ jank+

Only one newly ordered push since I've reopened the store? Great, that's all the justification I needed for the extended maintenance delay that was part of these two pushes 😛

Having to write comments to explain whether coordinates are relative to the top-left corner of the screen or the top-left corner of the playfield has finally become old. So, I introduced distinct types for all the coordinate systems we typically encounter, applying them to all code decompiled so far. Note how the planar nature of PC-98 VRAM meant that X and Y coordinates also had to be different from each other. On the X side, there's mainly the distinction between the [0; 640] screen space and the corresponding [0; 80] VRAM byte space. On the Y side, we also have the [0; 400] screen space, but the visible area of VRAM might be limited to [0; 200] when running in the PC-98's line-doubled 640×200 mode. A VRAM Y coordinate also always implies an added offset for vertical scrolling.
During all of the code reconstruction, these types can only have a documenting purpose. Turning them into anything more than just typedefs to int, in order to define conversion operators between them, simply won't recompile into identical binaries. Modding and porting projects, however, now have a nice foundation for doing just that, and can entirely lift coordinate system transformations into the type system, without having to proofread all the meaningless int declarations themselves.


So, what was left in terms of memory references? EX-Alice's fire waves were our final unknown entity that can collide with the player. Decently implemented, with little to say about them.

That left the bomb animation structures as the one big remaining PI blocker. They started out nice and simple in TH04, with a small 6-byte star animation structure used for both Reimu and Marisa. TH05, however, gave each character her own animation… and what the hell is going on with Reimu's blue stars there? Nope, not going to figure this out on ASM level.

A decompilation first required some more bomb-related variables to be named though. Since this was part of a generic RE push, it made sense to do this in all 5 games… which then led to nice PI gains in anything but TH05. :tannedcirno: Most notably, we now got the "pulling all items to player" flag in TH04 and TH05, which is actually separate from bombing. The obvious cheat mod is left as an exercise to the reader.


So, TH05 bomb animations. Just like the 📝 custom entity types of this game, all 4 characters share the same memory, with the superficially same 10-byte structure.
But let's just look at the very first field. Seen from a low level, it's a simple struct { int x, y; } pos, storing the current position of the character-specific bomb animation entity. But all 4 characters use this field differently:

Therefore, I decompiled it as 4 separate structures once again, bundled into an union of arrays.

As for Reimu… yup, that's some pointer arithmetic straight out of Jigoku* for setting and updating the positions of the falling star trails. :zunpet: While that certainly required several comments to wrap my head around the current array positions, the one "bug" in all this arithmetic luckily has no effect on the game.
There is a small glitch with the growing circles, though. They are spawned at the end of the loop, with their position taken from the star pointer… but after that pointer has already been incremented. On the last loop iteration, this leads to an out-of-bounds structure access, with the position taken from some unknown EX-Alice data, which is 0 during most of the game. If you look at the animation, you can easily spot these bugged circles, consistently growing from the top-left corner (0, 0) of the playfield:


After all that, there was barely enough remaining time to filter out and label the final few memory references. But now, TH05's MAIN.EXE is technically position-independent! 🎉 -Tom- is going to work on a pretty extensive demo of this unprecedented level of efficient Touhou game modding. For a more impactful effect of both the 100% PI mark and that demo, I'll be delaying the push covering the remaining false positives in that binary until that demo is done. I've accumulated a pretty huge backlog of minor maintenance issues by now…
Next up though: The first part of the long-awaited build system improvements. I've finally come up with a way of sanely accelerating the 32-bit build part on most setups you could possibly want to build ReC98 on, without making the building experience worse for the other few setups.

📝 Posted:
🚚 Summary of:
P0090, P0091
Commits:
90252cc...07dab29, 07dab29...29c5a73
💰 Funded by:
Yanga, Ember2528
🏷 Tags:
rec98+ th01+ file-format+ bomb- input+ menu+ bug+

Back to TH01, and its high score menu… oh, wait, that one will eventually involve keyboard input. And thanks to the generous TH01 funding situation, there's really no reason not to cover that right now. After all, TH01 is the last game where input still hadn't been RE'd.
But first, let's also cover that one unused blitting function, together with REIIDEN.CFG loading and saving, which are in front of the input function in OP.EXE… (By now, we all know about the hidden start bomb configuration, right?)

Unsurprisingly, the earliest game also implements input in the messiest way, with a different function for each of the three executables. "Because they all react differently to keyboard inputs :zunpet:", apparently? OP.EXE even has two functions for it, one for the START / CONTINUE / OPTION / QUIT main menu, and one for both Option and Music Test menus, both of which directly perform the ring arithmetic on the menu cursor variable. A consistent separation of keyboard polling from input processing apparently wasn't all too obvious of a thought, since it's only truly done from TH02 on.

This lack of proper architecture becomes actually hilarious once you notice that it did in fact facilitate a recursion bug! :godzun: In case you've been living under a rock for the past 8 years, TH01 shipped with debugging features, which you can enter by running the game via game d from the DOS prompt. These features include a memory info screen, shown when pressing PgUp, implemented as one blocking function (test_mem()) called directly in response to the pressed key inside the polling function. test_mem() only returns once that screen is left by pressing PgDown. And in order to poll input… it directly calls back into the same polling function that called it in the first place, after a 3-frame delay.

Which means that this screen is actually re-entered for every 3 frames that the PgUp key is being held. And yes, you can, of course, also crash the system via a stack overflow this way by holding down PgUp for a few seconds, if that's your thing.
Edit (2020-09-17): Here's a video from spaztron64, showing off this exact stack overflow crash while running under the VEM486 memory manager, which displays additional information about these sorts of crashes:

What makes this even funnier is that the code actually tracks the last state of every polled key, to prevent exactly that sort of bug. But the copy-pasted assignment of the last input state is only done after test_mem() already returned, making it effectively pointless for PgUp. It does work as intended for PgDown… and that's why you have to actually press and release this key once for every call to test_mem() in order to actually get back into the game. Even though a single call to PgDown will already show the game screen again.

In maybe more relevant news though, this function also came with what can be considered the first piece of actual gameplay logic! Bombing via double-tapping the Z and X keys is also handled here, and now we know that both keys simply have to be tapped twice within a window of 20 frames. They are tracked independently from each other, so you don't necessarily have to press them simultaneously.
In debug mode, the bomb count tracks precisely this window of time. That's why it only resets back to 0 when pressing Z or X if it's ≥20.

Sure, TH01's code is expectedly terrible and messy. But compared to the micro-optimizations of TH04 and TH05, it's an absolute joy to work on, and opening all these ZUN bug loot boxes is just the icing on the cake. Looking forward to more of the high score menu in the next pushes!

📝 Posted:
🚚 Summary of:
P0034, P0035
Commits:
6cdd229...6f1f367, 6f1f367...a533b5d
💰 Funded by:
zorg
🏷 Tags:
rec98+ th01+ th02+ th04+ th05+ animation+ gameplay+ player+ bomb-

Deathbombs confirmed, in both TH04 and TH05! On the surface, it's the same 8-frame window as in most Windows games, but due to the slightly lower PC-98 frame rate of 56.4 Hz, it's actually slightly more lenient in TH04 and TH05.

The last function in front of the TH05 shot type control functions marks the player's previous position in VRAM to be redrawn. But as it turns out, "player" not only means "the player's option satellites on shot levels ≥ 2", but also "the explosion animation if you lose a life", which required reverse-engineering both things, ultimately leading to the confirmation of deathbombs.

It actually was kind of surprising that we then had reverse-engineered everything related to rendering all three things mentioned above, and could also cover the player rendering function right now. Luckily, TH05 didn't decide to also micro-optimize that function into un-decompilability; in fact, it wasn't changed at all from TH04. Unlike the one invalidation function whose decompilation would have actually been the goal here…

But now, we've finally gotten to where we wanted to… and only got 2 outstanding decompilation pushes left. Time to get the website ready for hosting an actual crowdfunding campaign, I'd say – It'll make a better impression if people can still see things being delivered after the big announcement.